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Dedicated to

Paul Niggli and Carl Hermann

In 1919, Paul Niggli (1888–
1953) published the first com-
pilation of space groups in a
form that has been the basis
for all later space-group tables,
in particular for the first
volume of the trilingual series
Internationale Tabellen zur

Bestimmung von Kristallstruk-

turen (1935), for International

Tables for X-ray Crystallography

Volume I (1952) and for Inter-

national Tables for Crystallography Volume A (1983). The
tables in his book Geometrische Kristallographie des

Diskontinuums (1919) contained the lists of the Punktlagen,
now known as Wyckoff positions. He was a great universal
geoscientist, his work covering all fields from crystal-
lography to petrology.

Carl Hermann (1898–1961)
published among his seminal
works four famous articles in
the series Zur systematischen

Strukturtheorie I to IV in Z.

Kristallogr. 68 (1928) and 69
(1929). The first article con-
tained the background to the
Hermann–Mauguin space-group
symbolism. The last article was
fundamental to the theory of
subgroups of space groups and
forms the basis of the maximal-
subgroup tables in the present volume. In addition, he was
the editor of the first volume of the trilingual series
Internationale Tabellen zur Bestimmung von Kristallstruk-

turen (1935) and one of the founders of n-dimensional
crystallography, n > 3.
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Foreword

By Th. Hahn

Symmetry and periodicity are among the most fascinating

and characteristic properties of crystals by which they are

distinguished from other forms of matter. On the macroscopic

level, this symmetry is expressed by point groups, whereas the

periodicity is described by translation groups and lattices, and

the full structural symmetry of crystals is governed by space

groups.

The need for a rigorous treatment of space groups was

recognized by crystallographers as early as 1935, when the first

volume of the trilingual series Internationale Tabellen zur

Bestimmung von Kristallstrukturen appeared. It was followed in

1952 by Volume I of International Tables for X-ray Crystal-

lography and in 1983 by Volume A of International Tables for

Crystallography (fifth edition 2002). As the depth of experi-

mental and theoretical studies of crystal structures and their

properties increased, particularly with regard to comparative

crystal chemistry, polymorphism and phase transitions, it became

apparent that not only the space group of a given crystal but also

its ‘descent’ and ‘ascent’, i.e. its sub- and supergroups, are of

importance and have to be derived and listed.

This had already been done in a small way in the 1935 edition

of Internationale Tabellen zur Bestimmung von Kristallstrukturen

with the brief inclusion of the translationengleiche subgroups

of the space groups (see the first volume, pp. 82, 86 and 90).

The 1952 edition of International Tables for X-ray Crystal-

lography did not contain sub- and supergroups, but in the 1983

edition of International Tables for Crystallography the full range

of maximal subgroups was included (see Volume A, Section

2.2.15): translationengleiche (type I) and klassengleiche (type II),

the latter subdivided into ‘decentred’ (IIa), ‘enlarged unit cell’

(IIb) and ‘isomorphic’ (IIc) subgroups. For types I and IIa, all

subgroups were listed individually, whereas for IIb only the

subgroup types and for IIc only the subgroups of lowest index

were given.

All these data were presented in the form known in 1983, and

this involved certain omissions and shortcomings in the presen-

tation, e.g. no Wyckoff positions of the subgroups and no

conjugacy relations were given. Meanwhile, both the theory of

subgroups and its application have made considerable progress,

and the present Volume A1 is intended to fill the gaps left in

Volume A and present the ‘complete story’ of the sub- and

supergroups of space groups in a comprehensive manner. In

particular, all maximal subgroups of types I, IIa and IIb are

listed individually with the appropriate transformation matrices

and origin shifts, whereas for the infinitely many maximal

subgroups of type IIc expressions are given which contain the

complete characterization of all isomorphic subgroups for any

given index.

In addition, the relations of the Wyckoff positions for each

group–subgroup pair of space groups are listed for the first time

in the tables of Part 3 of this volume.

In the second edition of Volume A1 (2010), additional aspects

of group–subgroup relations are included; in particular proce-

dures for the derivation of the minimal supergroups of the space

groups are described. Now the minimal supergroups can be

calculated from the data for the maximal subgroups to the full

extent, with the exception of the low-symmetry (triclinic and

monoclinic) space groups. Two new chapters on trees of group–

subgroup relations (Bärnighausen trees) and on the Bilbao

Crystallographic Server bring these tools closer to the user.

Volume A1 is thus a companion to Volume A, and the editors

of both volumes have cooperated closely on problems of

symmetry for many years. I wish Volume A1 the same acceptance

and success that Volume A has enjoyed.

ix



Scope of this volume

By Mois I. Aroyo, Ulrich Müller and Hans Wondratschek

Group–subgroup relations between space groups, the primary

subject of this volume, are an important tool in crystallographic,

physical and chemical investigations of solids. These relations are

complemented by the corresponding relations between the

Wyckoff positions of the group–subgroup pairs.

The basis for these tables was laid by the pioneering

papers of Carl Hermann in the late 1920s. Some subgroup

data were made available in Internationale Tabellen zur Bestim-

mung von Kristallstrukturen (1935), together with a graph

displaying the symmetry relations between the crystallographic

point groups.

Since then, the vast number of crystal structures determined

and improvements in experimental physical methods have

directed the interest of crystallographers, physicists and

chemists to the problems of structure classification and of

phase transitions. Methods of computational mathematics have

been developed and applied to the problems of crystal-

lographic group theory, among them to the group–subgroup

relations.

When the new series International Tables for Crystallography

began to appear in 1983, the subgroup data that were then

available were included in Volume A. However, these data were

incomplete and their description was only that which was avail-

able in the late 1970s. This is still the case in the present (fifth)

edition of Volume A.

The subgroup data for the space groups are now complete and

form the basis of this volume. After introductory chapters on

group-theoretical aspects of space groups, on group–subgroup

relations and on the underlying mathematical background, this

volume provides the reader with:

(1) Complete listings of all maximal non-isomorphic subgroups

for each space group, not just by type but individually,

including their general positions or their generators, their

conjugacy relations and transformations to their conventional

settings.

(2) Listings of the maximal isomorphic subgroups with index 2, 3

or 4 individually in the same way as for non-isomorphic

subgroups.

(3) Listings of all maximal isomorphic subgroups as members of

infinite series, but with the same information as for the non-

isomorphic subgroups.

(4) The listings of Volume A for the non-isomorphic supergroups

for all space groups.

(5) Two kinds of graphs for all space groups displaying their

types of translationengleiche subgroups and their types of

non-isomorphic klassengleiche subgroups.

(6) Listings of all the Wyckoff positions for each space group

with their splittings and/or site-symmetry reductions if the

symmetry is reduced to that of a maximal subgroup.

These data include the corresponding coordinate transfor-

mations such that the coordinates in the subgroup can be

obtained directly from the coordinates in the original space

group.

In this second edition all misprints and errors found up to now

have been corrected and the number of illustrating examples has

been increased.

In addition, a few changes and extensions have been intro-

duced to facilitate the use of the volume and to extend its range:

(7) The subgroup tables, in particular those of the isomorphic

subgroups, have been homogenized.

(8) The data for the minimal supergroups are sufficient to derive

all minimal supergroups starting from the subgroup data,

with the exception of the translationengleiche supergroups of

triclinic and monoclinic space groups. The procedures by

which this derivation can be achieved are described in detail.

The supergroup data are useful for the prediction of high-

temperature phase transitions, including the search for new

ferroelectric and/or ferroelastic materials, for the treatment

of the problem of overlooked symmetry in structure deter-

mination and for the study of phase transitions in which a

hypothetical parent phase plays an important role.

(9) A new chapter is devoted to the construction of family

trees connecting crystal structures (Bärnighausen trees). In

a Bärnighausen tree the relations between the Wyckoff

positions occupied in the different crystal structures are

accompanied by the relations between the corresponding

group–subgroup pairs of space groups. Such trees display

the additional degrees of freedom for the structural para-

meters of the low-symmetry phases:

(a) the possibility of distortions due to reduction of site

symmetries;

(b) chemical variations (atomic substitutions) allowed

for atomic positions that have become symmetry-

independent.

Bärnighausen trees visualize in a compact manner the

structural relations between different polymorphic modifi-

cations involved in a phase transition and enable the

comparison of crystal structures and their classification into

crystal-structure types.

(10) A new chapter is dedicated to the Bilbao Crystallographic

Server, http://www.cryst.ehu.es/. The server offers freely

accessible crystallographic databases and computer

programs, in particular those related to the contents of this

volume. The available computer tools permit the studies of

general group–subgroup relations between space groups

and the corresponding Wyckoff positions.

The data in this volume are indispensable for a thorough

analysis of phase transitions that do not involve drastic structural

changes: the group–subgroup relations indicate the possible

symmetry breaks that can occur during a phase transition and are

essential for determining the symmetry of the driving mechanism

and the related symmetry of the resulting phase. The group–

subgroup graphs describing the symmetry breaks provide infor-

mation on the possible symmetry modes taking part in the tran-

sition and allow a detailed analysis of domain structures and twins.
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Computer production of Parts 2 and 3

By Preslav Konstantinov, Asen Kirov, Eli B. Kroumova, Mois I. Aroyo and Ulrich Müller

The tables of this volume were produced electronically using the

LATEX 2" typesetting system [Lamport (1994). A Document

Preparation System. 2nd ed. Reading: Addison-Wesley], which

has the following advantages:

(1) correcting and modifying the layout and the data are easy;

(2) correcting or updating these for further editions of this

volume should also be simple;

(3) the cost of production for the first edition and later editions

should be kept low.

A separate data file was created for every space group in each

setting listed in the tables. These files contained only the infor-

mation about the subgroups and supergroups, encoded using

specially created LATEX 2" commands and macros. These macros

were defined in a separate package file which essentially

contained the algorithm for the layout. Keeping the formatting

information separate from the content as much as possible

allowed us to change the layout by redefining the macros without

changing the data files. This was done several times during the

production of the tables.

The data files are relatively simple and only a minimal know-

ledge of LATEX 2" is required to create and revise them should it

be necessary later. A template file was used to facilitate the initial

data entry by filling blank spaces and copying pieces of text in

a text editor. It was also possible to write computer programs

to extract the information from the data files directly. Such

programs were used for checking the data in the files that were

used to typeset the volume. The data prepared for Part 2 were

later converted into a more convenient, machine-readable format

so that they could be used in the database of the Bilbao Crys-

tallographic Server at http://www.cryst.ehu.es/.

The final composition of all plane-group and space-group

tables of maximal subgroups and minimal supergroups was done

by a single computer job. References in the tables from one page

to another were automatically computed. The run takes 1 to 2

minutes on a modern workstation. The result is a PostScript or

pdf file which can be fed to most laser printers or other modern

printing/typesetting equipment.

The resulting files were also used for the preparation of the

fifth edition of International Tables for Crystallography Volume

A (2002) (abbreviated as IT A). Sections of the data files of Part 2

of the present volume were transferred directly to the data files

for Parts 6 and 7 of IT A to provide the subgroup and supergroup

information listed there. The formatting macros were rewritten to

achieve the layout used in IT A.

The different types of data in the LATEX 2" files were either

keyed by hand or computer-generated. The preparation of the

data files of Part 2 can be summarized as follows:

(i) Headline, origin: hand-keyed.

