
1. SPACE GROUPS AND THEIR SUBGROUPS

union Tg ∪ (Tg (t a 10)). There are thus two maximal isomorphic
subgroups of index 2 which are obtained by doubling the a lat-
tice parameter. There are altogether 14 isomorphic subgroups of
index 2 for any space group of type P 1 which are obtained by
seven different cell enlargements.

If G belongs to a pair of enantiomorphic space-group types, then
the isomorphic subgroups of G may belong to different crystallo-
graphic space-group types with different HM symbols and differ-
ent space-group numbers. In this case, an infinite number of sub-
groups belong to the crystallographic space-group type of G and
another infinite number belong to the enantiomorphic space-group
type.

Example 1.2.6.2.7.
Space group P41, No. 76, has for any prime number p > 2 an
isomorphic maximal subgroup of index p with the lattice param-
eters a, b, pc. This is an infinite number of subgroups because
there is an infinite number of primes. The subgroups belong to
the space-group type P41 if p ≡ 1 mod 4; they belong to the
type P43 if p ≡ 3 mod 4.

Definition 1.2.6.2.8. A subgroup of a space group is called gen-
eral or a general subgroup if it is neither a translationengleiche
nor a klassengleiche subgroup. It has lost translations as well as
linear parts, i.e. point-group symmetry. �

Example 1.2.6.2.9.
The subgroup Tg in Example 1.2.6.2.6 has lost all inversions
of the original space group P1 as well as all translations with
odd u. It is a general subgroup P1 of the space group P1 of
index 4.

1.2.6.3. The role of normalizers for group–subgroup pairs of space
groups

In Section 1.2.4.5, the normalizer NG(H) of a subgroup H < G
in the group G was defined. The equation H �NG(H) ≤ G holds,
i.e. H is a normal subgroup of NG(H). The normalizer NG(H),
by its index in G, determines the number Nj = |G : NG(H)| of
subgroups H j < G that are conjugate in the group G, cf. Remarks
(2) and (3) below Definition 1.2.4.5.1.

The group–subgroup relations between space groups become
more transparent if one looks at them from a more general point of
view. Space groups are part of the general theory of mappings.
Particular groups are the affine group A of all reversible affine
mappings, the Euclidean group E of all isometries, the transla-
tion group T of all translations and the orthogonal group O of all
orthogonal mappings.

Connected with any particular space group G are its group
of translations T (G) and its point group PG . In addition, the
normalizers NA(G) of G in the affine group A and NE(G) in
the Euclidean group E are useful. They are listed in Section
15.2.1 of IT A. Although consisting of isometries only, NE(G)
is not necessarily a space group, see the paragraph below Lemma
1.2.7.2.6.

For the group–subgroup pairs H < G the following relations
hold:

(1) T (H) ≤ H ≤ NG(H) ≤ G ≤ NE(G) < E ;

(1a) H ≤ NG(H) ≤ NE(H) < E ;

(1b) NE(H) ≤ NA(H) < A;

(2) T (H) ≤ T (G) < T < E ;

(3) T (G) ≤ G ≤ NE(G) ≤ NA(G) < A.

The subgroup H may be a translationengleiche or a klassen-
gleiche or a general subgroup of G. In any case, the normalizer
NG(H) determines the length of the conjugacy class of H < G,
but it is not feasible to list for each group–subgroup pair H < G
its normalizer NG(H). Indeed, it is only necessary to list for any
space group H its normalizer NE(H) in the Euclidean group E
of all isometries, as is done in IT A, Section 15.2.1. From such a
list the normalizers for the group–subgroup pairs can be obtained
easily, because for any chain of space groups H < G < E ,
the relations H ≤ NG(H) ≤ G and H ≤ NG(H) ≤ NE(H)
hold. The normalizer NG(H) consists consequently of all those
isometries of NE(H) that are also elements of G, i.e. that belong
to the intersection NE(H) ∩ G, cf. the examples of Section
1.2.7.10

The isomorphism type of the Euclidean normalizer NE(H)
may depend on the lattice parameters of the space group (spe-
cialized Euclidean normalizer). For example, if the lattice of the
space group P1 of a triclinic crystal is accidentally monoclinic
at a certain temperature and pressure or for a certain compo-
sition in a continuous solid-solution series, then the Euclidean
normalizer of this space group belongs to the space-group types
P2/m or C2/m, otherwise it belongs to P1. Such a special-
ized Euclidean normalizer (here P2/m or C2/m) may be dis-
tinguished from the typical Euclidean normalizer (here P1), for
which the lattice of H is not more symmetric than is required
by the symmetry of H. The specialized Euclidean normaliz-
ers were first listed in the 5th edition of IT A (2002), Section
15.2.1.

