International Tables for Crystallography (2006). Vol. A1, Section 1.2.4.5, p. 12.

1. SPACE GROUPS AND THEIR SUBGROUPS

- (3) Each element of an Abelian group forms a conjugacy class by itself.
- (4) Elements of the same conjugacy class have the same order.
- (5) Different conjugacy classes may contain different numbers of elements, *i.e.* have different 'lengths'.

Not only the individual elements of a group \mathcal{G} but also the subgroups of \mathcal{G} can be classified in conjugacy classes.

Definition 1.2.4.3.2. Two subgroups $\mathcal{H}_j, \mathcal{H}_k < \mathcal{G}$ are called *conjugate* if there is an element $g_q \in \mathcal{G}$ such that $g_q^{-1}\mathcal{H}_j g_q = \mathcal{H}_k$ holds. This relation is often written $\mathcal{H}_j^{g_q} = \mathcal{H}_k$.

Remarks:

- (1) The 'trivial subgroup' \mathcal{I} (consisting only of the unit element of \mathcal{G}) and the group \mathcal{G} itself each form a conjugacy class by themselves.
- (2) Each subgroup of an Abelian group forms a conjugacy class by itself.
- (3) Subgroups in the same conjugacy class are isomorphic and thus have the same order.
- (4) Different conjugacy classes of subgroups may contain different numbers of subgroups, *i.e.* have different lengths.

Equation (1.2.4.1) can be written

$$\mathcal{H} = g_p^{-1} \mathcal{H} g_p \text{ or } \mathcal{H} = \mathcal{H}^{g_p} \text{ for all } p; \ 1 \le p \le i.$$
(1.2.4.2)

Using conjugation, Definition 1.2.4.2.3 can be formulated as

Definition 1.2.4.3.3. A subgroup \mathcal{H} of a group \mathcal{G} is a normal subgroup $\mathcal{H} \lhd \mathcal{G}$ if it is identical with all of its conjugates, *i.e.* if its conjugacy class consists of the one subgroup \mathcal{H} only.

1.2.4.4. Factor groups and homomorphism

For the following definition, the 'product of sets of group elements' will be used:

Definition 1.2.4.4.1. Let \mathcal{G} be a group and $\mathcal{K}_j = \{g_{j_1}, \ldots, g_{j_n}\}$, $\mathcal{K}_k = \{g_{k_1}, \ldots, g_{k_m}\}$ be two arbitrary sets of its elements which are not necessarily groups themselves. Then the product $\mathcal{K}_j \mathcal{K}_k$ of \mathcal{K}_j and \mathcal{K}_k is the set of all products $\mathcal{K}_j \mathcal{K}_k = \{g_{j_p} g_{k_q} \mid g_{j_p} \in \mathcal{K}_j, g_{k_q} \in \mathcal{K}_k\}$.⁴

The coset decomposition of a group \mathcal{G} relative to a normal subgroup $\mathcal{H} \triangleleft \mathcal{G}$ has a property which makes it particularly useful for displaying the structure of a group.

Consider the coset decomposition with the cosets S_j and S_k of a group \mathcal{G} relative to its subgroup $\mathcal{H} < \mathcal{G}$. In general the product $S_j S_k$ of two cosets, *cf*. Definition 1.2.4.4.1, will not be a coset again. However, if and only if $\mathcal{H} \lhd \mathcal{G}$ is a normal subgroup of \mathcal{G} , the product of two cosets is always another coset. This means that for the set of all cosets of a normal subgroup $\mathcal{H} \lhd \mathcal{G}$ there exists a law of composition for which the closure is fulfilled. One can show that the other group postulates are also fulfilled for the cosets and their multiplication if $\mathcal{H} \lhd \mathcal{G}$ holds: there is a neutral element (which is \mathcal{H}), for each coset $g\mathcal{H} = \mathcal{H}g$ the coset $g^{-1}\mathcal{H} = \mathcal{H}g^{-1}$ forms the inverse element and for the coset multiplication the associative law holds.

Definition 1.2.4.4.2. Let $\mathcal{H} \lhd \mathcal{G}$. The cosets of the decomposition of the group \mathcal{G} relative to the normal subgroup $\mathcal{H} \lhd \mathcal{G}$ form a group with respect to the composition law of coset multiplication. This

group is called the *factor group* \mathcal{G}/\mathcal{H} . Its order is $|\mathcal{G} : \mathcal{H}|$, *i.e.* the index of \mathcal{H} in \mathcal{G} .

A factor group $\mathcal{F} = \mathcal{G}/\mathcal{H}$ is not necessarily isomorphic to a subgroup $\mathcal{H}_i < \mathcal{G}$.

Factor groups are indispensable for an understanding of the homomorphism of one group onto the other. The relations between a group \mathcal{G} and its homomorphic image are very strong and are expressed by the following lemma:

Lemma 1.2.4.4.3. Let \mathcal{G}' be a homomorphic image of the group \mathcal{G} . Then the set of all elements of \mathcal{G} that are mapped onto the unit element $e' \in \mathcal{G}'$ forms a normal subgroup \mathcal{X} of \mathcal{G} . The group \mathcal{G}' is isomorphic to the factor group \mathcal{G}/\mathcal{X} and the cosets of \mathcal{X} in \mathcal{G} are mapped onto the elements of \mathcal{G}' . The normal subgroup \mathcal{X} is called the *kernel* of the mapping; it forms the unit element of the factor group \mathcal{G}/\mathcal{X} . A homomorphic image of \mathcal{G} exists for any normal subgroup of \mathcal{G} .