(ii) Generators: hand-keyed.

(iii) General positions: created by a program from a set of

generators. The algorithm uses the well known generating

process for space groups based on their solvability property,

cf. Section 8.3.5 of IT A.

(iv) Maximal subgroups: hand-keyed. The data for the subgroup

generators (or general-position representatives for the

cases of translationengleiche subgroups and klassengleiche

subgroups with ‘loss of centring translations’), for transfor-

mation matrices and for conjugacy relations between

subgroups were checked by specially designed computer

programs.

(v) Minimal supergroups: created automatically from the data

for maximal subgroups.

The electronic preparation of the subgroup tables of Part 2

was carried out on various Unix- and Windows-based computers

in Sofia, Bilbao, Stuttgart and Karlsruhe. The development of

the computer programs and the layout macros in the package

file was done in parallel by different members of the team.

Th. Hahn (Aachen) contributed to the final arrangement of the

data.

The tables of Part 3 have a different layout, and a style file of

their own was created for their production. Again, separate data

files were prepared for every space group, containing only the

information concerning the subgroups. The macros of the style

file were developed by U. Müller, who also hand-keyed all files

over the course of seven years.

Most of the data of Part 2 were checked using computer

programs developed by F. Gähler (cf. Chapter 1.3) and A.

Kirov. The relations of the Wyckoff positions (Part 3) were

checked by G. Nolze (Berlin) with the aid of his computer

program POWDER CELL [Nolze (1996). POWDER CELL.

Computer program for the calculation of X-ray powder diagrams.

Bundesanstalt für Materialforschung, Berlin]. In addition, all

relations were cross-checked with the program WYCKSPLIT

[Kroumova et al. (1998). J. Appl. Cryst. 31, 646; http://www.

cryst.ehu.es/cryst/wpsplit.html], with the exception of the posi-

tions of high multiplicities of some cubic space groups with

subgroup indices > 50, which could not be handled by the

program.
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List of symbols and abbreviations used in this volume

By Mois I. Aroyo, Ulrich Müller and Hans Wondratschek

xii

(1) Points and point space

P, Q, R, X points

O origin

An;An;Pn n-dimensional affine space

En;En n-dimensional Euclidean point space

x; y; z; or xi point coordinates

x column of point coordinates
~X image point

~x column of coordinates of an image point

~xi coordinates of an image point

x0 column of coordinates in a new coordinate

system (after basis transformation)

x0i coordinates in a new coordinate system

(2) Vectors and vector space

a, b, c; or ai basis vectors of the space

r, x vectors, position vectors

o zero vector (all coefficients zero)

a, b, c lengths of basis vectors lattice

parameters

�
�, �, �; or �j angles between basis vectors

r column of vector coefficients

ri vector coefficients

(a)T row of basis vectors

Vn n-dimensional vector space

(3) Mappings and their matrices and columns

A, W (3 � 3) matrices

AT matrix A transposed

I (3 � 3) unit matrix

Aik, Wik coefficients

(A, a), (W, w) matrix–column pairs

W augmented matrix

x; ~x; t augmented columns

P, P transformation matrices

A; I;W mappings

w column of the translation part of a mapping

wi coefficients of the translation part of a

mapping

G, Gik fundamental matrix and its coefficients

det( . . . ) determinant of a matrix

tr( . . . ) trace of a matrix

(4) Groups

G group; space group

R space group (Chapter 1.4)

H;U subgroups of G

M maximal subgroup of G (Chapter 1.4)

M Hermann’s group (Chapters 1.2, 1.7, 2.1)

P;S;V;Z groups or sets of group elements, e.g. cosets

T ðGÞ; T ðRÞ group of all translations of G;R

A group of all affine mappings = affine group

E group of all isometries (motions)

= Euclidean group

F factor group

I trivial group, consisting of the unit element

e only

N normal subgroup

O group of all orthogonal mappings

= orthogonal group

NGðHÞ normalizer of H in G

NEðHÞ Euclidean normalizer of H

NAðHÞ affine normalizer of H

PG;PH point groups of the space groups G, H

SGðXÞ;SHðXÞ site-symmetry groups of point X in the space

groups G, H

a; b; g; h;m; t group elements

e unit element

2; 21;m; 1; . . . symmetry operations

i or [i] index of H in G

(5) Symbols used in the tables

p prime number > 1

n, n0, n00, n000 arbitrary positive integer numbers

q, r, u, v, w arbitrary integer numbers in the given range

a, b, c basis vectors of the space group

a0, b0, c0 basis vectors of the subgroup or supergroup

x, y, z point coordinates in the space group

t(1, 0, 0),

t(0, 1, 0), . . .
generating translations

(6) Abbreviations

HM symbol Hermann–Mauguin symbol

IT A International Tables for Crystallography

Volume A

PCA parent-clamping approximation

k-subgroup klassengleiche subgroup

t-subgroup translationengleiche subgroup



SAMPLE PAGES



1.2. General introduction to the subgroups of space groups

By Hans Wondratschek

1.2.1. General remarks

The performance of simple vector and matrix calculations, as well

as elementary operations with groups, are nowadays common

practice in crystallography, especially since computers and

suitable programs have become widely available. The authors of

this volume therefore assume that the reader has at least some

practical experience with matrices and groups and their crystal-

lographic applications. The explanations and definitions of the

basic terms of linear algebra and group theory in these first

sections of this introduction are accordingly short. Rather than

replace an elementary textbook, these first sections aim to

acquaint the reader with the method of presentation and the

terminology that the authors have chosen for the tables and

graphs of this volume. The concepts of groups, their subgroups,

isomorphism, coset decomposition and conjugacy are considered

to be essential for the use of the tables and for their practical

application to crystal structures; for a deeper understanding the

concept of normalizers is also necessary. Frequently, however, an

‘intuitive feeling’ obtained by practical experience may replace a

full comprehension of the mathematical meaning. From Section

1.2.6 onwards, the presentation will be more detailed because the

subjects are more specialized (but mostly not more difficult) and

are seldom found in textbooks.

1.2.2. Mappings and matrices

1.2.2.1. Crystallographic symmetry operations

A crystal is a finite block of an infinite periodic array of atoms

in physical space. The infinite periodic array is called the crystal

pattern. The finite block is called the macroscopic crystal.1

Periodicity implies that there are translations which map the

crystal pattern onto itself. Geometric mappings have the property

that for each point P of the space, and thus of the object, there is a

uniquely determined point ~P, the image point. The mapping is

reversible if each image point ~P is the image of one point P only.

Translations belong to a special category of mappings which

leave all distances in the space invariant (and thus within an

object and between objects in the space). Furthermore, a

mapping of an object onto itself (German: Deckoperation) is the

basis of the concept of geometric symmetry. This is expressed by

the following two definitions.

Definition 1.2.2.1.1. A mapping is called a motion, a rigid motion

or an isometry if it leaves all distances invariant (and thus all

angles, as well as the size and shape of an object). In this volume

the term ‘isometry’ is used. &

An isometry is a special kind of affine mapping. In an affine

mapping, parallel lines are mapped onto parallel lines; lengths

and angles may be distorted but quotients of lengths on the same

line are preserved. In Section 1.2.2.3, the description of affine

mappings is discussed, because this type of description also

applies to isometries. Affine mappings are important for the

classification of crystallographic symmetries, cf. Section 1.2.5.2.

Definition 1.2.2.1.2. A mapping is called a symmetry operation of

an object if

(1) it is an isometry,

(2) it maps the object onto itself. &

Instead of ‘maps the object onto itself’, one frequently says

‘leaves the object invariant (as a whole)’. This does not mean that

each point of the object is mapped onto itself; rather, the object is

mapped in such a way that an observer cannot distinguish the

states of the object before and after the mapping.

Definition 1.2.2.1.3. A symmetry operation of a crystal pattern is

called a crystallographic symmetry operation. &

The symmetry operations of a macroscopic crystal are also

crystallographic symmetry operations, but they belong to another

kind of mapping which will be discussed in Section 1.2.5.4.

There are different types of isometries which may be crystal-

lographic symmetry operations. These types are described and

discussed in many textbooks of crystallography and in mathe-

matical, physical and chemical textbooks. They are listed here

without further treatment. Fixed points are very important for

the characterization of isometries.

Definition 1.2.2.1.4. A point P is a fixed point of a mapping if it is

mapped onto itself, i.e. the image point ~P is the same as the

original point P: ~P ¼ P. &

The set of all fixed points of an isometry may be the whole

space, a plane in the space, a straight line, a point, or the set may

be empty (no fixed point).

The following kinds of isometries exist:

(1) The identity operation, which maps each point of the space

onto itself. It is a symmetry operation of every object and,

although trivial, is indispensable for the group properties

which are discussed in Section 1.2.3.

(2) A translation t which shifts every object. A translation is

characterized by its translation vector t and has no fixed

point: if x is the column of coordinates of a point P, then the

coordinates ~x of the image point ~P are ~x ¼ x þ t. If a trans-

lation is a symmetry operation of an object, the object

extends infinitely in the directions of t and �t. A translation

preserves the ‘handedness’ of an object, e.g. it maps any right-

hand glove onto a right-hand one and any left-hand glove

onto a left-hand one.

(3) A rotation is an isometry that leaves one line fixed pointwise.

This line is called the rotation axis. The degree of rotation

about this axis is described by its rotation angle ’. In parti-

cular, a rotation is called an N-fold rotation if the rotation

angle is ’ ¼ k� 360�=N, where k and N are relatively prime

integers. A rotation preserves the ‘handedness’ of any object.

(4) A screw rotation is a rotation coupled with a translation

parallel to the rotation axis. The rotation axis is now called

7

1 A real single crystal is still different from a macroscopic crystal. There are
dislocations, point defects like vacancies, interstitial atoms or replacements of
atoms, and the atoms are never at rest but vibrate. Therefore, the macroscopic
crystal is a more-or-less strongly idealized model of the real crystal.



1.4. The mathematical background of the subgroup tables

By Gabriele Nebe

1.4.1. Introduction

This chapter gives a brief introduction to the mathematics

involved in the determination of the subgroups of space groups.

To achieve this we have to detach ourselves from the geometric

point of view in crystallography and introduce more abstract

algebraic structures, such as coordinates, which are well known

in crystallography and permit the formalization of symmetry

operations, and also the abstract notion of a group, which allows

us to apply general theorems to the concrete situation of (three-

dimensional) space groups.

This algebraic point of view has the following advantages:

(1) Geometric problems can be treated by algebraic calculations.

These calculations can be dealt with by well established

procedures. In particular, the use of computers and advanced

programs enables one to solve even difficult problems in a

comparatively short time.

(2) The mappings form groups in the mathematical sense of the

word. This means that the very powerful methods of group

theory may be applied successfully.

(3) The procedures for the solution may be developed to a great

extent independently of the dimension of the space.

In Section 1.4.2, a basis is laid down which gives the reader an

understanding of the algebraic point of view of the crystal space

(or point space) and special mappings of this space onto itself.

The set of these mappings is an example of a group. For a closer

connection to crystallography, the reader may consult Section

8.1.1 of International Tables for Crystallography Volume A

(2005) (abbreviated as IT A) or the book by Hahn & Wondrat-

schek (1994).

