
3.1. Guide to the tables

BY ULRICH MÜLLER

In the tables of Chapter 3.2, all maximal subgroups of the space
groups are listed. For all Wyckoff positions of a space group
the relations to the Wyckoff positions of the subgroups are given.
The Wyckoff positions are always labelled by their multiplicities
and their Wyckoff letters, in the same manner as in International
Tables for Crystallography, Volume A (2002). Reference to Vol-
ume A therefore is always necessary, especially when the corre-
sponding coordinate triplets or site symmetries are needed. For
general remarks on Wyckoff positions see Chapter 1.3.

3.1.1. Arrangement of the entries

Every space group begins on a new page (with the exception of
P43, P32, P64 and P65, which are listed together with P41, P31,
P62 and P61, respectively). If necessary, continuation occurs on
the following page(s), or, in a few correspondingly marked cases,
on the preceding page.

The different settings for monoclinic space groups are continued
on the same or the following page(s).

3.1.1.1. Headline

The headline lists from the outer margin inwards:

(1) The short Hermann–Mauguin symbol;
(2) The number of the space group according to Volume A;
(3) The full Hermann–Mauguin symbol if it differs from the

short symbol;
(4) The Schoenflies symbol.

In the case of monoclinic space groups, the headline can have
one or two additional entries with the full Hermann–Mauguin sym-
bols for different settings.

3.1.1.2. Specification of the settings

Each of the monoclinic space groups is listed several times,
namely with unique axis b and with unique axis c, and, if appli-
cable, with the three cell choices 1, 2 and 3 according to Volume
A. Space permitting, the entries for the different settings have been
combined on one page or on facing pages, since in most cases the
Wyckoff-position relations do not depend on the choice of setting.
In the few cases where there is a dependence, arrows (⇒) in the
corresponding lines show to which settings they refer. Otherwise,
the Wyckoff positions of the subgroups correspond to all of the
settings listed on the same page or on facing pages.

The comment ‘Space groups of the series of isomorphic sub-
groups appear in different sequences for cell choices 1, 2 and 3’
under a table refers to the infinite series of isomorphic subgroups
listed at the bottom of a table of a monoclinic space group. For a
given index p (p = prime number) and enlargement of the basis
vectors perpendicular to the monoclinic axis, there are p + 1 non-
conjugate isomorphic maximal subgroups. Their cells can be cal-
culated by formulae such as ‘a, b, pc’ and ‘pa, b, qa + c’ with an
integer parameter q taking any value from − 1

2 (p − 1) to 1
2 (p− 1).

The same value of q may refer to a different subgroup for cell
choices 1, 2 or 3.

Rhombohedral space groups are listed only in the setting with
hexagonal axes with a rhombohedrally centred obverse cell [i.e.

±( 2
3 , 1

3 , 1
3 ) ]. However, for cubic space groups, the rhombohedral

subgroups are also given with rhombohedral axes.
Settings with different origin choices are taken account of by

two separate columns ‘Coordinates’ with the headings ‘origin 1’
and ‘origin 2’.

3.1.1.3. List of Wyckoff positions

Under the column heading ‘Wyckoff positions’, the complete
sequence of the Wyckoff positions of the space group is given by
their multiplicities and Wyckoff letters. If necessary, the sequence
runs over two or more lines.

3.1.1.4. Subgroup data

The subgroups are divided into two sections: I Maximal
translationengleiche subgroups and II Maximal klassengleiche
subgroups. The latter are further subdivided into three blocks:

Loss of centring translations. This block appears only if the
space group has a conventionally centred lattice. The centring has
been fully or partly lost in the subgroups listed. The size of the
conventional unit cell is not changed.

Enlarged unit cell, non-isomorphic. The klassengleiche sub-
groups listed in this block are non-isomorphic and have conven-
tional unit cells that are enlarged compared with the unit cell of
the space group.

Enlarged unit cell, isomorphic. The listing includes the iso-
morphic subgroups with the smallest possible indices for every
kind of cell enlargement. If they exist, index values of 2, 3 and
4 are always given (except for P1, which is restricted to index 2).
If the indices 2, 3 or 4 are not possible, the smallest possible index
for the kind of cell enlargement considered is listed. In addition,
the infinite series of isomorphic subgroups are given for all possi-
ble kinds of cell enlargements. The factor of the cell enlargement
corresponds to the index, which is a prime number p, a square p2

of a prime number, or a cube p3 of a prime number (cf. Section
3.1.1.6). If p > 2, the specifically listed subgroups with small
index values also always belong to the infinite series, so that the
corresponding information is given twice in these cases. For p = 2
this applies only to certain special cases.

