1.5. THE MATHEMATICAL BACKGROUND OF THE SUBGROUP TABLES

for an $a \in\{1, \ldots, l\}$. Hence the j th line is mapped onto the set

$$
\left\{g g_{j} m_{1} \mathcal{U}, \ldots, g g_{j} m_{k} \mathcal{U}\right\}=\left\{g_{a} m_{1} \mathcal{U}, \ldots, g_{a} m_{k} \mathcal{U}\right\}
$$

Definition 1.5.5.1.1. Let \mathcal{G} be a group and X a \mathcal{G}-set.
(i) A congruence $\left\{S_{1}, \ldots, S_{l}\right\}$ on X is a partition of X into nonempty subsets $X=\dot{\dot{U}_{i=1}^{l}} S_{i}$ such that for all $x_{1}, x_{2} \in S_{i}, g \in \mathcal{G}$, $g x_{1} \in S_{j}$ implies $g x_{2} \in S_{j}$.
(ii) The congruences $\{X\}$ and $\{\{x\} \mid x \in X\}$ are called the trivial congruences.
(iii) X is called a primitive \mathcal{G}-set if \mathcal{G} is transitive on $X,|X|>1$ and X has only the trivial congruences.

Hence the considerations above have proven the following lemma.

Lemma 1.5.5.1.2. Let $\mathcal{M} \leq \mathcal{G}$ be a subgroup of the group \mathcal{G}. Then \mathcal{M} is a maximal subgroup if and only if the \mathcal{G}-set $\mathcal{G} / \mathcal{M}$ is primitive.

The advantage of this point of view is that the groups \mathcal{G} having a faithful, primitive, finite \mathcal{G}-set have a special structure. It will turn out that this structure is very similar to the structure of space groups.
If X is a \mathcal{G}-set and $\mathcal{N} \unlhd \mathcal{G}$ is a normal subgroup of \mathcal{G}, then \mathcal{G} acts on the set of \mathcal{N}-orbits on X, hence $\{\mathcal{N} x \mid x \in X\}$ is a congruence on X. If X is a primitive \mathcal{G}-set, then this congruence is trivial, hence $\mathcal{N} x=\{x\}$ or $\mathcal{N} x=X$ for all $x \in X$. This means that \mathcal{N} either acts trivially or transitively on X.

One obtains the following:
Theorem 1.5.5.1.3. [Theorem of Galois (ca 1830).]
Let \mathcal{H} be a finite group and let X be a faithful, primitive \mathcal{H}-set. Assume that $\{e\} \neq \mathcal{N} \unlhd \mathcal{H}$ is an Abelian normal subgroup. Then
(a) \mathcal{N} is a minimal normal subgroup of \mathcal{H} (i.e. for all $\mathcal{N}_{1} \unlhd \mathcal{H}$, $\mathcal{N}_{1} \subseteq \mathcal{N} \Leftrightarrow \mathcal{N}_{1}=\mathcal{N}$ or $\left.\mathcal{N}_{1}=\{e\}\right)$.
(b) \mathcal{N} is an elementary Abelian p-group for some prime p and $|X|=|\mathcal{N}|$ is a prime power.
(c) $\mathcal{C}_{\mathcal{H}}(\mathcal{N})=\mathcal{N}$ and \mathcal{N} is the unique minimal normal subgroup of \mathcal{H}.

