1.5. THE MATHEMATICAL BACKGROUND OF THE SUBGROUP TABLES

for an $a \in \{1, ..., l\}$. Hence the jth line is mapped onto the set

$$\{gg_im_1\mathcal{U},\ldots,gg_im_k\mathcal{U}\}=\{g_am_1\mathcal{U},\ldots,g_am_k\mathcal{U}\}.$$

Definition 1.5.5.1.1. Let \mathcal{G} be a group and X a \mathcal{G} -set.

- (i) A congruence $\{S_1, \ldots, S_l\}$ on X is a partition of X into nonempty subsets $X = \bigcup_{i=1}^{l} S_i$ such that for all $x_1, x_2 \in S_i$, $g \in \mathcal{G}$, $gx_1 \in S_i$ implies $gx_2 \in S_i$.
- (ii) The congruences $\{X\}$ and $\{\{x\} \mid x \in X\}$ are called the *trivial congruences*.
- (iii) X is called a *primitive* \mathcal{G} -set if \mathcal{G} is transitive on X, |X| > 1 and X has only the trivial congruences.

Hence the considerations above have proven the following lemma.

Lemma 1.5.5.1.2. Let $\mathcal{M} \leq \mathcal{G}$ be a subgroup of the group \mathcal{G} . Then \mathcal{M} is a maximal subgroup if and only if the \mathcal{G} -set \mathcal{G}/\mathcal{M} is primitive.

The advantage of this point of view is that the groups \mathcal{G} having a faithful, primitive, finite \mathcal{G} -set have a special structure. It will turn out that this structure is very similar to the structure of space groups.

If X is a \mathcal{G} -set and $\mathcal{N} \subseteq \mathcal{G}$ is a normal subgroup of \mathcal{G} , then \mathcal{G} acts on the set of \mathcal{N} -orbits on X, hence $\{\mathcal{N}x \mid x \in X\}$ is a congruence on X. If X is a primitive \mathcal{G} -set, then this congruence is trivial, hence $\mathcal{N}x = \{x\}$ or $\mathcal{N}x = X$ for all $x \in X$. This means that \mathcal{N} either acts trivially or transitively on X.

One obtains the following:

Theorem 1.5.5.1.3. [Theorem of Galois (*ca* 1830).]

Let \mathcal{H} be a finite group and let X be a faithful, primitive \mathcal{H} -set. Assume that $\{e\} \neq \mathcal{N} \leq \mathcal{H}$ is an Abelian normal subgroup. Then

- (a) \mathcal{N} is a minimal normal subgroup of \mathcal{H} (i.e. for all $\mathcal{N}_1 \leq \mathcal{H}$, $\mathcal{N}_1 \subseteq \mathcal{N} \Leftrightarrow \mathcal{N}_1 = \mathcal{N}$ or $\mathcal{N}_1 = \{e\}$).
- (b) $\mathcal N$ is an elementary Abelian p-group for some prime p and $|X|=|\mathcal N|$ is a prime power.
- (c) $C_{\mathcal{H}}(\mathcal{N}) = \mathcal{N}$ and \mathcal{N} is the unique minimal normal subgroup of \mathcal{H} .

Proof. Let $\{e\} \neq \mathcal{N} \subseteq \mathcal{H}$ be an Abelian normal subgroup. Then \mathcal{N} acts faithfully and transitively on X. To establish a bijection between the sets $\mathcal N$ and X, choose $x \in X$ and define $\varphi : \mathcal N \to X$ X; $n \mapsto n \cdot x$. Since \mathcal{N} is transitive, φ is surjective. To show the injectivity of φ , let $n_1, n_2 \in \mathcal{N}$ with $\varphi(n_1) = \varphi(n_2)$. Then $n_1 \cdot x = n_2 \cdot x$, hence $n_1^{-1} n_2 x = x$. But then $n_1^{-1} n_2$ acts trivially on X, because if $y \in X$ then the transitivity of \mathcal{N} implies that there is an $n \in \mathcal{N}$ with $n \cdot x = y$. Then $n_1^{-1} n_2 \cdot y = n_1^{-1} n_2 n \cdot x =$ $nn_1^{-1}n_2 \cdot x = n \cdot x = y$, since \mathcal{N} is Abelian. Since X is a faithful \mathcal{H} -set, this implies $n_1^{-1}n_2 = e$ and therefore $n_1 = n_2$. This proves $|\mathcal{N}| = |X|$. Since this equality holds for all nontrivial Abelian normal subgroups of \mathcal{H} , statement (a) follows. If p is some prime dividing $|\mathcal{N}|$, then the Sylow p-subgroup of \mathcal{N} is normal in \mathcal{N} , since \mathcal{N} is Abelian. Therefore it is also a characteristic subgroup of $\mathcal N$ and hence a normal subgroup in $\mathcal H$ (see the remarks below Definition 1.5.3.5.3). Since \mathcal{N} is a minimal normal subgroup of \mathcal{H} , this implies that \mathcal{N} is equal to its Sylow p-subgroup. Therefore, the order of \mathcal{N} is a prime power $|\mathcal{N}| = p^r$ for some prime p and $r \in \mathbb{N}$. Similarly, the set $\mathcal{N}^p := \{n^p \mid n \in \mathcal{N}\}$ is a normal subgroup of \mathcal{H} properly contained in \mathcal{N} . Therefore $\mathcal{N}^p = \{e\}$ and \mathcal{N} is elementary Abelian. This establishes (b).