3.1.1.5. Sequence of the listed subgroups

Within each of the aforementioned blocks, the subgroups are
listed in the following order. First priority is given to the index,
with smallest values first. Subgroups with the same index fol-
low decreasing space-group numbers (according to Volume A).
Exception: the translationengleiche subgroup of a tetragonal space
group listed last is always the one with the axes transformation to
a diagonally oriented cell.

Translationengleiche subgroups of cubic space groups are in the
order cubic, rhombohedral, tetragonal, orthorhombic.

In the case of the isomorphic subgroups, there is a subdivision
according to the kind of cell enlargement. For monoclinic, tetrago-
nal, trigonal and hexagonal space groups, cell enlargements in the
direction of the unique axis are given first. For orthorhombic space
groups, the isomorphic subgroups with increased a are given first,
followed by increased b and c.
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3.1. GUIDE TO THE TABLES

The sequence differs somewhat from that in Chapter 2.3 of
this volume. In Chapter 2.3, the klassengleiche subgroups have
been subdivided in more detail according to the different kinds
of cell enlargements and the isomorphic subgroups with specific
index values have been listed together with the klassengleiche sub-
groups, i.e. separately from the infinite series of isomorphic sub-
groups. A list of the differences in presentation between Chapters
2.3 and 3.2 is given in the Appendix at the end of this volume.

3.1.1.6. Information for every subgroup

3.1.1.6.1. Index

The entry for every subgroup begins with the index in brackets,
for example [2] or [p] or [p2] (p = prime number).

The index for any of the infinite number of maximal isomorphic
subgroups must be either a prime number p, or, in certain cases
of tetragonal, trigonal and hexagonal space groups, a square of a
prime number p2; for isomorphic subgroups of cubic space groups
the index may only be the cube of a prime number p3. In many
instances only certain prime numbers are allowed (Bertaut & Bil-
liet, 1979; Billiet & Bertaut, 2002; Müller & Brelle, 1995). If
restrictions exist, the prime numbers allowed are given under the
axes transformations by formulae such as ‘p = prime = 3n − 1’.

3.1.1.6.2. Subgroup symbol

The index is followed by the Hermann–Mauguin symbol (short
symbol) and the space-group number of the subgroup. If a noncon-
ventional setting has been chosen, then the space-group symbol of
the conventional setting is also mentioned in the following line
after the symbol =̂.

In some cases of nonconventional settings, the space-group
symbol does not show uniquely in which manner it deviates from
the conventional setting. For example, the nonconventional setting
P2212 of the space group P2221 can result from cyclic exchange
of the axes, (b, c, a) or by interchange of b with c (a, −c, b). As a
consequence, the relations between the Wyckoff positions can be
different. In such cases, cyclic exchange has always been chosen.

3.1.1.6.3. Basis vectors

The column ‘Axes’ shows how the basis vectors of the unit cell
of a subgroup result from the basis vectors a, b and c of the space
group considered. This information is omitted if there is no change
of basis vectors.

A formula such as ‘qa−rb, ra+qb, c’ together with the restric-
tions ‘p = q2 + r2 = prime = 4n + 1’ and ‘q = 2n + 1 ≥ 1;
r = ±2n′ �= 0’ means that for a given index p there exist sev-
eral subgroups with different lattices depending on the values of
the integer parameters q (odd) and r (even) within the limits of the
restriction. In this example, the prime number p must be p ≡ 1
modulo 4 (i.e. 5, 13, 17, . . . ); if it is, say, p = 13 = 32 + (±2)2,
the values of q and r may be q = 3, r = 2 and q = 3, r = −2.1

3.1.1.6.4. Coordinates

The column ‘Coordinates’ shows how the atomic coordinates
of the subgroups are calculated from the coordinates x, y and z of

1 If the sum of two square numbers is a prime number p, then it is p = 2 or
p = 4n + 1, and every prime number of this type can be expressed as such a
sum. Index number restrictions of this kind occur among isomorphic subgroups of
certain tetragonal space groups. A similar relation occurring among trigonal and
hexagonal space groups concerns prime numbers p = q2 − qr + r2; p = 3 or
p = 6n + 1 always holds for integer q, r and every prime number p = 6n + 1 can
be expressed by such a sum. For details, see Müller & Brelle (1995).

the starting unit cell. This includes coordinate shifts whenever a
shift of the origin is required (cf. Section 3.1.3). If the cell of the
subgroup is enlarged, the coordinate triplet is followed by a semi-
colon; then follow fractional numbers in parentheses. This means
that in addition to the coordinates given before the semicolon, fur-
ther coordinates have to be considered; they result from adding
the numbers in the parentheses. However, if the subgroup has a
centring, the values to be added due to this centring are not men-
tioned. If no transformation of coordinates is necessary, the entry
is omitted.