1.2.7. Application to domain structures

1.2.7.1. Introductory remarks

In this section, the group-theoretical aspects of domain (twin)
formation (domain structure, transformation twin) from a homoge-
neous single crystal (phase A, parent phase) to a crystalline phase
B (daughter phase, deformed phase) are discussed, where the space
group H of phase B is a subgroup of the space group G of phase A,
H < G. This happens, e.g., in a displacive or order–disorder phase
transition. In most cases phase B, the domain structure, is inho-
mogeneous, consisting of homogeneous regions which are called
domains, defined below.

Only the basic group-theoretical relations are considered here.
A deeper discussion of domain structures and their properties
needs methods using representation theory, thermodynamic points
of view (Landau theory), lattice dynamics and tensor properties of
crystals. Such treatments are beyond the scope of this section. A
detailed discussion of them is given by Tolédano et al. (2003) and
by Janovec & Přı́vratská (2003).

In order to make the group-theoretical treatment possible, the
parent-clamping approximation, abbreviated PCA, is introduced,
by which the lattice parameters of phase A are not allowed to
change at and after the transition to phase B, cf. Janovec &
Přı́vratská (2003). Under the assumption of the PCA, two essential
conditions hold:

10 For maximal subgroups, a calculation of the conjugacy classes is not necessary
because these are indicated in the subgroup tables of Part 2 of this volume by braces
to the left of the data sets for the low-index subgroups and by text for the series of
isomorphic subgroups. For non-maximal subgroups, the conjugacy relations are not
indicated but can be calculated in the way described here. They are also available
online on the Bilbao crystallographic server, http://www.cryst.ehu.es/, under the
program Subgroupgraph.
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1.2. GENERAL INTRODUCTION TO THE SUBGROUPS OF SPACE GROUPS

(1) The translations of phase B are translations of phase A. Thus,
the space group H of B is a subgroup of the space group G of
A, H < G. Without the PCA, the translations of B would not
be translations of A and, therefore, H would not be a subgroup
of G.

(2) Under the PCA, the more complicated ferroelastic phases11

display the same simple behaviour as the non-ferroelastic
ones. Disturbances which otherwise would be caused in fer-
roelastic phase transitions do not appear because there is no
spontaneous strain.

The domain walls, i.e. the boundaries which separate different
domains, will not be treated here because their symmetries are
layer groups which are two-periodic groups in three-dimensional
space and not space groups with three-dimensional periodicity.
Layer groups are described in International Tables for Crystallog-
raphy, Vol. E (2002).

Under these assumptions the domains formed may exhibit dif-
ferent chiralities and polarities of their structures and different spa-
tial orientations of their symmetry elements, but each domain has
the same specific energy and the lattice of each domain is part of
the lattice of the parent structure A with space group G.

In the discussion of domain structures, the following basic con-
cepts are established: domain, domain state, symmetry state, ori-
entation state. These concepts are defined and then applied in dif-
ferent examples of phase transitions in which the group-theoretical
procedures and their results are explained.

The second step, the physically realistic situation at a tempera-
ture Tx < TC with the removal of the PCA, is only partly consid-
ered in this section. The relaxation of the PCA does not change the
relations in a non-ferroelastic phase because all crystal regions suf-
fer the same affine deformation. On the other hand, in ferroelastic
phases the different spontaneous strains complicate the relations.

1.2.7.2. Domains, domain states and symmetry states

In a (continuous) phase transition with the symmetry reduction
of the space group G to a subgroup H < G, a splitting of the
parent phase A into many crystals of the type B is observed. The
number of such crystals of B is not limited; they differ in their
locations in space, in their orientations, in their shapes and in their
space groups which, however, all belong to the same space-group
type. In order to describe what happens in such a transition, a few
notions are useful. If not explicitly stated, the validity of the PCA
is assumed.