The most important homomorphism in crystallography is the relation between a space group \mathcal{G} and its homomorphic image, the point group \mathcal{P} , where the kernel is the subgroup $\mathcal{T}(\mathcal{G})$ of all translations of \mathcal{G} , *cf.* Section 1.2.5.4.

1.2.4.5. Normalizers

The concept of the normalizer $\mathcal{N}_{\mathcal{G}}(\mathcal{H})$ of a group $\mathcal{H} < \mathcal{G}$ in a group \mathcal{G} is very useful for the considerations of the following sections. The size of the conjugacy class of \mathcal{H} in \mathcal{G} is determined by this normalizer.

Let $\mathcal{H} < \mathcal{G}$ and $h_j \in \mathcal{H}$. Then $h_j^{-1}\mathcal{H}h_j = \mathcal{H}$ holds because \mathcal{H} is a group. If $\mathcal{H} \lhd \mathcal{G}$, then $g_k^{-1}\mathcal{H}g_k = \mathcal{H}$ for any $g_k \in \mathcal{G}$. If \mathcal{H} is not a normal subgroup of \mathcal{G} , there may nevertheless be elements $g_p \in \mathcal{G}$, $g_p \notin \mathcal{H}$ for which $g_p^{-1}\mathcal{H}g_p = \mathcal{H}$ holds. We consider the set of all elements $g_p \in \mathcal{G}$ that have this property.

Definition 1.2.4.5.1. The set of all elements $g_p \in \mathcal{G}$ that map the subgroup $\mathcal{H} < \mathcal{G}$ onto itself by conjugation, $\mathcal{H} = g_p^{-1}\mathcal{H}g_p = \mathcal{H}^{g_p}$, forms a group $\mathcal{N}_{\mathcal{G}}(\mathcal{H})$, called the *normalizer of* \mathcal{H} *in* \mathcal{G} , where $\mathcal{H} \subseteq \mathcal{N}_{\mathcal{G}}(\mathcal{H}) \leq \mathcal{G}$.

Remarks:

- (1) The group $\mathcal{H} < \mathcal{G}$ is a normal subgroup of $\mathcal{G}, \mathcal{H} \triangleleft \mathcal{G}$, if and only if $\mathcal{N}_{\mathcal{G}}(\mathcal{H}) = \mathcal{G}$.
- (2) Let $\mathcal{N}_{\mathcal{G}}(\mathcal{H}) = \{g_p\}$. One can decompose \mathcal{G} into right cosets relative to $\mathcal{N}_{\mathcal{G}}(\mathcal{H})$. All elements $g_p g_r$ of a right coset $\mathcal{N}_{\mathcal{G}}(\mathcal{H}) g_r$ of this decomposition $(\mathcal{G}: \mathcal{N}_{\mathcal{G}}(\mathcal{H}))$ transform \mathcal{H} into the same subgroup $g_r^{-1} g_p^{-1} \mathcal{H} g_p g_r = g_r^{-1} \mathcal{H} g_r < \mathcal{G}$, which is thus conjugate to \mathcal{H} in \mathcal{G} by g_r .
- (3) The elements of different cosets of $(\mathcal{G}: \mathcal{N}_{\mathcal{G}}(\mathcal{H}))$ transform \mathcal{H} into different conjugates of \mathcal{H} . The number of cosets of $\mathcal{N}_{\mathcal{G}}(\mathcal{H})$ is equal to the index $i_N = |\mathcal{G}: \mathcal{N}_{\mathcal{G}}(\mathcal{H})|$ of $\mathcal{N}_{\mathcal{G}}(\mathcal{H})$ in \mathcal{G} . Therefore, the number $\mathcal{N}_{\mathcal{H}}$ of conjugates in the conjugacy class of \mathcal{H} is equal to the index i_N and is thus determined by the order of $\mathcal{N}_{\mathcal{G}}(\mathcal{H})$. From $\mathcal{N}_{\mathcal{G}}(\mathcal{H}) \geq \mathcal{H}, i_N = |\mathcal{G}: \mathcal{N}_{\mathcal{G}}(\mathcal{H})| \leq |\mathcal{G}: \mathcal{H}| = i$ follows. This means that the number of conjugates of a subgroup $\mathcal{H} < \mathcal{G}$ cannot exceed the index $i = |\mathcal{G}: \mathcal{H}|$.
- (4) If *H* < *G* is a maximal subgroup of *G*, then either *N_G*(*H*) = *G* and *H* ⊲ *G* is a normal subgroup of *G* or *N_G*(*H*) = *H* and the number of conjugates is equal to the index *i* = |*G* : *H*|.
- (5) For the normalizers of the space groups, see the corresponding part of Section 1.2.6.3.

⁴ The right-hand side of this equation is the set of all products $g_r = g_{j_p} g_{k_q}$, where g_{j_p} runs through all elements of \mathcal{K}_j and g_{k_q} through all elements of \mathcal{K}_k . Each element g_r is taken only once in the set.