Example 3.1.1.6.1.
The entry

1
3 x + 1

4 ,y + 1
4 ,z; ±( 1

3 ,0,0)

means: starting from the coordinates of, say, 0.63, 0.12, 0.0,
sites with the following coordinates result in the subgroup:

0.46, 0.37, 0.0; 0.793333, 0.37, 0.0;
0.1266667, 0.37, 0.0.

Example 3.1.1.6.2.
The entry of an I-centred subgroup

1
2 x, 1

2 y, 1
2 z; +( 1

2 ,0,0); +(0, 1
2 ,0); +(0,0, 1

2 )

means: starting from the coordinates of, say, 0.08, 0.14, 0.20,
sites with the following coordinates result in the subgroup:

0.04, 0.07, 0.10; 0.54, 0.07, 0.10;
0.04, 0.57, 0.10; 0.04, 0.07, 0.60;

in addition, there are all coordinates with +( 1
2 , 1

2 , 1
2 ) due to the

I-centring:

0.54, 0.57, 0.60; 0.04, 0.57, 0.60;
0.54, 0.07, 0.60; 0.54, 0.57, 0.10.

For the infinite series of isomorphic subgroups, coordinate for-
mulae are, for example, in the form x, y, 1

p z; +(0,0, u
p ) with u =

1, . . . , p − 1. Then there are p coordinate values running from
x, y, 1

p z to x, y, 1
p z + p−1

p .

Example 3.1.1.6.3.
For a subgroup with index p2 = 25 (p = 5) the entry

1
p x, 1

p y,z; +( u
p , v

p ,0); u,v = 1, . . . , p − 1

means: starting from the coordinates of, say, 0.10, 0.35, 0.0,
sites with the following coordinates result in the subgroup:

0.02, 0.07, 0.0; 0.02, 0.27, 0.0; 0.02, 0.47, 0.0;
0.02, 0.67, 0.0; 0.02, 0.87, 0.0;
0.22, 0.07, 0.0; 0.22, 0.27, 0.0; 0.22, 0.47, 0.0;
0.22, 0.67, 0.0; 0.22, 0.87, 0.0;
0.42, 0.07, 0.0; 0.42, 0.27, 0.0; 0.42, 0.47, 0.0;
0.42, 0.67, 0.0; 0.42, 0.87, 0.0;
0.62, 0.07, 0.0; 0.62, 0.27, 0.0; 0.62, 0.47, 0.0;
0.62, 0.67, 0.0; 0.62, 0.87, 0.0;
0.82, 0.07, 0.0; 0.82, 0.27, 0.0; 0.82, 0.47, 0.0;
0.82, 0.67, 0.0; 0.82, 0.87, 0.0.

If Volume A allows two choices for the origin, coordinate trans-
formations for both are listed in separate columns with the head-
ings ‘origin 1’ and ‘origin 2’. If two origin choices are allowed
for both the group as well as the subgroup, then it is understood
that the origin choices of the group and the subgroup are the same
(either origin choice 1 for both groups or origin choice 2 for both).
If the space group has only one origin choice, but the subgroup
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has two choices, the coordinate transformations are given for both
choices on separate lines.

3.1.1.6.5. Wyckoff positions

The columns under the heading ‘Wyckoff positions’ contain the
Wyckoff symbols of all sites of the subgroups that result therefrom.
They are given in the same sequence as in the top line(s). If the
symbols at the top run over more than one line, then the symbols
for the subgroups take a corresponding number of lines.

When an orbit splits into several independent orbits, the cor-
responding Wyckoff symbols are separated by semicolons, i.e.
1b;4h;4k. An entry such as 3 × 8 j means that a splitting into
three orbits takes place, all of which are of the same kind 8 j; they
differ in the values of their free parameters.

For the infinite series of isomorphic subgroups general formu-
lae are given. They allow the calculation of the Wyckoff-position
relations for any index in a simple manner.

Example 3.1.1.6.4.
The entry p(p−1)

2 × 24k means that for a given prime number p,

say p = 5, there are 5(5−1)
2 = 10 orbits of the kind 24k.