Section 1.4.3 gives an introduction to abstract groups and

states the important theorems of group theory that will be

applied in Section 1.4.4 to the most important groups in crystal-

lography, the space groups. In particular, Section 1.4.4 treats

maximal subgroups of space groups which have a special struc-

ture by the theorem of Hermann. In Section 1.4.5, we come back

to abstract group theory stating general facts about maximal

subgroups of groups. These general theorems allow us to calcu-

late the possible indices of maximal subgroups of three-

dimensional space groups in Section 1.4.6. The next section,

Section 1.4.7, deals with the very subtle question of when these

maximal subgroups of a space group are isomorphic to this space

group. In Section 1.4.8 minimal supergroups of space groups are

treated briefly.

1.4.2. The affine space

1.4.2.1. Motivation

The aim of this section is to give a mathematical model for the

‘point space’ (also known in crystallography as ‘direct space’ or

‘crystal space’) which contains the positions of atoms in crystals

(the so-called ‘points’). This allows us in particular to describe the

symmetry groups of crystals and to develop a formalism for

calculating with these groups which has the advantage that it

works in arbitrary dimensions. Such higher-dimensional spaces

up to dimension 6 are used, for example, for the description

of quasicrystals and incommensurate phases. For example, the

more than 29 000 000 crystallographic groups up to dimension 6

can be parameterized, constructed and identified using the

computer package [CARAT]: Crystallographic AlgoRithms And

Tables, available from http://wwwb.math.rwth-aachen.de/carat/

index.html (for a description, see Opgenorth et al., 1998).

As well as the points in point space, there are other objects,

called ‘vectors’. The vector that connects the point P to the point

Q is usually denoted by P Q
�!

. Vectors are usually visualized by

arrows, where parallel arrows of the same length represent the

same vector.

Whereas the sum of two points P and Q is not defined, one can

add vectors. The sum vþ w of two vectors v and w is simply the

sum of the two arrows. Similarly, multiplication of a vector v by a

real number can be defined.

All the points in point space are equally good, but among the

vectors one can be distinguished, the null vector o. It is char-

acterized by the property that vþ o ¼ v for all vectors v.

Although the notion of a vector seems to be more complicated

than that of a point, we introduce vector spaces before giving a

mathematical model for the point space, the so-called affine

space, which can be viewed as a certain subset of a higher-

dimensional vector space, where the addition of a point and a

vector makes sense.

1.4.2.2. Vector spaces

We shall now exploit the advantage of being independent of

the dimensionality. The following definitions are independent

of the dimension by replacing the specific dimensions 2 for the

plane and 3 for the space by an unspecified integer number

n > 0. Although we cannot visualize four- or higher-dimensional

objects, we can describe them in such a way that we are able to

calculate with such objects and derive their properties.

Algebraically, an n-dimensional (real) vector v can be repre-

sented by a column of n real numbers. The n-dimensional real

vector space Vn is then

Vn ¼ fx ¼

x1

..

.

xn

0
B@

1
CA j x1; . . . ; xn 2 Rg:

(In crystallography n is normally 3.) The entries x1; . . . ; xn are

called the coefficients of the vector x. On Vn one can naturally

define an addition, where the coefficients of the sum of two

vectors are the corresponding sums of the coefficients of the

vectors. To multiply a vector by a real number, one just multiplies

all its coefficients by this number. The null vector

o ¼

0

..

.

0

0
@

1
A 2 Vn

can be distinguished, since vþ o ¼ v for all v 2 Vn.

The identification of a concrete vector space V with the vector

space Vn can be done by choosing a basis of V. A basis of V is any
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1.5. Remarks on Wyckoff positions

By Ulrich Müller

1.5.1. Crystallographic orbits and Wyckoff positions

The set of symmetry-equivalent sites in a space group is referred

to as a (crystallographic point) orbit (Koch & Fischer, 1985;

Wondratschek, 1976, 1980, 2005; also called point configuration).

If the coordinates of a site are completely fixed by symmetry (e.g.
1
4 ;

1
4 ;

1
4), then the orbit is identical with the corresponding Wyckoff

position of that space group (in German Punktlage). However, if

there are one or more freely variable coordinates (e.g. z in

0; 1
2 ; z), the Wyckoff position comprises an infinity of possible

orbits; they differ in the values of the variable coordinate(s). The

set of sites that are symmetry equivalent to, say, 0; 1
2 ; 0:391 makes

up one orbit. The set corresponding to 0; 1
2 ; 0:468 belongs to the

same Wyckoff position, but to another orbit (its variable coor-

dinate z is different).

The Wyckoff positions of the space groups are listed in Volume

A of International Tables for Crystallography (2005). They are

labelled with letters a, b, . . ., beginning from the position having

the highest site symmetry. A Wyckoff position is usually given

together with the number of points belonging to one of its orbits

within a unit cell. This number is the multiplicity listed in Volume

A, and commonly is set in front of the Wyckoff letter. For

example, the denomination 4c designates the four symmetry-

equivalent points belonging to an orbit c within the unit cell.

In many space groups, for some Wyckoff positions there exist

several Wyckoff positions of the same kind that can be combined

to form a Wyckoff set [called a Konfigurationslage by Koch &

Fischer (1975)]. They have the same site symmetries and they are

mapped onto one another by the affine normalizer of the space

group (Koch & Fischer, 1975; Wondratschek, 2005).

Example 1.5.1.1

In space group I222, No. 23, there are six Wyckoff positions

with the site symmetry 2:

4e ðx; 0; 0Þ, 4f ðx; 0; 1
2Þ on twofold rotation axes parallel to a,

4g ð0; y; 0Þ, 4h ð12 ; y; 0Þ on twofold rotation axes parallel to b,

4i ð0; 0; zÞ, 4j ð0; 1
2 ; zÞ on twofold rotation axes parallel to c.

They are mapped onto one another by the affine normalizer of

I222, which is isomorphic to Pm�3m, No. 221. These six Wyckoff

positions make up one Wyckoff set.

However, in this example the positions 4e, 4f vs. 4g, 4h vs. 4i, 4j,

being on differently oriented axes, cannot be considered to be

equivalent if the lattice parameters are a 6¼ b 6¼ c. The subdivi-

sion of the positions of the Wyckoff set into these three sets is

accomplished with the aid of the Euclidean normalizer of the

space group I222.

The Euclidean normalizer is that supergroup of a space group

that maps all equivalent symmetry elements onto one another

without distortions of the lattice. It is a subgroup of the affine

normalizer (Fischer & Koch, 1983; Koch et al., 2005). In Example

1.5.1.1 (space group I222), the positions 4e and 4f are equivalent

under the Euclidean normalizer (and so are 4g, 4h and also 4i, 4j).

The Euclidean normalizer of the space group I222 is Pmmm, No.

47, with the lattice parameters 1
2 a; 1

2 b; 1
2 c (if a 6¼ b 6¼ c). If the

origin of a space group is shifted, Wyckoff positions that are

equivalent under the Euclidean normalizer may have to be

interchanged. The permutations they undergo when the origin is

shifted have been listed by Boyle & Lawrenson (1973). An origin

shift of 0; 0; 1
2 will interchange the Wyckoff positions 4e and 4f as

well as 4g and 4h of I222.

Example 1.5.1.2

In the space group Fm3m, No. 225, the orbits of the Wyckoff

positions 4a ð0; 0; 0Þ and 4b ð12 ;
1
2 ;

1
2Þ are equivalent under the

Euclidean normalizer. The copper structure can be described

equivalently either by having the Cu atoms occupy the position

4a or the position 4b. If we take Cu atoms in the position 4a

and shift the origin from ð0; 0; 0Þ to ð12 ;
1
2 ;

1
2Þ, then they result in

the position 4b.

Unique relations exist between the Wyckoff positions of a

space group and the Wyckoff positions of any of its subgroups

(Billiet et al., 1978; Wondratschek, 1993; Wondratschek et al.,

1995). Given the relative positions of their unit cells (axes

transformations and relative origin positions), the labels of these

Wyckoff positions are unique.

Example 1.5.1.3

In diamond, the carbon atoms occupy the orbit belonging to

the Wyckoff position 8a of the space group Fd3m, No. 227.

Zinc blende (sphalerite) crystallizes in the maximal subgroup

F43m, No. 216, of Fd3m. With the transition Fd3m! F43m

the Wyckoff position 8a splits into the positions 4a and 4c of

F43m. These are two symmetry-independent positions that

allow an occupation by atoms of two different elements (zinc

and sulfur). In this example, all of the positions retain the site

symmetry 43m and each Wyckoff position comprises only one

orbit.

1.5.2. Derivative structures and phase transitions

In crystal chemistry, structural relations such as the relation

diamond–sphalerite are of fundamental interest. Structures that

result from a basic structure by the substitution of atoms of one

kind for atoms of different elements, the topology being retained,

are called derivative structures after Buerger (1947, 1951). For the

basic structure the term aristotype has also been coined, while its

derivative structures are called hettotypes (Megaw, 1973). For

more details, see Chapter 1.6. When searching for derivative

structures, one must look for space groups that are subgroups of

the space group of the aristotype and in which the orbit of the

atom(s) to be substituted splits into different orbits.

Similar relations also apply to many phase transitions (cf.

Section 1.6.6). Very often the space group of one of the phases is

a subgroup of the space group of the other. For second-order

phase transitions this is even mandatory (cf. Section 1.2.7). The

positions of the atoms in one phase are related to those in the

other one.

Example 1.5.2.1

The disorder–order transition of �-brass (CuZn) taking place

at 741 K involves a space-group change from the space group

41



1.6. Relating crystal structures by group–subgroup relations

By Ulrich Müller

1.6.1. Introduction

Symmetry relations using crystallographic group–subgroup rela-

tions have proved to be a valuable tool in crystal chemistry and

crystal physics. Some important applications include:

(1) Structural relations between crystal-structure types can be

worked out in a clear and concise manner by setting up family

trees of group–subgroup relations (see following sections).

(2) Elucidation of problems concerning twinned crystals and

antiphase domains (see Section 1.6.6).

(3) Changes of structures and physical properties taking place

during phase transitions; applications of Landau theory

(Aizu, 1970; Aroyo & Perez-Mato, 1998; Birman, 1966a,b,

1978; Cracknell, 1975; Howard & Stokes, 2005; Igartua et al.,

1996; Izyumov & Syromyatnikov, 1990; Landau & Lifshitz,

1980; Lyubarskii, 1960; Salje, 1990; Stokes & Hatch, 1988;

Tolédano & Tolédano, 1987).

(4) Prediction of crystal-structure types and calculation of the

numbers of possible structure types (see Section 1.6.4.7).

(5) Solution of the phase problem in the crystal structure analysis

of proteins (Di Costanzo et al., 2003).

Bärnighausen (1975, 1980) presented a standardized proce-

dure to set forth structural relations between crystal structures

with the aid of symmetry relations between their space groups.