Definition 1.2.7.2.1. A connected homogeneous part of a domain
structure or of a twinned crystal with structure type B is called a
domain. Each domain is a single crystal. The part of the space that
is occupied by a domain is the region of that domain. �

If the domains of phase B have been formed from a single crys-
tal of phase A, then relations between the domains exist which are
determined by group theory. In particular, the domains belong to
a finite (small) number of domain states which have well defined
relations to the original crystal A and its space group G. In order

11 A phase transition is called non-ferroelastic if the space groups G and H belong
to the same crystal family, of which there are six: triclinic, monoclinic, orthorhom-
bic, tetragonal, trigonal–hexagonal and cubic. A phase transition is called ferro-
elastic if the strain tensor of the low-symmetry phase B has more independent
components than the strain tensor of the high-symmetry phase A. This can only
happen if the space groups G of A and H of B belong to different crystal families.
In this case, the additional components of the strain tensor of B are called sponta-
neous strain-tensor components or components of the spontaneous deformation.

to describe the relation of B to A, the notion of crystal pattern is
used. Any perfect (ideal) crystal is a finite block of the correspond-
ing infinite arrangement, the symmetry of which is a space group
which contains translations. Here, this (infinite) periodic object is
called a crystal pattern, cf. Section 1.2.2.1.

Definition 1.2.7.2.2. Two domains belong to the same domain
state if their crystal patterns are identical, i.e. if they occupy dif-
ferent regions of space that are part of the same crystal pattern. In
other words: a domain state is a crystal pattern. �

The number of domain states which are observed after a phase
transition is limited and determined by the space groups G and H.
The number of domains which belong to the same domain state is
not limited. The diversity of the domains and their shapes is due
to mechanical stresses, defects, electrical charges and nucleation
phenomena which strongly influence the kinetics of the phase tran-
sition.

A trivial domain structure is formed when phase B consists of
one domain only, i.e. when it forms a single-domain structure.
This is possible, in particular under an external electric field or
under external stress. Such a procedure is known as ‘detwinning’.
The corresponding domain state is a single-domain state. For a
phase transition of the type considered, there are always several
single-domain states which have the same a priori probability of
appearing after a phase transition. In reality not all of them will be
observed and/or their relative frequencies and sizes will be rather
different.

Single-domain states are introduced in theoretical considera-
tions in order to avoid the complications which may be caused by
the coexistence of domains with different spontaneous strain in fer-
roelastic crystals of the structure B if the PCA cannot be assumed.
In polydomain structures, the domains would distort or rotate each
other a little and thus disturb the simple relations described now.
These disturbances do not occur in non-ferroelastic transitions, so
for them the simple relations also hold in polydomain structures
without the PCA.

Lemma 1.2.7.2.3. The number Z of possible domain states after
a phase transition under the PCA is equal to the index i of H in G,
Z = |G : H| = [ i ]. Let G = H1 ∪ . . . ∪ g jH1 ∪ . . . ∪ giH1 be the
coset decomposition of G relative to H1, where g1 = e, . . . , gi

are the coset representatives, and H1 is the space group of the
domain state B1. The other domain states are obtained from B1

by Bk = gkB1, k = 2, . . . , i. For the space group Hk of the
domain state Bk the following holds: Hk is obtained by conju-
gation of the space group H1 of B1 with the same element gk:
Hk = gkH1g−1

k . �
If in a group–subgroup relation G > Hq with index iq the sub-

groupsHq belong to more than one conjugacy class, then each con-
jugacy class corresponds to a separate phase transition A −→ B(1)

k ,
A −→ B(2)

k etc. These different phase transitions lead to different
low-symmetry structures B(m), have different transition tempera-
tures and different probabilities of happening.

There are more elements of the group G than just gk that map
the domain state B1 onto the domain state Bk. The elements of the
space group H1 map the domain state of B1 onto itself: hmB1 = B1,
hm ∈ H1. Therefore, not just the element gk but all elements gkhm

of the coset gkH1 map the domain state of B1 onto the domain
state Bk: Bk = gkH1B1 = gkB1. This can be expressed in the
form:

There is a one-to-one correspondence between the cosets of the
decomposition (G : H1) and the possible domain states which may
be observed after the transition.
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