In some cases of splittings, there is not enough space to enter
all Wyckoff symbols on one line; this requires them to be listed
one below the other over two or more lines. Whenever a Wyckoff
symbol is followed by a semicolon, another symbol follows.

Example 3.1.1.6.5.
The last subgroup listed for space group I4̄m2, No. 119, is I4̄m2
with basis vectors pa, pb, c. The entry for the Wyckoff position
2a is:

2a; p–1
2 × 8g;

p–1
2 × 8i;

(p–1)(p–3)
8 × 16 j

If p = 5, it shows the splitting of an orbit of position 2a into
one orbit 2a, two ( 5–1

2 = 2) orbits 8g, two orbits 8i and one

( (5–1)(5–3)
8 = 1) orbit 16 j.

Sometimes a Wyckoff label is followed by another Wyckoff
label in parentheses together with a footnote marker. In this case,
the Wyckoff label in parentheses is to be taken for the cases speci-
fied in the footnote.

Example 3.1.1.6.6.
The entry 2c(d∗) together with the footnote ∗ p = 4n−1 means
that the Wyckoff position is 2c, but it is 2d if the index is p ≡ 3
modulo 4 (i.e. p = 3, 7, 11, . . .).

The Wyckoff positions of an isomorphic subgroup of a space
group with two choices for the origin are only identical for the two
choices if certain origin shifts are taken into account. Since origin
shifts have been avoided as far as possible, in some cases some
Wyckoff positions differ for the two origin choices.

Example 3.1.1.6.7.
The isomorphic subgroups of the space group P42/n, No. 86,
with cell enlargements a, b, pc and p = 4n − 1 result in iden-
tical Wyckoff positions for the two origin choices only if there
is no origin shift for choice 1, but an origin shift of 0,0, 1

2 for
choice 2. The origin shift for choice 2 has been avoided, but
as a consequence some of the Wyckoff labels differ for the
two choices. For the Wyckoff position 2a of the space group,

the entry for these isomorphic subgroups is 2a(b†); p−1
2 × 4 f .

The footnote reads ‘† origin 2 and p = 4n − 1’. Therefore,
2a is (aside from 4 f ) the resulting Wyckoff position for origin
choice 1 and any value of p; for origin choice 2 it is also 2a if
p = 4n + 1, but it is 2b if p = 4n − 1 (the permitted values for
p are p = 4n ± 1).

Warning: The listed Wyckoff positions of the subgroups apply
only to the transformations given in the column ‘Coordinates’. If
other cell transformations or origin shifts are used, this may result
in an interchange of Wyckoff positions within each Wyckoff set of
the subgroup.

3.1.2. Cell transformations

When comparing related crystal structures, unit-cell transforma-
tions are troublesome. They result in differing sets of atomic coor-
dinates for corresponding atoms; this can make comparisons more
complicated and structural relations may be obscured. Frequently,
it is more convenient not to interchange axes and to avoid trans-
formations if possible. The use of a nonconventional setting of a
space group may be preferable if this reduces cell transformations.
For this reason, in the present tables settings of the subgroups were
preferentially chosen in such a way that the directions of the basis
vectors of a space group and its subgroup deviate as little as pos-
sible. If this results in a nonconventional setting of the subgroup,
then the way to transform the basis vectors and coordinates to those
of the conventional cell is also given.

Subgroups listed in nonconventional settings concern
orthorhombic and monoclinic space groups. Their transformations
to conventional settings frequently only involve an interchange of
axes. In the case of tetragonal subgroups, nonconventional settings
with C-centred or F-centred cells are not used; this would have
caused nonconventional multiplicities of the Wyckoff positions
and would have required listings of all positions in these settings.
Equally, face-centred monoclinic cells, B-centred monoclinic cells
for unique axis b, C-centred monoclinic cells for unique axis c and
hexagonal H cells are not used.

Monoclinic space groups allow different descriptions, such as
unique axis a, b or c, base- or body-centred cells, and glide vectors
in different directions. All settings that are listed in Volume A have
been considered to be allowed conventional settings. Whenever a
cell transformation can be avoided and the subgroup conforms to
any of the settings listed in Volume A (b or c as unique axis; cell
choices 1, 2 or 3), then this setting has been chosen. Transforma-
tions to other settings are not given in these cases.