For a review on this subject see Müller (2004). Short descriptions

are given by Chapuis (1992) and Müller (2006). The main concept

is to start from a simple, highly symmetrical crystal structure and

to derive more and more complicated structures by distortions

and/or substitutions of atoms. Similar to the ‘diagrams of lattices

of subgroups’ used in mathematics, a tree of group–subgroup

relations between the space groups involved, now called a

Bärnighausen tree, serves as the main guideline. The highly

symmetrical starting structure is called the aristotype after Megaw

(1973) or basic structure after Buerger (1947, 1951); other terms

used in the literature on phase transitions in physics are prototype

or parent structure. The derived structures are the hettotypes or

derivative structures. In Megaw’s (1973) terminology, the struc-

tures mentioned in the tree form a family of structures.

The structure type to be chosen as the aristotype depends on

the specific problem and, therefore, the term aristotype cannot be

defined in a strict manner. For example, a body-centred packing

of spheres (space group Im3m) can be chosen as the aristotype

for certain intermetallic structures. By symmetry reduction due to

a loss of the centring, the CsCl type (space group Pm3m) can be

derived. However, if all the structures considered are ionic, there

is no point in starting from the body-centred packing of spheres

and one can choose the CsCl type as the aristotype.

1.6.2. The symmetry principle in crystal chemistry

The usefulness of symmetry relations is intimately related to the

symmetry principle in crystal chemistry. This is an old principle

based on experience which has been worded during its long

history in rather different ways. Bärnighausen (1980) summarized

it in the following way:

(1) In crystal structures the arrangement of atoms reveals a

pronounced tendency towards the highest possible symmetry.

(2) Counteracting factors due to special properties of the atoms

or atom aggregates may prevent the attainment of the highest

possible symmetry. However, in most cases the deviations

from the ideal symmetry are only small (key word: pseudo-

symmetry).

(3) During phase transitions and solid-state reactions which

result in products of lower symmetry, the higher symmetry of

the starting material is often indirectly preserved by the

formation of oriented domains.

Aspect (1) is due to the tendency of atoms of the same kind

to occupy equivalent positions, as stated by Brunner (1971).

This has physical reasons: depending on chemical composition,

the kind of chemical bonding, electron configuration of the

atoms, relative sizes of the atoms, pressure, temperature etc.,

there exists one energetically most favourable surrounding

for atoms of a given species which all of these atoms strive to

attain.

Aspect (2) of the symmetry principle is exploited in the

following sections. Factors that counteract the attainment of the

highest symmetry include: (1) stereochemically active lone elec-

tron pairs; (2) Jahn–Teller distortions; (3) covalent bonds; (4)

Peierls distortions; (5) ordered occupation of originally equiva-

lent sites by different atomic species (substitution derivatives);

(6) partial occupation of voids in a packing of atoms; (7) partial

vacation of atomic positions; (8) freezing (condensation) of

lattice vibrations (soft modes) giving rise to phase transitions; and

(9) ordering of atoms in a disordered structure.

Aspect (3) of the symmetry principle has its origin in an

observation by Bernal (1938). He noted that in the solid state

reaction MnðOHÞ2 ! MnOOH! MnO2 the starting and the

product crystal had the same orientation. Such reactions are

called topotactic reactions after Lotgering (1959) (for a more

exact definition see Giovanoli & Leuenberger, 1969). In a paper

by Bernal & Mackay (1965) we find the sentence: ‘One of the

controlling factors of topotactic reactions is, of course, symmetry.

This can be treated at various levels of sophistication, ranging

from Lyubarskii’s to ours, where we find that the simple concept

of Buridan’s ass illumines most cases.’ According to the metaphor

of Buridan (French philosopher, died circa 1358), the ass starves

to death between two equal and equidistant bundles of hay

because it cannot decide between them. Referred to crystals, such

an asinine behaviour would correspond to an absence of phase

transitions or solid-state reactions if there are two or more

energetically equivalent orientations of the domains of the

product. Crystals, of course, do not behave like the ass; they take

both.

1.6.3. Bärnighausen trees

To represent symmetry relations between different crystal

structures in a concise manner, we construct a tree of group–

subgroup relations in a modular design, beginning with the space

group of the aristotype at its top. Each module represents one
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1.7. The Bilbao Crystallographic Server

By Mois I. Aroyo, J. Manuel Perez-Mato, Cesar Capillas and Hans Wondratschek

1.7.1. Introduction

The Bilbao Crystallographic Server, http://www.cryst.ehu.es, is a

web site of crystallographic databases and programs. It can be

used free of charge from any computer with a web browser via

the Internet.

The server is built on a core of databases and contains different

shells. The set of databases includes data from the 5th edition of

International Tables for Crystallography Volume A, Space-Group

Symmetry (2005) (hereafter referred to as IT A) and the data for

maximal subgroups of space groups as listed in Part 2 of this

volume (hereafter referred to as IT A1). Access is also provided

to the crystallographic data for the subperiodic layer and

rod groups [International Tables for Crystallography, Volume

E, Subperiodic Groups (2002)] and their maximal subgroups.

A database on incommensurate structures incorporating modu-

lated structures and composites, and a k-vector database with

Brillouin-zone figures and classification tables of the wavevectors

for space groups are also available.

Communication with the databases is achieved by simple

retrieval tools. They allow access to the information on space

groups or subperiodic groups in different types of formats:

HTML, text ASCII or XML. The next shell includes programs

related to group–subgroup relations of space groups. These

programs use the retrieval tools for accessing the necessary

space-group information and apply group-theoretical algo-

rithms in order to obtain specific results which are not

available in the databases. There follows a shell with programs

on representation theory of space groups and point groups

and further useful symmetry information. Parallel to the

crystallographic software, a shell with programs facilitating the

study of specific problems related to solid-state physics,

structural chemistry and crystallography has also been devel-

oped.

The server has been operating since 1998, and new programs

and applications are being added (Kroumova, Perez-Mato,

Aroyo et al., 1998; Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et

al., 2006). The aim of the present chapter is to report on the

different databases and programs of the server related to the

subject of this volume. Parts of these databases and programs

have already been described in Aroyo, Perez-Mato et al. (2006),

and here we follow closely that presentation. The chapter is

completed by the description of the new developments up to

2007.

The relevant databases and retrieval tools that access the

stored symmetry information are presented in Section 1.7.2.

The discussion of the accompanying applications is focused on

the crystallographic computing programs related to group–

subgroup and group–supergroup relations between space groups

(Section 1.7.3). The program for the analysis of the relations of

the Wyckoff positions for a group–subgroup pair of space

groups is presented in Section 1.7.4. The underlying group-

theoretical background of the programs is briefly explained

and details of the necessary input data and the output are

given. The use of the programs is demonstrated by illustrative

examples.

1.7.2. Databases and retrieval tools

The databases form the core of the Bilbao Crystallographic

Server and the information stored in them is used by all computer

programs available on the server. The following description is

restricted to the databases related to the symmetry relations

between space groups; these are the databases that include space-

group data from IT A and subgroup data from IT A1.

1.7.2.1. Space-group data

The programs and databases of the Bilbao Crystallographic

Server use specific settings of space groups (hereafter referred to

as standard or default settings) that coincide with the conven-

tional space-group descriptions found in IT A. For space groups

with more than one description in IT A, the following settings are

chosen as standard: unique axis b setting, cell choice 1 for

monoclinic groups; hexagonal axes setting for rhombohedral

groups; and origin choice 2 (origin at 1) for the centrosymmetric

groups listed with respect to two origins in IT A.

The space-group database includes the following symmetry

information:

(i) The generators and the representatives of the general posi-

tion of each space group specified by its IT A number and

Hermann–Mauguin symbol;

(ii) The special Wyckoff positions including the Wyckoff letter,

Wyckoff multiplicity, the site-symmetry group and the set of

coset representatives, as given in IT A;

(iii) The reflection conditions including the general and special

conditions;

(iv) The affine and Euclidean normalizers of the space groups

(cf. IT A, Part 15). They are described by sets of additional

symmetry operations that generate the normalizers succes-

sively from the space groups. The database includes the

additional generators of the Euclidean normalizers for the

general-cell metrics as listed in Tables 15.2.1.3 and 15.2.1.4 of

IT A. These Euclidean normalizers are also affine normal-

izers for all cubic, hexagonal, trigonal, tetragonal and part of

the orthorhombic space-group types. For the rest of the

orthorhombic space groups, the type of the affine normalizer

coincides with the highest-symmetry Euclidean normalizer

of that space group and the corresponding additional

generators form part of the database (cf. Table 15.2.1.3 of IT

A). The affine normalizers of triclinic and monoclinic groups

are not isomorphic to groups of motions and they are not

included in the normalizer database of the Bilbao Crystal-

lographic Server.

(v) The assignment of Wyckoff positions to Wyckoff sets as

found in Table 14.2.3.2 of IT A.

The data from the databases can be accessed using the simple

retrieval tools, which use as input the number of the space group

(IT A numbers). It is also possible to select the group from a table

of IT A numbers and Hermann–Mauguin symbols. The output of

the program GENPOS contains a list of the generators or the

general positions and provides the possibility to obtain the same

data in different settings either by specifying the transformation
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2.1. Guide to the subgroup tables and graphs

By Hans Wondratschek and Mois I. Aroyo; Yves Billiet (Section 2.1.5)

2.1.1. Contents and arrangement of the subgroup tables

In this chapter, the subgroup tables, the subgroup graphs and

their general organization are discussed. In the following sections,

the different types of data are explained in detail. For every plane

group and every space group there is a separate table of maximal

subgroups and minimal supergroups. The subgroup data are

listed either individually, or as members of (infinite) series, or

both. The supergroup data are not as complete as the subgroup

data. However, most of them can be obtained by proper eval-

uation of the subgroup data, as shown in Section 2.1.7. In

addition, there are graphs of translationengleiche and klassen-

gleiche subgroups which contain for each space group all kinds of

subgroups, not just the maximal ones.

The presentation of the plane-group and space-group data in

the tables of Chapters 2.2 and 2.3 follows the style of the tables of

Parts 6 (plane groups) and 7 (space groups) in Vol. A of Inter-

national Tables for Crystallography (2005), henceforth abbre-

viated as IT A. The data comprise:

Headline

Generators selected

General position

I Maximal translationengleiche subgroups

II Maximal klassengleiche subgroups

I Minimal translationengleiche supergroups

II Minimal non-isomorphic klassengleiche supergroups.

For the majority of groups, the data can be listed completely on

one page. Sometimes two pages are needed. If the data extend

less than half a page over one full page and data for a neigh-

bouring space-group table ‘overflow’ to a similar extent, then the

two overflows are displayed on the same page. Such deviations

from the standard sequence are indicated on the relevant pages

by a remark Continued on . . . . The two overflows are separated

by a solid line and are designated by their headlines.

The sequence of the plane groups and space groups G in this

volume follows exactly that of the tables of Part 6 (plane groups)

and Part 7 (space groups) in IT A. The format of the subgroup

tables has also been chosen to resemble that of the tables of IT A

as far as possible. Graphs for translationengleiche and klassen-

gleiche subgroups are found in Chapters 2.4 and 2.5. Examples of

graphs of subgroups can also be found in Section 10.1.4.3 of IT A,

but only for subgroups of point groups. The graphs for the space

groups are described in Section 2.1.8.

2.1.2. Structure of the subgroup tables

Some basic data in these tables have been repeated from the

tables of IT A in order to allow the use of the subgroup tables

independently of IT A. These data and the main features of the

tables are described in this section.