Proof. Let $\{e\} \neq \mathcal{N} \unlhd \mathcal{H}$ be an Abelian normal subgroup. Then \mathcal{N} acts faithfully and transitively on X. To establish a bijection between the sets \mathcal{N} and X, choose $x \in X$ and define $\varphi: \mathcal{N} \rightarrow$ $X ; n \mapsto n \cdot x$. Since \mathcal{N} is transitive, φ is surjective. To show the injectivity of φ, let $n_{1}, n_{2} \in \mathcal{N}$ with $\varphi\left(n_{1}\right)=\varphi\left(n_{2}\right)$. Then $n_{1} \cdot x=n_{2} \cdot x$, hence $n_{1}^{-1} n_{2} x=x$. But then $n_{1}^{-1} n_{2}$ acts trivially on X, because if $y \in X$ then the transitivity of \mathcal{N} implies that there is an $n \in \mathcal{N}$ with $n \cdot x=y$. Then $n_{1}^{-1} n_{2} \cdot y=n_{1}^{-1} n_{2} n \cdot x=$ $n n_{1}^{-1} n_{2} \cdot x=n \cdot x=y$, since \mathcal{N} is Abelian. Since X is a faithful \mathcal{H}-set, this implies $n_{1}^{-1} n_{2}=e$ and therefore $n_{1}=n_{2}$. This proves $|\mathcal{N}|=|X|$. Since this equality holds for all nontrivial Abelian normal subgroups of \mathcal{H}, statement (a) follows. If p is some prime dividing $|\mathcal{N}|$, then the Sylow p-subgroup of \mathcal{N} is normal in \mathcal{N}, since \mathcal{N} is Abelian. Therefore it is also a characteristic subgroup of \mathcal{N} and hence a normal subgroup in \mathcal{H} (see the remarks below Definition 1.5.3.5.3). Since \mathcal{N} is a minimal normal subgroup of \mathcal{H}, this implies that \mathcal{N} is equal to its Sylow p-subgroup. Therefore, the order of \mathcal{N} is a prime power $|\mathcal{N}|=p^{r}$ for some prime p and $r \in \mathbb{N}$. Similarly, the set $\mathcal{N}^{p}:=\left\{n^{p} \mid n \in \mathcal{N}\right\}$ is a normal subgroup of \mathcal{H} properly contained in \mathcal{N}. Therefore $\mathcal{N}^{p}=\{e\}$ and \mathcal{N} is elementary Abelian. This establishes (b).
To see that (c) holds, let $g \in \mathcal{C}_{\mathcal{H}}(\mathcal{N})$. Choose $x \in X$. Then $g \cdot x=y \in X$. Since \mathcal{N} acts transitively, there is an $n \in \mathcal{N}$ such that $n \cdot x=y$. Hence $n^{-1} g \cdot x=x$. As above, let $z \in X$ be any
element of X. Then there is an element $n_{1} \in \mathcal{N}$ with $z=n_{1} \cdot x$. Hence $n^{-1} g \cdot z=n^{-1} g n_{1} \cdot x=n_{1} n^{-1} g \cdot x=n_{1} \cdot x=z$. Since z was arbitrary and X is faithful, this implies that $g=n \in \mathcal{N}$. Therefore $\mathcal{C}_{\mathcal{H}}(\mathcal{N}) \subseteq \mathcal{N}$. Since \mathcal{N} is Abelian, one has $\mathcal{N} \subseteq \mathcal{C}_{\mathcal{H}}(\mathcal{N})$, hence $\mathcal{N}=\mathcal{C}_{\mathcal{H}}(\mathcal{N})$. To see that \mathcal{N} is unique, let $\mathcal{P} \neq \mathcal{N}$ be another normal subgroup of \mathcal{H}. Since \mathcal{N} is a minimal normal subgroup, one has $\mathcal{N} \cap \mathcal{P}=\{e\}$, and therefore for $p \in \mathcal{P}$, $n \in \mathcal{N}: n^{-1} p^{-1} n p \in \mathcal{N} \cap \mathcal{P}=\{e\}$. Hence \mathcal{P} centralizes \mathcal{N}, $\mathcal{P} \subseteq \mathcal{C}_{\mathcal{H}}(\mathcal{N})=\mathcal{N}$, which is a contradiction.

QED
Hence the groups \mathcal{H} that satisfy the hypotheses of the theorem of Galois are certain subgroups of an affine group $\mathcal{A}_{n}(\mathbb{Z} / p \mathbb{Z})$ over a finite field $\mathbb{Z} / p \mathbb{Z}$. This affine group is defined in a way similar to the affine group \mathcal{A}_{n} over the real numbers where one has to replace the real numbers by this finite field. Then \mathcal{N} is the translation subgroup of $\mathcal{A}_{n}(\mathbb{Z} / p \mathbb{Z})$ isomorphic to the n-dimensional vector space