3.1.3. Origin shifts

In a group–subgroup relation, an origin shift may be necessary to
conform to the conventional origin setting of the subgroup. This
causes coordinate changes for equivalent atomic positions and is
therefore undesirable for the purpose of comparing related crystal
structures. However, in some cases an origin shift can be avoided
if the relations between the basis vectors are chosen in a conve-
nient manner. For example, the isomorphic relation of index 27
(for short: i27)

F4132
i27−→ F4132

requires an increase of the lattice parameters by a factor of 3. To
conform to the conventional setting, the origin must by displaced
when the cell of the subgroup is chosen to be 3a, 3b, 3c. However,
no displacement is necessary when the cell of the subgroup is taken
to be 3b, −3a, 3c. Although the x and −y coordinates exchange
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places, this may be more convenient, since no values for an origin
shift have to be added. For this reason, the latter option is preferred
in this case.

Origin shifts can be specified in terms of the coordinate system
of the starting space group or of the coordinate system of the sub-
group. In Part 2 of this volume, all origin shifts refer to the starting
space group. In Part 3, the origin shifts are contained in the col-
umn ‘Coordinates’ as additive fractional numbers. This means that
these shifts refer to the coordinate system of the subgroup.

When comparing related crystal structures, it is mainly the
atomic coordinates which have to be interconverted. Thus the
coordinate conversion formulae are needed anyway; they are given
in the column ‘Coordinates’. When space groups are involved that
allow two origin choices, the origin shifts from a group to a sub-
group can be different depending on whether origin choice 1 or
2 has been selected. Therefore, all space groups with two ori-
gin choices have two columns ‘Coordinates’, one for each origin
choice. The coordinate conversion formulae for a specific sub-
group in the two columns only differ in the additive fractional
numbers that specify the origin shift. In addition, origin shifts
could also have been specified in terms of the coordinate system of
the starting space group. This, however, would have been redun-
dant information that would have required an additional column,
causing a serious shortage of space.

The origin shifts listed in the column ‘Coordinates’ can be con-
verted to origin shifts that refer to the coordinate system of the
starting space group in the following way:

Take:
a, b, c basis vectors of the starting space group;
O origin of the starting space group;
a′, b′, c′ basis vectors of the subgroup;
O′ origin of the subgroup;
xo′ , yo′ , zo′ coordinates of O′ expressed in the coordinate

system of the starting group;
x′o, y′o, z′o coordinates of O expressed in the coordinate

system of the subgroup.

The basis vectors are related according to

(a′, b′, c′) = (a, b, c)P.

P is the 3×3 transformation matrix of the basis change. The origin
shift O → O′ then corresponds to the vector

⎛

⎝

xo′

yo′

zo′

⎞

⎠ = −P

⎛

⎝

x′o
y′o
z′o

⎞

⎠ .

Example 3.1.3.1.
In the group–subgroup relation Fddd → C12/c1, a cell trans-
formation and an origin shift are needed if origin choice 1 has
been selected for Fddd. In the table for space group Fddd, No.
70, the transformation of the basis vectors in the column ‘Axes’
is given as a, −b, – 1

2 (a + c), which means that the transforma-
tion matrix is

P =

⎛

⎝

1 0 − 1
2

0 −1 0
0 0 − 1

2

⎞

⎠ .

In the column ‘Coordinates’ for origin choice 1, the coordinate
transformations are given as x–z, –y+ 1

8 , –2z+ 1
4 , which implies

a coordinate shift of x′o = 0, y′o = 1
8 and z′o = 1

4 referred to the

coordinate system of the subgroup C12/c1, No. 15. The origin
shift in terms of the starting space group Fddd is

⎛

⎜

⎝

xo′

yo′

zo′

⎞

⎟

⎠
= −

⎛

⎜

⎝

1 0 − 1
2

0 −1 0

0 0 − 1
2

⎞

⎟

⎠

⎛

⎜

⎝

0
1
8
1
4

⎞

⎟

⎠
=

⎛

⎜

⎝

1
8
1
8
1
8

⎞

⎟

⎠
.

Example 3.1.3.2.
Consider space group Pnma, No. 62, and its subgroup P212121,
No. 19. In the table for space group Pnma, the coordinate trans-
formation in the column ‘Coordinates’ is given as x,y,z + 1

4 .
Therefore, there is no basis transformation, P = I, but there is
an origin shift of x′o = 0, y′o = 0, z′o = 1

4 expressed in the coor-
dinate system of P212121. In terms of the coordinate system of
Pnma this coordinate shift has the opposite sign:

⎛

⎝

xo′

yo′

zo′

⎞

⎠ = −

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝

0
0
1
4

⎞

⎠ =

⎛

⎝

0
0

− 1
4

⎞

⎠ .