2.1.2.1. Headline

The headline contains the specification of the space group for

which the maximal subgroups are considered. The headline lists

from the outside margin inwards:

(1) The short (international) Hermann–Mauguin symbol for the

plane group or space group. These symbols will be henceforth

referred to as ‘HM symbols’. HM symbols are discussed in

detail in Chapter 12.2 of IT A with a brief summary in Section

2.2.4 of IT A.

(2) The plane-group or space-group number as introduced in

International Tables for X-ray Crystallography, Vol. I (1952).

These numbers run from 1 to 17 for the plane groups and

from 1 to 230 for the space groups.

(3) The full (international) Hermann–Mauguin symbol for the

plane or space group, abbreviated ‘full HM symbol’. This

describes the symmetry in up to three symmetry directions

(Blickrichtungen) more completely, see Table 12.3.4.1 of IT

A, which also allows comparison with earlier editions of

International Tables.

(4) The Schoenflies symbol for the space group (there are no

Schoenflies symbols for the plane groups). The Schoenflies

symbols are primarily point-group symbols; they are

extended by superscripts for a unique designation of the

space-group types, cf. IT A, Sections 12.1.2 and 12.2.2.

2.1.2.2. Data from IT A

2.1.2.2.1. Generators selected

As in IT A, for each plane group and space group G a set of

symmetry operations is listed under the heading ‘Generators

selected’. From these group elements, G can be generated

conveniently. The generators in this volume are the same as those

in IT A. They are explained in Section 2.2.10 of IT A and the

choice of the generators is explained in Section 8.3.5 of IT A.

The generators are listed again in this present volume because

many of the subgroups are characterized by their generators.

These (often nonconventional) generators of the subgroups can

thus be compared with the conventional ones without reference

to IT A.

2.1.2.2.2. General position

Like the generators, the general position has also been copied

from IT A, where an explanation can be found in Section 2.2.11.

The general position in IT A is the first block under the heading

‘Positions’, characterized by its site symmetry of 1. The elements

of the general position have the following meanings:

(1) they are coset representatives of the space group G with

respect to its translation subgroup. The other elements of a

coset are obtained from its representative by combination

with translations of G;

(2) they form a kind of shorthand notation for the matrix

description of the coset representatives of G;

(3) they are the coordinates of those symmetry-equivalent points

that are obtained by the application of the coset repre-

sentatives on a point with the coordinates x; y; z;

(4) their numbers refer to the geometric description of the

symmetry operations in the block ‘Symmetry operations’ of

the space-group tables of IT A.

Many of the subgroupsH<G in these tables are characterized

by the elements of their general position. These elements are
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p2mg No. 7 p2mg

Generators selected (1); t(1,0); t(0,1); (2); (3)

General position

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

4 d 1 (1) x,y (2) x̄, ȳ (3) x̄+ 1
2 ,y (4) x+ 1

2 , ȳ

I Maximal translationengleiche subgroups
[2] p11g (4, pg) 1; 4 −b,a
[2] p1m1 (3, pm) 1; 3 1/4,0
[2] p211 (2, p2) 1; 2

II Maximal klassengleiche subgroups

• Enlarged unit cell
[2] b′ = 2b

p2gg (8) 〈2; 3+(0,1)〉 a,2b
p2gg (8) 〈(2; 3)+(0,1)〉 a,2b 0,1/2
p2mg (7) 〈2; 3〉 a,2b
p2mg (7) 〈3; 2+(0,1)〉 a,2b 0,1/2

[3] a′ = 3a{
p2mg (7) 〈2; 3+(1,0)〉 3a,b
p2mg (7) 〈2+(2,0); 3+(3,0)〉 3a,b 1,0
p2mg (7) 〈2+(4,0); 3+(5,0)〉 3a,b 2,0

[3] b′ = 3b{
p2mg (7) 〈2; 3〉 a,3b
p2mg (7) 〈3; 2+(0,2)〉 a,3b 0,1
p2mg (7) 〈3; 2+(0,4)〉 a,3b 0,2

• Series of maximal isomorphic subgroups
[p] a′ = pa

p2mg (7) 〈2+(2u,0); 3+( p
2 − 1

2 +2u,0)〉
prime p > 2; 0 ≤ u < p
p conjugate subgroups

pa,b u,0

[p] b′ = pb
p2mg (7) 〈3; 2+(0,2u)〉

prime p > 2; 0 ≤ u < p
p conjugate subgroups

a, pb 0,u

I Minimal translationengleiche supergroups none

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations
[2] c2mm (9)

• Decreased unit cell
[2] a′ = 1

2 a p2mm (6)
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C m No. 8 A11m C3
s

UNIQUE AXIS c, CELL CHOICE 1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0, 1
2 ,

1
2 ); (2)

General position

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

(0,0,0)+ (0, 1
2 ,

1
2 )+

4 b 1 (1) x,y,z (2) x,y, z̄

I Maximal translationengleiche subgroups
[2] A1 (1, P1) 1+ a,1/2(b− c),1/2(b+ c)

II Maximal klassengleiche subgroups

• Loss of centring translations
[2] P11b (7, P11a) 1; 2+(0, 1

2 ,
1
2 ) b,−a−b,c 0,0,1/4

[2] P11m (6) 1; 2

• Enlarged unit cell
[2] a′ = 2a

A11a (9) 〈2+(1,0,0)〉 2a,b,c
I11a (9, A11a) 〈2+(1,0,0)〉 2a,−2a+b,c
A11m (8) 〈2〉 2a,b,c
I11m (8, A11m) 〈2〉 2a,−2a+b,c

[3] c′ = 3c{
A11m (8) 〈2〉 a,b,3c
A11m (8) 〈2+(0,0,2)〉 a,b,3c 0,0,1
A11m (8) 〈2+(0,0,4)〉 a,b,3c 0,0,2

[3] a′ = 3a
A11m (8) 〈2〉 3a,b,c

[3] a′ = 3a, b′ =−2a+b
A11m (8) 〈2〉 3a,−2a+b,c

[3] a′ = 3a, b′ =−4a+b
A11m (8) 〈2〉 3a,−4a+b,c

[3] b′ = 3b
A11m (8) 〈2〉 a,3b,c

• Series of maximal isomorphic subgroups
[p] c′ = pc

A11m (8) 〈2+(0,0,2u)〉
prime p > 2; 0 ≤ u < p
p conjugate subgroups

a,b, pc 0,0,u

[p] a′ = pa, b′ =−2qa+b
A11m (8) 〈2〉

p prime; 0 ≤ q < p
no conjugate subgroups

pa,−2qa+b,c

[p] b′ = pb
A11m (8) 〈2〉

prime p > 2
no conjugate subgroups

a, pb,c

I Minimal translationengleiche supergroups
[2] A112/m (12); [2] Cmm2 (35); [2] Cmc21 (36); [2] Amm2 (38); [2] Aem2 (39); [2] Fmm2 (42); [2] Imm2 (44); [2] Ima2 (46);
[3] P3m1 (156); [3] P31m (157); [3] R3m (160)

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations none

• Decreased unit cell
[2] b′ = 1

2 b, c′ = 1
2 c P11m (6)
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I bam No. 72 I 2/b2/a2/m D26
2h

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t( 1
2 ,

1
2 ,

1
2 ); (2); (3); (5)

General position

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

(0,0,0)+ ( 1
2 ,

1
2 ,

1
2 )+

16 k 1 (1) x,y,z (2) x̄, ȳ,z (3) x̄+ 1
2 ,y+

1
2 , z̄ (4) x+ 1

2 , ȳ+
1
2 , z̄

(5) x̄, ȳ, z̄ (6) x,y, z̄ (7) x+ 1
2 , ȳ+

1
2 ,z (8) x̄+ 1

2 ,y+
1
2 ,z

I Maximal translationengleiche subgroups
[2] Ib2m (46, Ima2) (1; 3; 6; 8)+ c,a,b 0,0,1/4
[2] I2am (46, Ima2) (1; 4; 6; 7)+ c,b,−a 0,0,1/4
[2] Iba2 (45) (1; 2; 7; 8)+
[2] I222 (23) (1; 2; 3; 4)+ 0,0,1/4
[2] I12/a1 (15, C12/c1) (1; 3; 5; 7)+ a− c,b,c
[2] I2/b11 (15, C12/c1) (1; 4; 5; 8)+ −b− c,a,c
[2] I112/m (12, A112/m) (1; 2; 5; 6)+ b,−a−b,c

II Maximal klassengleiche subgroups

• Loss of centring translations
[2] Pcan (60, Pbcn) 1; 3; 5; 7; (2; 4; 6; 8)+( 1

2 ,
1
2 ,

1
2 ) −b,a,c

[2] Pbcn (60) 1; 4; 5; 8; (2; 3; 6; 7)+( 1
2 ,

1
2 ,

1
2 )

[2] Pbcm (57) 1; 3; 6; 8; (2; 4; 5; 7)+( 1
2 ,

1
2 ,

1
2 ) 1/4,1/4,1/4

[2] Pcam (57, Pbcm) 1; 4; 6; 7; (2; 3; 5; 8)+( 1
2 ,

1
2 ,

1
2 ) −b,a,c 1/4,1/4,1/4

[2] Pccn (56) 1; 2; 3; 4; (5; 6; 7; 8)+( 1
2 ,

1
2 ,

1
2 ) 1/4,1/4,1/4

[2] Pbam (55) 1; 2; 3; 4; 5; 6; 7; 8
[2] Pban (50) 1; 2; 7; 8; (3; 4; 5; 6)+( 1

2 ,
1
2 ,

1
2 ) 1/4,1/4,1/4

[2] Pccm (49) 1; 2; 5; 6; (3; 4; 7; 8)+( 1
2 ,

1
2 ,

1
2 )

• Enlarged unit cell
[3] a′ = 3a{

Ibam (72) 〈2; 5; 3+(1,0,0)〉 3a,b,c
Ibam (72) 〈(2; 5)+(2,0,0); 3+(3,0,0)〉 3a,b,c 1,0,0
Ibam (72) 〈(2; 5)+(4,0,0); 3+(5,0,0)〉 3a,b,c 2,0,0

[3] b′ = 3b{
Ibam (72) 〈2; 5; 3+(0,1,0)〉 a,3b,c
Ibam (72) 〈(2; 5)+(0,2,0); 3+(0,1,0)〉 a,3b,c 0,1,0
Ibam (72) 〈(2; 5)+(0,4,0); 3+(0,1,0)〉 a,3b,c 0,2,0

[3] c′ = 3c{
Ibam (72) 〈2; 3; 5〉 a,b,3c
Ibam (72) 〈2; (3; 5)+(0,0,2)〉 a,b,3c 0,0,1
Ibam (72) 〈2; (3; 5)+(0,0,4)〉 a,b,3c 0,0,2

• Series of maximal isomorphic subgroups
[p] a′ = pa

Ibam (72) 〈(2; 5)+(2u,0,0); 3+( p
2 − 1

2 +2u,0,0)〉
prime p > 2; 0 ≤ u < p
p conjugate subgroups

pa,b,c u,0,0

[p] b′ = pb
Ibam (72) 〈(2; 5)+(0,2u,0); 3+(0, p

2 − 1
2 ,0)〉

prime p > 2; 0 ≤ u < p
p conjugate subgroups

a, pb,c 0,u,0

[p] c′ = pc
Ibam (72) 〈2; (3; 5)+(0,0,2u)〉

prime p > 2; 0 ≤ u < p
p conjugate subgroups

a,b, pc 0,0,u

I Minimal translationengleiche supergroups
[2] I4/mcm (140)