$$
(\mathbb{Z} / p \mathbb{Z})^{n}=\left\{\left.\boldsymbol{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, x_{1}, \ldots, x_{n} \in \mathbb{Z} / p \mathbb{Z}\right\}
$$

over $\mathbb{Z} / p \mathbb{Z}$. The set X is the corresponding affine space $\mathbb{A}_{n}(\mathbb{Z} / p \mathbb{Z})$. The factor group $\overline{\mathcal{H}}=\mathcal{H} / \mathcal{N}$ is isomorphic to a subgroup of the linear group of $(\mathbb{Z} / p \mathbb{Z})^{n}$ that does not leave invariant any non-trivial subspace of $(\mathbb{Z} / p \mathbb{Z})^{n}$.

1.5.5.2. Soluble groups

Definition 1.5.5.2.1. Let \mathcal{G} be a group. The derived series of \mathcal{G} is the series $\left(\mathcal{G}_{0}, \mathcal{G}_{1}, \ldots\right)$ defined via $\mathcal{G}_{0}:=\mathcal{G}, \mathcal{G}_{i}:=\left\langle\mathrm{g}^{-1} h^{-1} \mathrm{gh}\right|$ $\left.g, h \in \mathcal{G}_{i-1}\right\rangle$. The group \mathcal{G}_{1} is called the derived subgroup of \mathcal{G}. The group \mathcal{G} is called soluble if $\mathcal{G}_{n}=\{e\}$ for some $n \in \mathbb{N}$.

Remarks

(i) The \mathcal{G}_{i} are characteristic subgroups of \mathcal{G}.
(ii) \mathcal{G} is Abelian if and only if $\mathcal{G}_{1}=\{e\}$.
(iii) \mathcal{G}_{1} is characterized as the smallest normal subgroup of \mathcal{G}, such that $\mathcal{G} / \mathcal{G}_{1}$ is Abelian, in the sense that every normal subgroup of \mathcal{G} with an Abelian factor group contains \mathcal{G}_{1}.
(iv) Subgroups and factor groups of soluble groups are soluble.
(v) If $\mathcal{N} \unlhd \mathcal{G}$ is a normal subgroup, then \mathcal{G} is soluble if and only if $\mathcal{G} / \mathcal{N}$ and \mathcal{N} are both soluble.

Example 1.5.5.2.2.
The derived series of $\mathcal{C y} c_{2} \times$ Sym $_{4}$ is:

$$
\mathcal{C} y c_{2} \times \mathcal{S} y m_{4} \unrhd \mathcal{A l} t_{4} \unrhd \mathcal{C} y c_{2} \times \mathcal{C} y c_{2} \unrhd \mathcal{I}
$$

(or in Hermann-Mauguin notation $m \overline{3} m \unrhd 23 \unrhd 222 \unrhd 1$) and that of $\mathcal{C y} c_{2} \times \mathcal{C} y c_{2} \times \operatorname{Sym}_{3}$ is

$$
\mathcal{C} y c_{2} \times \mathcal{C} y c_{2} \times S \operatorname{Sim}_{3} \unrhd \mathcal{C} y c_{3} \unrhd \mathcal{I}
$$

(Hermann-Mauguin notation: 6/mmm $\unrhd 3 \unrhd 1$).
Hence these two groups are soluble. (For an explanation of the groups that occur here and later, see Section 1.5.3.6.)
Now let $\mathcal{R} \leq \mathcal{E}_{3}$ be a three-dimensional space group. Then $\mathcal{T}(\mathcal{R})$ is an Abelian normal subgroup, hence $\mathcal{T}(\mathcal{R})$ is soluble. The factor group $\mathcal{R} / \mathcal{T}(\mathcal{R})$ is isomorphic to a subgroup of either $\mathcal{C y} c_{2} \times \mathcal{S y m}_{4}$ or $\mathcal{C y} c_{2} \times \mathcal{C y} c_{2} \times \mathcal{S y m}_{3}$ and therefore also soluble. Using the remark above, one deduces that all three-dimensional space groups are soluble.

Lemma 1.5.5.2.3. Let \mathcal{R} be a three-dimensional space group. Then \mathcal{R} is soluble.