Note: In Chapter 2.3, the listed origin shifts refer to the starting
space group and thus are given in a different way to that in Chap-
ter 3.2. In addition, for a given group–subgroup pair the direction
of the origin shift selected in Chapter 2.3 usually differs from the
origin shift listed in Chapter 3.2 (often the direction is opposite;
see the Appendix).

3.1.4. Nonconventional settings of orthorhombic space groups

Orthorhombic space groups can have as many as six different set-
tings, as listed in Chapter 4.3 of Volume A. They result from the
interchange of the axes a, b, c in the following ways:

Cyclic exchange: b c a or c a b.

Exchange of two axes, combined with the reversal of the direc-
tion of one axis in order to keep a right-handed coordinate sys-
tem:

ba c̄ or bāc or b̄ac;
cbā or c b̄a or c̄ba;
acb̄ or a c̄b or ā cb.

The exchange has two consequences for a Hermann–Mauguin
symbol:

(1) the symmetry operations given in the symbol interchange their
positions in the symbol;

(2) the labels of the glide directions and of the centrings are inter-
changed.

In the same way, the sequences and the labels and values of the
coordinate triplets have to be interchanged.

Example 3.1.4.1.
Take space group Pbcm, No. 57 (full symbol P2/b21/c21/m),
and its Wyckoff position 4c (x, 1

4 , 0). The positions in the sym-
bol change as given by the arrows, and simultaneously the labels
change:

abc:

bca:

P2/b21/c21/m

�� �
P21/b21/m2/a

x, 1
4 , 0

�� �
1
4 , 0, z

abc:

bāc:

P2/b21/c21/m

�� �
P21/c 2/a 21/m

x, 1
4 , 0

�� �
1
4 ,–y, 0

The notation b c a means: the former b axis is now in the posi-
tion of the a axis etc. or: convert b to a, c to b, and a to c.
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The corresponding interchanges of positions and labels for all
possible nonconventional settings are listed at the end of the table
of each orthorhombic space group. They have to be applied to all
subgroups.

Example 3.1.4.2.
Consider the nonconventional setting Pcam of Pbcm. The entry
at the bottom of the page for space group Pbcm, No. 57,
shows the necessary interchanges for the setting Pcam: a � b,
a � −b, and x � −y.
For the subgroup Pbna (last entry in the block of klassen-
gleiche non-isomorphic subgroups) this means: Pbna has
to be replaced by Pnab, the axes conversion 2a, b, c
has to be replaced by a,−2b, c and the coordinate
transformation 1

2 x + 1
4 , y, z; +( 1

2 ,0,0) has to be replaced by
x,− 1

2 y − 1
4 , z; +(0,− 1

2 ,0).
Pbna and Pnab are nonconventional settings of Pbcn, No. 60.

The interchange of the axes does not affect the Wyckoff labels,
just the corresponding coordinates.

Example 3.1.4.3.
The Wyckoff position 4c (x, 1

4 , 0) of Pbcm, No. 57, retains its
label for any of the other settings of this space group. In the
setting Pbma, this Wyckoff position is still 4c and has the coor-
dinates 1

4 , 0, z. In this case, no ambiguity arises because the dif-
ferent settings of space group Pbcm all have different Hermann–
Mauguin symbols that uniquely show how the axes have to be
interchanged (Pmca, Pbma, Pcam, Pmab and Pcmb).

The interchange of the axes must also be performed for
those subgroups that have equivalent directions and where the
Hermann–Mauguin symbol does not uniquely show the kind of set-
ting. Otherwise, the wrong Wyckoff positions can result.

Example 3.1.4.4.
Space group Cmmm, No. 65, has two klassengleiche subgroups
of type Immm, No. 71, with doubled c axis. In the noncon-
ventional setting Bmmm of Cmmm, the same subgroups Immm
result from a doubling of the b axis. In the conventional setting
of Immm, the Wyckoff positions 4e, 4g and 4i represent orbits
with the coordinates (x, 0, 0), (0, y, 0) and (0, 0, z), respec-
tively. In the space group Cmmm, the position 4k corresponds
to (0, 0, z) and upon transition to either of the subgroups Immm
it splits to 2 × 4i.
If Bmmm is obtained from Cmmm by cyclic exchange of the
axes (a ← b ← c ← a), its Wyckoff position 4k obtains
the coordinates (0, y, 0). Upon doubling of b and transition to
Immm, 4k will split to two orbits with the coordinates (0, 1

2 y, 0)
and (0, 1

2 y + 1
2 , 0). These are two orbits 4i of Immm, but

this is only correct if the axes of Immm have also been inter-
changed in the same way. If the interchange of axes has not
been performed in the subgroup Immm in the assumption that
in Immm all axes are equivalent anyway, wrong results will be
obtained. That is, Immm also has to be used in a nonconven-
tional setting, although this is not apparent from the Hermann–
Mauguin symbol. Of course, the Wyckoff symbols can then
be relabelled so that they correspond to the conventional list-
ings of Volume A (4i → 4g etc.). It is recommended that
this return to the conventional setting of Immm is performed,
because using the label 4i for (0, y, 0) in Immm is likely to
cause confusion if the nonconventional setting is not explicitly
stressed.