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations none

• Decreased unit cell
[2] c′ = 1

2 c Cmmm (65); [2] a′ = 1
2 a Aemm (67, Cmme); [2] b′ = 1

2 b Bmem (67, Cmme)
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P3m1 No. 156 P3m1 C1
3v

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4)

General position

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

6 e 1 (1) x,y,z (2) ȳ,x− y,z (3) x̄+ y, x̄,z
(4) ȳ, x̄,z (5) x̄+ y,y,z (6) x,x− y,z

I Maximal translationengleiche subgroups
[2] P311 (143, P3) 1; 2; 3{
[3] P1m1 (8, C1m1) 1; 4 −a+b,−a−b,c
[3] P1m1 (8, C1m1) 1; 5 −a−2b,a,c
[3] P1m1 (8, C1m1) 1; 6 2a+b,b,c

II Maximal klassengleiche subgroups

• Enlarged unit cell
[2] c′ = 2c

P3c1 (158) 〈2; 4+(0,0,1)〉 a,b,2c
P3m1 (156) 〈2; 4〉 a,b,2c

[3] c′ = 3c
P3m1 (156) 〈2; 4〉 a,b,3c

[3] a′ = 3a, b′ = 3b{
H3m1 (157, P31m) 〈2; 4〉 a−b,a+2b,c
H3m1 (157, P31m) 〈2+(1,−1,0); 4+(1,1,0)〉 a−b,a+2b,c 1,0,0
H3m1 (157, P31m) 〈2+(2,1,0); 4+(2,2,0)〉 a−b,a+2b,c 1,1,0{
H3m1 (157, P31m) 〈4; 2+(1,0,0)〉 a−b,a+2b,c 2/3,−2/3,0
H3m1 (157, P31m) 〈2+(2,2,0); 4+(1,1,0)〉 a−b,a+2b,c 2/3,1/3,0
H3m1 (157, P31m) 〈2+(3,4,0); 4+(2,2,0)〉 a−b,a+2b,c 2/3,4/3,0{
H3m1 (157, P31m) 〈4; 2+(1,1,0)〉 a−b,a+2b,c 1/3,−1/3,0
H3m1 (157, P31m) 〈2+(2,3,0); 4+(1,1,0)〉 a−b,a+2b,c 1/3,2/3,0
H3m1 (157, P31m) 〈2+(3,2,0); 4+(2,2,0)〉 a−b,a+2b,c 4/3,2/3,0

[4] a′ = 2a, b′ = 2b⎧⎪⎨⎪⎩
P3m1 (156) 〈2; 4〉 2a,2b,c
P3m1 (156) 〈2+(1,−1,0); 4+(1,1,0)〉 2a,2b,c 1,0,0
P3m1 (156) 〈2+(1,2,0); 4+(1,1,0)〉 2a,2b,c 0,1,0
P3m1 (156) 〈2+(2,1,0); 4+(2,2,0)〉 2a,2b,c 1,1,0

• Series of maximal isomorphic subgroups
[p] c′ = pc

P3m1 (156) 〈2; 4〉
p prime
no conjugate subgroups

a,b, pc

[p2] a′ = pa, b′ = pb
P3m1 (156) 〈2+(u+ v,−u+2v,0); 4+(u+ v,u+ v,0)〉

prime p �= 3; 0 ≤ u < p; 0 ≤ v < p
p2 conjugate subgroups

pa, pb,c u,v,0

I Minimal translationengleiche supergroups

[2] P3̄m1 (164); [2] P6mm (183); [2] P63mc (186); [2] P6̄m2 (187)

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations
[3] H3m1 (157, P31m); [3] Robv3m (160, R3m); [3] Rrev3m (160, R3m)

• Decreased unit cell none
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O2
h P4/n 3̄2/n No. 222 Pn 3̄n

ORIGIN CHOICE 1, Origin at 432, at −1
4 ,−1

4 ,−1
4 from centre (3̄)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25)

General position

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

48 i 1 (1) x,y,z (2) x̄, ȳ,z (3) x̄,y, z̄ (4) x, ȳ, z̄
(5) z,x,y (6) z, x̄, ȳ (7) z̄, x̄,y (8) z̄,x, ȳ
(9) y,z,x (10) ȳ,z, x̄ (11) y, z̄, x̄ (12) ȳ, z̄,x

(13) y,x, z̄ (14) ȳ, x̄, z̄ (15) y, x̄,z (16) ȳ,x,z
(17) x,z, ȳ (18) x̄,z,y (19) x̄, z̄, ȳ (20) x, z̄,y
(21) z,y, x̄ (22) z, ȳ,x (23) z̄,y,x (24) z̄, ȳ, x̄

(25) x̄+ 1
2 , ȳ+

1
2 , z̄+

1
2 (26) x+ 1

2 ,y+
1
2 , z̄+

1
2 (27) x+ 1

2 , ȳ+
1
2 ,z+

1
2 (28) x̄+ 1

2 ,y+
1
2 ,z+

1
2

(29) z̄+ 1
2 , x̄+

1
2 , ȳ+

1
2 (30) z̄+ 1

2 ,x+
1
2 ,y+

1
2 (31) z+ 1

2 ,x+
1
2 , ȳ+

1
2 (32) z+ 1

2 , x̄+
1
2 ,y+

1
2

(33) ȳ+ 1
2 , z̄+

1
2 , x̄+

1
2 (34) y+ 1

2 , z̄+
1
2 ,x+

1
2 (35) ȳ+ 1

2 ,z+
1
2 ,x+

1
2 (36) y+ 1

2 ,z+
1
2 , x̄+

1
2

(37) ȳ+ 1
2 , x̄+

1
2 ,z+

1
2 (38) y+ 1

2 ,x+
1
2 ,z+

1
2 (39) ȳ+ 1

2 ,x+
1
2 , z̄+

1
2 (40) y+ 1

2 , x̄+
1
2 , z̄+

1
2

(41) x̄+ 1
2 , z̄+

1
2 ,y+

1
2 (42) x+ 1

2 , z̄+
1
2 , ȳ+

1
2 (43) x+ 1

2 ,z+
1
2 ,y+

1
2 (44) x̄+ 1

2 ,z+
1
2 , ȳ+

1
2

(45) z̄+ 1
2 , ȳ+

1
2 ,x+

1
2 (46) z̄+ 1

2 ,y+
1
2 , x̄+

1
2 (47) z+ 1

2 , ȳ+
1
2 , x̄+

1
2 (48) z+ 1

2 ,y+
1
2 ,x+

1
2

I Maximal translationengleiche subgroups
[2] P4̄3n (218) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 37; 38; 39;

40; 41; 42; 43; 44; 45; 46; 47; 48
[2] P432 (207) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15;

16; 17; 18; 19; 20; 21; 22; 23; 24
[2] Pn3̄1 (201, Pn3̄) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 25; 26; 27;

28; 29; 30; 31; 32; 33; 34; 35; 36⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[3] P4/n12/n (126, P4/nnc) 1; 2; 3; 4; 13; 14; 15; 16; 25; 26; 27; 28; 37;

38; 39; 40
[3] P4/n12/n (126, P4/nnc) 1; 4; 2; 3; 18; 19; 17; 20; 25; 28; 26; 27; 42;

43; 41; 44
b,c,a

[3] P4/n12/n (126, P4/nnc) 1; 3; 4; 2; 22; 24; 23; 21; 25; 27; 28; 26; 46;
48; 47; 45

c,a,b⎧⎪⎪⎨⎪⎪⎩
[4] P13̄2/n (167, R3̄c) 1; 5; 9; 14; 19; 24; 25; 29; 33; 38; 43; 48 a−b,b− c,a+b+ c 1/4,1/4,1/4
[4] P13̄2/n (167, R3̄c) 1; 6; 12; 13; 18; 24; 25; 30; 36; 37; 42; 48 −a−b,b+ c,−a+b− c 3/4,1/4,3/4
[4] P13̄2/n (167, R3̄c) 1; 7; 10; 13; 19; 22; 25; 31; 34; 37; 43; 46 a+b,−b+ c,a−b− c 1/4,3/4,3/4
[4] P13̄2/n (167, R3̄c) 1; 8; 11; 14; 18; 22; 25; 32; 35; 38; 42; 46 −a+b,−b− c,−a−b+ c 3/4,3/4,1/4

II Maximal klassengleiche subgroups

• Enlarged unit cell none

• Series of maximal isomorphic subgroups
[p3] a′ = pa, b′ = pb, c′ = pc

Pn3̄n (222) 〈2+(2u,2v,0); 3+(2u,0,2w);
5+(u−w,−u+ v,−v+w);
13+(u− v,−u+ v,2w);
25+( p

2 − 1
2 +2u, p

2 − 1
2 +2v, p

2 − 1
2 +2w)〉

prime p > 2; 0 ≤ u < p; 0 ≤ v < p; 0 ≤ w < p
p3 conjugate subgroups

pa, pb, pc u,v,w

I Minimal translationengleiche supergroups none

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations

[2] Im3̄m (229); [4] Fm3̄c (226)

• Decreased unit cell none
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Pn 3̄n No. 222 P4/n 3̄2/n O2
h

ORIGIN CHOICE 2, Origin at centre (3̄), at 1
4 ,

1
4 ,

1
4 from 432

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25)

General position

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

48 i 1 (1) x,y,z (2) x̄+ 1
2 , ȳ+

1
2 ,z (3) x̄+ 1

2 ,y, z̄+
1
2 (4) x, ȳ+ 1

2 , z̄+
1
2

(5) z,x,y (6) z, x̄+ 1
2 , ȳ+

1
2 (7) z̄+ 1

2 , x̄+
1
2 ,y (8) z̄+ 1

2 ,x, ȳ+
1
2

(9) y,z,x (10) ȳ+ 1
2 ,z, x̄+

1
2 (11) y, z̄+ 1

2 , x̄+
1
2 (12) ȳ+ 1

2 , z̄+
1
2 ,x

(13) y,x, z̄+ 1
2 (14) ȳ+ 1

2 , x̄+
1
2 , z̄+

1
2 (15) y, x̄+ 1

2 ,z (16) ȳ+ 1
2 ,x,z

(17) x,z, ȳ+ 1
2 (18) x̄+ 1

2 ,z,y (19) x̄+ 1
2 , z̄+

1
2 , ȳ+

1
2 (20) x, z̄+ 1

2 ,y

(21) z,y, x̄+ 1
2 (22) z, ȳ+ 1

2 ,x (23) z̄+ 1
2 ,y,x (24) z̄+ 1

2 , ȳ+
1
2 , x̄+

1
2

(25) x̄, ȳ, z̄ (26) x+ 1
2 ,y+

1
2 , z̄ (27) x+ 1

2 , ȳ,z+
1
2 (28) x̄,y+ 1

2 ,z+
1
2

(29) z̄, x̄, ȳ (30) z̄,x+ 1
2 ,y+

1
2 (31) z+ 1

2 ,x+
1
2 , ȳ (32) z+ 1

2 , x̄,y+
1
2

(33) ȳ, z̄, x̄ (34) y+ 1
2 , z̄,x+

1
2 (35) ȳ,z+ 1

2 ,x+
1
2 (36) y+ 1

2 ,z+
1
2 , x̄

(37) ȳ, x̄,z+ 1
2 (38) y+ 1

2 ,x+
1
2 ,z+

1
2 (39) ȳ,x+ 1

2 , z̄ (40) y+ 1
2 , x̄, z̄

(41) x̄, z̄,y+ 1
2 (42) x+ 1

2 , z̄, ȳ (43) x+ 1
2 ,z+

1
2 ,y+

1
2 (44) x̄,z+ 1

2 , ȳ

(45) z̄, ȳ,x+ 1
2 (46) z̄,y+ 1

2 , x̄ (47) z+ 1
2 , ȳ, x̄ (48) z+ 1

2 ,y+
1
2 ,x+

1
2

I Maximal translationengleiche subgroups
[2] P4̄3n (218) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 37; 38; 39;