To see that (c) holds, let $g \in \mathcal{C}_{\mathcal{H}}(\mathcal{N})$. Choose $x \in X$. Then $g \cdot x = y \in X$. Since \mathcal{N} acts transitively, there is an $n \in \mathcal{N}$ such that $n \cdot x = y$. Hence $n^{-1}g \cdot x = x$. As above, let $z \in X$ be any

element of X. Then there is an element $n_1 \in \mathcal{N}$ with $z = n_1 \cdot x$. Hence $n^{-1}g \cdot z = n^{-1}gn_1 \cdot x = n_1n^{-1}g \cdot x = n_1 \cdot x = z$. Since z was arbitrary and X is faithful, this implies that $g = n \in \mathcal{N}$. Therefore $\mathcal{C}_{\mathcal{H}}(\mathcal{N}) \subseteq \mathcal{N}$. Since \mathcal{N} is Abelian, one has $\mathcal{N} \subseteq \mathcal{C}_{\mathcal{H}}(\mathcal{N})$, hence $\mathcal{N} = \mathcal{C}_{\mathcal{H}}(\mathcal{N})$. To see that \mathcal{N} is unique, let $\mathcal{P} \neq \mathcal{N}$ be another normal subgroup of \mathcal{H} . Since \mathcal{N} is a minimal normal subgroup, one has $\mathcal{N} \cap \mathcal{P} = \{e\}$, and therefore for $p \in \mathcal{P}$, $n \in \mathcal{N}$: $n^{-1}p^{-1}np \in \mathcal{N} \cap \mathcal{P} = \{e\}$. Hence \mathcal{P} centralizes \mathcal{N} , $\mathcal{P} \subseteq \mathcal{C}_{\mathcal{H}}(\mathcal{N}) = \mathcal{N}$, which is a contradiction. QED

Hence the groups \mathcal{H} that satisfy the hypotheses of the theorem of Galois are certain subgroups of an affine group $\mathcal{A}_n(\mathbb{Z}/p\mathbb{Z})$ over a finite field $\mathbb{Z}/p\mathbb{Z}$. This affine group is defined in a way similar to the affine group \mathcal{A}_n over the real numbers where one has to replace the real numbers by this finite field. Then \mathcal{N} is the translation subgroup of $\mathcal{A}_n(\mathbb{Z}/p\mathbb{Z})$ isomorphic to the n-dimensional vector space

$$(\mathbb{Z}/p\mathbb{Z})^n = \{ \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mid x_1, \dots, x_n \in \mathbb{Z}/p\mathbb{Z} \}$$

over $\mathbb{Z}/p\mathbb{Z}$. The set X is the corresponding affine space $\mathbb{A}_n(\mathbb{Z}/p\mathbb{Z})$. The factor group $\overline{\mathcal{H}} = \mathcal{H}/\mathcal{N}$ is isomorphic to a subgroup of the linear group of $(\mathbb{Z}/p\mathbb{Z})^n$ that does not leave invariant any non-trivial subspace of $(\mathbb{Z}/p\mathbb{Z})^n$.

1.5.5.2. Soluble groups

Definition 1.5.5.2.1. Let \mathcal{G} be a group. The *derived series* of \mathcal{G} is the series $(\mathcal{G}_0, \mathcal{G}_1, \ldots)$ defined *via* $\mathcal{G}_0 := \mathcal{G}$, $\mathcal{G}_i := \langle g^{-1}h^{-1}gh \mid g, h \in \mathcal{G}_{i-1} \rangle$. The group \mathcal{G}_1 is called the *derived subgroup* of \mathcal{G} . The group \mathcal{G} is called *soluble* if $\mathcal{G}_n = \{e\}$ for some $n \in \mathbb{N}$.

Remarks

- (i) The G_i are characteristic subgroups of G.
- (ii) \mathcal{G} is Abelian if and only if $\mathcal{G}_1 = \{e\}$.
- (iii) \mathcal{G}_1 is characterized as the smallest normal subgroup of \mathcal{G} , such that $\mathcal{G}/\mathcal{G}_1$ is Abelian, in the sense that every normal subgroup of \mathcal{G} with an Abelian factor group contains \mathcal{G}_1 .
- (iv) Subgroups and factor groups of soluble groups are soluble.
- (v) If $\mathcal{N} \unlhd \mathcal{G}$ is a normal subgroup, then \mathcal{G} is soluble if and only if \mathcal{G}/\mathcal{N} and \mathcal{N} are both soluble.

Example 1.5.5.2.2.

The derived series of $Cyc_2 \times Sym_4$ is:

$$Cyc_2 \times Sym_4 \trianglerighteq Alt_4 \trianglerighteq Cyc_2 \times Cyc_2 \trianglerighteq \mathcal{I}$$

(or in Hermann–Mauguin notation $m\overline{3}m \ge 23 \ge 222 \ge 1$) and that of $Cyc_2 \times Cyc_2 \times Sym_3$ is

$$Cyc_2 \times Cyc_2 \times Sym_3 \supseteq Cyc_3 \supseteq \mathcal{I}$$

(Hermann–Mauguin notation: 6/mmm > 3 > 1).

Hence these two groups are soluble. (For an explanation of the groups that occur here and later, see Section 1.5.3.6.)

Now let $\mathcal{R} \leq \mathcal{E}_3$ be a three-dimensional space group. Then $\mathcal{T}(\mathcal{R})$ is an Abelian normal subgroup, hence $\mathcal{T}(\mathcal{R})$ is soluble. The factor group $\mathcal{R}/\mathcal{T}(\mathcal{R})$ is isomorphic to a subgroup of either $\mathcal{C}\mathit{yc}_2 \times \mathcal{S}\mathit{ym}_4$ or $\mathcal{C}\mathit{yc}_2 \times \mathcal{C}\mathit{yc}_2 \times \mathcal{S}\mathit{ym}_3$ and therefore also soluble. Using the remark above, one deduces that all three-dimensional space groups are soluble.

Lemma 1.5.5.2.3. Let \mathcal{R} be a three-dimensional space group. Then \mathcal{R} is soluble.