3.1.5. Conjugate subgroups

Conjugate subgroups are different subgroups belonging to the
same space-group type (they have the same Hermann–Mauguin
symbol) and they have the same unit-cell size and the same shape
for the conventional cell. They can be mapped onto one another by
a symmetry operation of the starting group, i.e. they are symmetry-
equivalent in this space group. They can occur only if the index of
symmetry reduction is ≥ 3. The relations of the Wyckoff positions
of a space group with the Wyckoff positions of any representative
of a set of conjugate subgroups are always the same. Therefore, in
principle it is sufficient to list the relations for only one represen-
tative.

Two kinds of conjugation of maximal subgroups can be distin-
guished, translational conjugation and orientational conjugation.
Non-maximal subgroups can involve both kinds of conjugation,
so the situation is more complicated in chains of group–subgroup
relations, cf. Koch (1984) and Müller (1992). Since the present
tables only list maximal subgroups, we will not discuss this here.

3.1.5.1. Translational conjugation

Translational conjugation occurs when the group–subgroup
relation involves a loss of translational symmetry. This happens
when the conventional cell has been enlarged or when centring
translations have been lost; this means that the primitive unit cell of
the subgroup is larger (by a factor ≥ 3). Translationally conjugate
subgroups of a space group are symmetry-equivalent by a transla-
tion of the lattice of this space group. This way, isomorphic sub-
groups of index p ≥ 3 have p conjugate subgroups (unless the cell
enlargement occurs in a direction in which the origin may float).
The existence of conjugate subgroups of this kind is not specifi-
cally mentioned in the tables. However, they can be recognized
by looking in the column ‘Coordinates’. If a semicolon appears
after the coordinate triplet, followed by values in parentheses to be
added, and if, in addition, the index of symmetry reduction is ≥ 3,
then conjugate subgroups usually exist. They differ in the loca-
tions of their origins by values corresponding to the values given
in the parentheses.

Example 3.1.5.1.1.
x,y, 1

3 z; ±(0,0, 1
3 )

gives the positional coordinates in the subgroup originating
from the coordinates of one unit cell of the starting group,
namely

x,y, 1
3 z; x,y, 1

3 z + 1
3 ; x,y, 1

3 z − 1
3 .

In addition, this also means that there are three conjugate sub-
groups. They differ in the locations of their origins referred
to the origin of the starting space group by 0,0,0, 0,0, 1

3 and
0,0,− 1

3 , expressed in terms of the coordinate system of the sub-
group, which is equivalent to 0,0,0, 0,0,−1 and 0,0,1 in the
coordinate system of the starting group.

Primitive subgroups of face-centred cubic space groups have
four conjugate subgroups. Because in this case no values have to
be added to the coordinates, the existence of conjugate subgroups
is expressed by the entry ‘4 conjugate subgroups’. They differ in
their origin locations corresponding to the centring vectors of the
face-centred cell.

Cell enlargements do not always produce conjugate subgroups.
If the cell is being enlarged in a direction in which the origin may
float, i.e. is not fixed by symmetry, no conjugate subgroups result.
This applies to the following crystal classes:
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1, enlargement in any direction;

2, mm2, 3, 3m, 4, 4mm, 6 and 6mm, enlargement in the
direction of the unique axis;

m, enlargement parallel to the plane of symmetry.

Example 3.1.5.1.2.
The cell enlargement a, b, 5c of space group Cmc21, No. 36,
(crystal class mm2) does not produce conjugate subgroups.

If one is unsure whether conjugate subgroups exist, this can be
looked up in the tables of Chapter 2.3 of this volume, where all
conjugate subgroups are always mentioned and joined by a left
brace.