40; 41; 42; 43; 44; 45; 46; 47; 48
1/4,1/4,1/4

[2] P432 (207) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15;
16; 17; 18; 19; 20; 21; 22; 23; 24

1/4,1/4,1/4

[2] Pn3̄1 (201, Pn3̄) 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 25; 26; 27;
28; 29; 30; 31; 32; 33; 34; 35; 36⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[3] P4/n12/n (126, P4/nnc) 1; 2; 3; 4; 13; 14; 15; 16; 25; 26; 27; 28; 37;
38; 39; 40

[3] P4/n12/n (126, P4/nnc) 1; 4; 2; 3; 18; 19; 17; 20; 25; 28; 26; 27; 42;
43; 41; 44

b,c,a

[3] P4/n12/n (126, P4/nnc) 1; 3; 4; 2; 22; 24; 23; 21; 25; 27; 28; 26; 46;
48; 47; 45

c,a,b⎧⎪⎪⎨⎪⎪⎩
[4] P13̄2/n (167, R3̄c) 1; 5; 9; 14; 19; 24; 25; 29; 33; 38; 43; 48 a−b,b− c,a+b+ c
[4] P13̄2/n (167, R3̄c) 1; 6; 12; 13; 18; 24; 25; 30; 36; 37; 42; 48 −a−b,b+ c,−a+b− c 1/2,0,1/2
[4] P13̄2/n (167, R3̄c) 1; 7; 10; 13; 19; 22; 25; 31; 34; 37; 43; 46 a+b,−b+ c,a−b− c 0,1/2,1/2
[4] P13̄2/n (167, R3̄c) 1; 8; 11; 14; 18; 22; 25; 32; 35; 38; 42; 46 −a+b,−b− c,−a−b+ c 1/2,1/2,0

II Maximal klassengleiche subgroups

• Enlarged unit cell none

• Series of maximal isomorphic subgroups
[p3] a′ = pa, b′ = pb, c′ = pc

Pn3̄n (222) 〈2+( p
2 − 1

2 +2u, p
2 − 1

2 +2v,0);
3+( p

2 − 1
2 +2u,0, p

2 − 1
2 +2w);

5+(u−w,−u+ v,−v+w);
13+(u− v,−u+ v, p

2 − 1
2 +2w);

25+(2u,2v,2w)〉
prime p > 2; 0 ≤ u < p; 0 ≤ v < p; 0 ≤ w < p
p3 conjugate subgroups

pa, pb, pc u,v,w

I Minimal translationengleiche supergroups none

II Minimal non-isomorphic klassengleiche supergroups

• Additional centring translations

[2] Im3̄m (229); [4] Fm3̄c (226)

• Decreased unit cell none
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2. MAXIMAL SUBGROUPS OF THE PLANE GROUPS AND SPACE GROUPS
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Fig. 2.4.1.6. Graph of the translationengleiche subgroups of the summit space group Fm3c and of the included graphs with summits H<Fm3c, see
Example 2.1.8.2.3.

Fig. 2.4.1.5. Graph of the translationengleiche subgroups of the summit space group Fm3m and of the included graphs with summits H<Fm3m, see
Example 2.1.8.2.3.



2. MAXIMAL SUBGROUPS OF THE PLANE GROUPS AND SPACE GROUPS
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Fig. 2.5.3.1. Graph of the klassengleiche subgroups of the space groups of crystal class 3.

Fig. 2.5.3.2. Graph of the klassengleiche subgroups of the space groups of crystal class 3.

Fig. 2.5.3.3. Graph of the klassengleiche subgroups of the space groups of crystal class 32.

Fig. 2.5.3.4. Graph of the klassengleiche subgroups of the space groups of
crystal class 3m.

Fig. 2.5.3.5. Graph of the klassengleiche subgroups of the space groups of
crystal class 3m.

2.5.3. Graphs of the klassengleiche subgroups of trigonal space groups

For an explanation of these graphs, see Section 2.1.8.3.



3. RELATIONS BETWEEN THE WYCKOFF POSITIONS

symbol change as given by the arrows, and simultaneously the

labels change:

The notation b c a means: the former b axis is now in the

position of the a axis etc. or: convert b to a, c to b, and a to c.

The corresponding interchanges of positions and labels for all

possible nonconventional settings are listed at the end of the

table of each orthorhombic space group. They have to be applied

to all subgroups.

Example 3.1.4.2

Consider the nonconventional setting Pcam of Pbcm. The

entry at the bottom of the page for space group Pbcm, No. 57,

shows the necessary interchanges for the setting Pcam:

a ! b, a ! �b, and x ! �y.

For the subgroup Pbna (last entry in the block of klassen-

gleiche non-isomorphic subgroups) this means: Pbna has to be

replaced by Pnab, the axes conversion 2a; b; c has to be

replaced by a;�2b; c and the coordinate transformation
1
2 xþ 1

4 ; y; z; þð12 ; 0; 0Þ has to be replaced by x;� 1
2 y� 1

4 ; z;
þð0;� 1

2 ; 0Þ.

Pbna and Pnab are nonconventional settings of Pbcn, No. 60.

The interchange of the axes does not affect the Wyckoff labels,

just the corresponding coordinates.

Example 3.1.4.3

The Wyckoff position 4c ðx; 1
4 ; 0Þ of Pbcm, No. 57, retains its

label for any of the other settings of this space group. In the

setting Pbma, this Wyckoff position is still 4c and has the

coordinates 1
4 ; 0; z. In this case, no ambiguity arises because

the different settings of space group Pbcm all have different

Hermann–Mauguin symbols that uniquely show how the axes

have to be interchanged (Pmca, Pbma, Pcam, Pmab and

Pcmb).

The interchange of the axes must also be performed for those

subgroups that have equivalent directions and where the

Hermann–Mauguin symbol does not uniquely show the kind of

setting. Otherwise, the wrong Wyckoff positions can result.

Example 3.1.4.4

Space group Cmmm, No. 65, has two klassengleiche subgroups

of type Immm, No. 71, with doubled c axis. In the noncon-

ventional setting Bmmm of Cmmm, the same subgroups Immm

result from a doubling of the b axis. In the conventional setting

of Immm, the Wyckoff positions 4e, 4g and 4i represent orbits

with the coordinates ðx; 0; 0Þ, ð0; y; 0Þ and ð0; 0; zÞ, respec-

tively. In the space group Cmmm, the position 4k corresponds

to ð0; 0; zÞ and upon transition to either of the subgroups

Immm it splits to 2� 4i.

If Bmmm is obtained from Cmmm by cyclic exchange of the

axes (a b c a), its Wyckoff position 4k obtains the

coordinates ð0; y; 0Þ. Upon doubling of b and transition to

Immm, 4k will split to two orbits with the coordinates

ð0; 1
2 y; 0Þ and ð0; 1

2 y þ 1
2 ; 0Þ. These are two orbits 4i of Immm,

but this is only correct if the axes of Immm have also been

interchanged in the same way. If the interchange of axes has not

been performed in the subgroup Immm in the assumption that

in Immm all axes are equivalent anyway, wrong results will

be obtained. That is, Immm also has to be used in a noncon-

ventional setting, although this is not apparent from the

Hermann–Mauguin symbol. Of course, the Wyckoff symbols

can then be relabelled so that they correspond to the con-

ventional listings of Volume A (4i! 4g etc.). It is recom-

mended that this return to the conventional setting of Immm is

performed, because using the label 4i for ð0; y; 0Þ in Immm is

likely to cause confusion if the nonconventional setting is not

explicitly stressed.

3.1.5. Conjugate subgroups

Conjugate subgroups are different subgroups belonging to the

same space-group type (they have the same Hermann–Mauguin

symbol) and they have the same unit-cell size and the same shape

for the conventional cell. They can be mapped onto one another

by a symmetry operation of the starting group, i.e. they are

symmetry-equivalent in this space group. They can occur only if

the index of symmetry reduction is � 3. The relations of the

Wyckoff positions of a space group with the Wyckoff positions of

any representative of a set of conjugate subgroups are always the

same. Therefore, in principle it is sufficient to list the relations for

only one representative.

Two kinds of conjugation of maximal subgroups can be

distinguished, translational conjugation and orientational conju-

gation. Non-maximal subgroups can involve both kinds of

conjugation, so the situation is more complicated in chains of

group–subgroup relations, cf. Koch (1984) and Müller (1992).

Since the present tables only list maximal subgroups, we will not

discuss this here.

3.1.5.1. Translational conjugation

Translational conjugation occurs when the group–subgroup

relation involves a loss of translational symmetry. This happens

when the conventional cell has been enlarged or when centring

translations have been lost; this means that the primitive unit cell

of the subgroup is larger (by a factor � 3). Translationally

conjugate subgroups of a space group are symmetry-equivalent

by a translation of the lattice of this space group. This way,

isomorphic subgroups of index p � 3 have p conjugate subgroups

(unless the cell enlargement occurs in a direction in which the

origin may float). The existence of conjugate subgroups of this

kind is not specifically mentioned in the tables. However, they

can be recognized by looking in the column ‘Coordinates’. If a

semicolon appears after the coordinate triplet, followed by values

in parentheses to be added, and if, in addition, the index of

symmetry reduction is � 3, then conjugate subgroups usually

exist. They differ in the locations of their origins by values

corresponding to the values given in the parentheses.