Example 3.1.5.1.3.
For space group Pm3m, No. 221, two subgroups Im3m
(2a, 2b, 2c) with index 4 are listed. Each of them belongs to
a set of four conjugate subgroups which differ in their origin
locations (0,0,0; –1,0,0; 0,–1,0; 0,0,–1 for the first listed sub-
group, referred to the coordinate system of Pm3m). This can be
seen by the coordinate values to be added (0,0,0; 1

2 ,0,0; 0, 1
2 ,0;

0,0, 1
2 ; coordinate system of Im3m). In Chapter 2.3, all four

conjugate subgroups and their origin shifts are listed and joined
by a brace.

3.1.5.2. Orientational conjugation

In this case, the conjugate subgroups have differently oriented
unit cells that are equivalent by a symmetry operation other than
a translation of the space group. This occurs in the follow-
ing cases: orthorhombic subgroups of hexagonal space groups;
monoclinic subgroups of trigonal (including rhombohedral) space
groups; rhombohedral and tetragonal subgroups of cubic space
groups. In these cases, the corresponding cell and coordinate trans-
formations are listed for all conjugate subgroups after the word
‘conjugate’. Their Wyckoff symbols, being the same for all conju-
gate subgroups, are not repeated.

Example 3.1.5.2.1.
The cubic space group P43m, No. 215, has three tetragonal con-
jugate subgroups P42m. Their tetragonal c axes correspond to
the cubic a, b or c axes, respectively. In P43m, a, b and c are
symmetry-equivalent by the threefold rotation axes.

3.1.6. Monoclinic and triclinic subgroups

Aside from the two choices for the unique axis and the three pos-
sible cell choices given in Volume A, the unit cell of a monoclinic
space group allows many more settings that can be interconverted
by transformations such as a ± qc, b, c with an integer value for
q (Sayari & Billiet, 1977). The most commonly chosen cell is the
one with the shortest basis vectors a and c and a non-acute angle
β. For triclinic space groups the ‘reduced’ cell is preferred, which

depends on the metric values of the lattice (Billiet & Rolley Le
Coz, 1980).

Some relations always require a cell transformation, for exam-
ple rhombohedral to monoclinic relations. A group–subgroup rela-
tion in which the subgroup is monoclinic or triclinic can always be
chosen together with a cell transformation that produces one of
the cells mentioned. The transformation to be chosen depends on
the cell metrics of the starting space group. For general tables we
therefore cannot specify a priori the kind of cell transformation
that will be needed.

The settings listed for monoclinic and triclinic subgroups were
chosen in such a way that axes transformations are avoided or kept
to a minimum. Depending on the cell metrics, this may result in
cells that do not have the shortest possible basis vectors. Unfor-
tunately, transformation of a monoclinic or triclinic cell setting to
another one may cause an interchange of Wyckoff labels (within
the Wyckoff sets). Frequently, several possible cell settings of
the same monoclinic subgroup have been listed; the entry for the
subgroup then is followed by the word ‘or’ or ‘alternative’, plus
another entry.

Example 3.1.6.1.
Space group Cmcm, No. 63, has the subgroup P1121/m,
No. 11. It requires a cell transformation which is given as
a, 1

2 (–a + b), c. The following two lines list two other possi-
ble cell transformations for the same subgroup after the words
‘or’: 1

2 (a − b), b, c and 1
2 (a − b), 1

2 (a + b), c. These three
options cause different relations for the Wyckoff positions 4b
and 8d of Cmcm.

Caution should also be exerted when different cell choices of
monoclinic cells are involved. Monoclinic subgroups may refer to
any of the three cell choices listed in Volume A. As long as these
cell choices are used as listed in Volume A, no problems should
arise. However, interconversions from one setting to another and
especially nonconventional settings require special attention.

Example 3.1.6.2.
The common setting of space group No. 15 is C12/c1, which
means unique axis b and cell choice 1; the glide plane c is
located at y = 0 (and y = 1

2 ). By interchanging the axes
b and −c, C12/c1 becomes B112/b with the b glide plane at
z = 0. This was the setting listed in International Tables for
X-ray Crystallography (1952, 1965, 1969) for unique axis c.
However, since the 1983 edition of Volume A, B112/b does not
correspond to one of the listed cell choices. Instead, they are
now A112/a (cell choice 1) or B112/n (cell choice 2) or I112/b
(cell choice 3). Note that for all three cell choices the glide plane
mentioned in the symbol is at z = 0. B112/n also has a glide
plane in the b direction, but unlike B112/b it is at z = 1

4 . B112/n
and B112/b can be set up with the same unit-cell dimensions,
but with origins shifted by 1

4 ,0, 1
4 . The full Hermann–Mauguin

symbol always shows uniquely which is the setting.
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