Example 3.1.5.1.1

x; y; 1
3 z; �ð0; 0; 1

3Þ

gives the positional coordinates in the subgroup originating

from the coordinates of one unit cell of the starting group,

namely

x; y; 1
3 z; x; y; 1

3 zþ 1
3 ; x; y; 1

3 z� 1
3 :

In addition, this also means that there are three conjugate

subgroups. They differ in the locations of their origins referred

to the origin of the starting space group by 0; 0; 0, 0; 0; 1
3 and
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C m C 1m1 No. 8 A1m1 I 1m1 C3
s

UNIQUE AXIS b
CELL CHOICE 1 CELL CHOICE 2 CELL CHOICE 3

Axes Coordi- Wyckoff positions Axes Coordi- Axes Coordi-
nates 2a 4b nates nates

I Maximal translationengleiche subgroups

[2] P1 (1) 1
2 (a−b), 2x,x+y,z; 1a 2×1a P1 a, b, x,x+y,2z P1 a, x+y,2y,y+z
b, c 1

2 (–b+c) 1
2 (–a+b–c), c

II Maximal klassengleiche subgroups
Loss of centring translations

[2] P1a1 (7) x,y+ 1
4 ,z 2a 2×2a P1c1 x,y+ 1

4 ,z P1n1 x,y+ 1
4 ,z

[2] P1m1 (6) 1a;1b 2×2c P1m1 P1m1

Enlarged unit cell, non-isomorphic

[2] C1c1 (9) a, b, 2c x,y, 1
2 z; 4a 2×4a A1n1 2a+c, 1

2 x,y,– 1
2 x+z; I1a1 2a, b, 1

2 (x+z),y,z;
+(0,0, 1

2 ) b, c +( 1
2 ,0,0) –a+c +( 1

2 ,0,0)

[2] C1c1 (9) a−2c, b, 2c x,y,x+ 1
2 z; 4a 2×4a I1a1 2a, b, c 1

2 x,y,z; I1a1 2a, b, 1
2 (x–z),y,z;

+(0,0, 1
2 ) +( 1

2 ,0,0) a+c +( 1
2 ,0,0)

=̂ I1a1 a, b, 2c x,y+ 1
4 ,

1
2 z;

+(0,0, 1
2 )

Enlarged unit cell, isomorphic

[3] C1m1 a, 3b, c x, 1
3 y,z; 2a; 4b 3×4b A1m1 a, 3b, c x, 1

3 y,z; I1m1 a, 3b, c x, 1
3 y,z;

±(0, 1
3 ,0) ±(0, 1

3 ,0) ±(0, 1
3 ,0)

[p] C1m1 a, pb, c x, 1
p y,z; 2a; p–1

2 ×4b p×4b A1m1 a, pb, c x, 1
p y,z; I1m1 a, pb, c x, 1

p y,z;

+(0, u
p ,0) +(0, u

p ,0) +(0, u
p ,0)

p = prime > 2; u = 1, . . . , p−1 p = prime > 2; u = 1, . . . , p−1 p = prime > 2; u = 1, . . . , p−1

[2] C1m1 a, b, 2c x,y, 1
2 z; 2×2a 2×4b A1m1 2a, b, c 1

2 x,y,z; I1m1 2a, b, –a+c 1
2 (x+z),y,z;

+(0,0, 1
2 ) +( 1

2 ,0,0) +( 1
2 ,0,0)

[2] I1m1 a, b, 2c x,y, 1
2 z; 2×2a 2×4b I1m1 2a, b, c 1

2 x,y,z; I1m1 2a, b, a+c 1
2 (x–z),y,z;

+(0,0, 1
2 ) +( 1

2 ,0,0) +( 1
2 ,0,0)

[3] C1m1 3a, b, c 1
3 x,y,z; 3×2a 3×4b A1m1 a+c, x,y, 1

3 (–x+z); I1m1 a, b, 3c x,y, 1
3 z;

±( 1
3 ,0,0) b, 3c ±(0,0, 1

3 ) ±(0,0, 1
3 )

[3] C1m1 3a, b, 1
3 (x+z),y,z; 3×2a 3×4b A1m1 a−c, x,y, 1

3 (x+z); I1m1 3a, b, 1
3 (x–2z),y,z;

–a+c ±( 1
3 ,0,0) b, 3c ±(0,0, 1

3 ) 2a+c ±( 1
3 ,0,0)

[3] C1m1 3a, b, 1
3 (x–z),y,z; 3×2a 3×4b A1m1 a, b, 3c x,y, 1

3 z; I1m1 3a, b, c 1
3 x,y,z;

a+c ±( 1
3 ,0,0) ±(0,0, 1

3 ) ±( 1
3 ,0,0)

[3] C1m1 a, b, 3c x,y, 1
3 z; 3×2a 3×4b A1m1 3a, b, c 1

3 x,y,z; I1m1 3a, b, 1
3 (x+2z),y,z;

±(0,0, 1
3 ) +( 1

3 ,0,0) –2a+c ±( 1
3 ,0,0)

[p] C1m1 a, b, pc x,y, 1
p z; p×2a p×4b A1m1 pa, b, c 1

p x,y,z; I1m1 pa, b, c 1
p x,y,z;

+(0,0, u
p ) +( u

p ,0,0) ±( u
p ,0,0)

p = prime; u = 1, . . . , p−1 p = prime; u = 1, . . . , p−1 p = prime; > 2; u = 1, . . . , p−1

[p] C1m1 pa, b, 1
p (x–qz),y,z; p×2a p×4b A1m1 a+qc, x,y, 1

p (–qx+z); I1m1 a+2qc, x,y, 1
p (–2qx+z);

qa+c +( u
p ,0,0) b, pc +(0,0, u

p ) b, pc +(0,0, u
p )

p = prime > 2; u = 1, . . . , p−1; p = prime > 2; u = 1, . . . , p−1; p = prime > 2; u = 1, . . . , p−1;
− 1

2 (p−1)≤ q ≤ 1
2 (p−1) − 1

2 (p−1)≤ q ≤ 1
2 (p−1) − 1

2 (p−1)≤ q ≤ 1
2 (p−1)
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D26
2h I 2/b2/a2/m No. 72 I bam

Axes Coordinates Wyckoff positions
4a 4b 4c 4d 8e 8 f 8g 8h 8i 8 j 16k

I Maximal translationengleiche subgroups

[2] I2cm (46) x,y,z+ 1
4 4a 4a 4b 4b 8c 2×4a 8c 8c 8c 2×4b 2×8c

=̂ Ima2 c, –b, a z+ 1
4 ,–y,x

[2] Ic2m (46) x,y,z+ 1
4 4a 4a 4b 4b 8c 8c 2×4a 8c 8c 2×4b 2×8c

=̂ Ima2 c, a, b z+ 1
4 ,x,y

[2] Iba2 (45) 4a 4b 4a 4b 8c 8c 8c 2×4a 2×4b 8c 2×8c

[2] I222 (23) x,y,z+ 1
4 2a;2c 2b;2d 4i 4 j 8k 4e;4 f 4g;4h 2×4i 2×4 j 8k 2×8k

[2] I2/c11 (15) 4e 4e 4a 4b 4c;4d 2×4e 8 f 8 f 8 f 8 f 2×8 f
=̂ I12/a1 c, a, b z,x,y
=̂C12/c1 –b–c, a, c –y,x,–y+z

[2] I12/c1 (15) 4e 4e 4a 4b 4c;4d 8 f 2×4e 8 f 8 f 8 f 2×8 f
=̂C12/c1 a–c, b, c x,y,x+z

[2] I112/m(12) 4g 4h 2a;2b 2c;2d 4e;4 f 8 j 8 j 2×4g 2×4h 2×4i 2×8 j
=̂ A112/m b, –a–b, c –x+y,–y,z

II Maximal klassengleiche subgroups
Loss of centring translations

[2] Pbcn (60) 4c 4c 4a 4b 8d 8d 2×4c 8d 8d 8d 2×8d

[2] Pcan (60) 4c 4c 4a 4b 8d 2×4c 8d 8d 8d 8d 2×8d
=̂ Pbcn b, –a, c y,–x,z

[2] Pbcm (57) x+ 1
4 ,y+

1
4 ,z+

1
4 4c 4c 4d 4d 4a;4b 2×4c 8e 8e 8e 2×4d 2×8e

[2] Pcam (57) x+ 1
4 ,y+

1
4 ,z+

1
4 4c 4c 4d 4d 4a;4b 8e 2×4c 8e 8e 2×4d 2×8e

=̂ Pbcm b, –a, c y+ 1
4 ,–x– 1

4 ,z+
1
4

[2] Pccn (56) x+ 1
4 ,y+

1
4 ,z+

1
4 4c 4d 4c 4d 4a;4b 8e 8e 2×4c 2×4d 8e 2×8e

[2] Pbam (55) 4e 4 f 2a;2b 2c;2d 8i 8i 8i 2×4e 2×4 f 4g;4h 2×8i

[2] Pban (50) origin 1: x,y,z+ 1
4 2a;2d 2b;2c 4k 4l 4e;4 f 4g;4h 4i;4 j 2×4k 2×4l 8m 2×8m

origin 2: x+ 1
4 ,y+

1
4 ,z+

1
4

[2] Pccm (49) 2e;2h 2 f ;2g 2a;2b 2c;2d 8r 4i;4 j 4k;4l 4m;4n 4o;4p 2×4q 2×8r

Enlarged unit cell, isomorphic

[3] Ibam 3a, b, c 1
3 x,y,z;±( 1

3 ,0,0) 4a;8 f 4b;8 f 4c;8 j 4d;8 j 8e;16k 3×8 f 8g;16k 8h;16k 8i;16k 3×8 j 3×16k

[p] Ibam pa, b, c 1
p x,y,z;+( u

p ,0,0) 4a; 4b; 4c; 4d; 8e; p×8 f 8g; 8h; 8i; p×8 j p×16k

p = prime > 2; u = 1, . . . , p−1 p –1
2 × p –1

2 × p –1
2 × p –1

2 × p –1
2 × p –1

2 × p –1
2 × p –1

2 ×
8 f 8 f 8 j 8 j 16k 16k 16k 16k

[3] Ibam a, 3b, c x, 1
3 y,z;±(0, 1

3 ,0) 4a;8g 4b;8g 4c;8 j 4d;8 j 8e;16k 8 f ;16k 3×8g 8h;16k 8i;16k 3×8 j 3×16k

[p] Ibam a, pb, c x, 1
p y,z; +(0, u

p ,0) 4a; 4b; 4c; 4d; 8e; 8 f ; p×8g 8h; 8i; p×8 j p×16k

p = prime > 2; u = 1, . . . , p−1 p –1
2 × p –1

2 × p –1
2 × p –1

2 × p –1
2 × p –1

2 × p –1
2 × p –1

2 ×
8g 8g 8 j 8 j 16k 16k 16k 16k

[3] Ibam a, b, 3c x,y, 1
3 z;±(0,0, 1

3 ) 4a;8h 4b;8i 4c;8h 4d;8i 8e;16k 8 f ;16k 8g;16k 3×8h 3×8i 8 j;16k 3×16k

[p] Ibam a, b, pc x,y, 1
p z;+(0,0, u

p ) 4a; 4b; 4c; 4d; 8e; 8 f ; 8g; p×8h p×8i 8 j; p×16k

p = prime > 2; u = 1, . . . , p−1 p –1
2 × p –1

2 × p –1
2 × p –1

2 × p –1
2 × p –1

2 × p –1
2 × p –1

2 ×
8h 8i 8h 8i 16k 16k 16k 16k

Nonconventional settings
Interchange letters and sequences in Hermann–Mauguin symbols, axes and coordinates:

I mcb C → A → B a → b → c → a a → b → c → a x → y → z → x

I cma A →C → B a ← b ← c ← a a ← b ← c ← a x ← y ← z ← x
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P3m1 No. 156 C1
3v

Axes Coordinates Wyckoff positions
1a 1b 1c 3d 6e

I Maximal translationengleiche subgroups

[2] P3 (143) 1a 1b 1c 3d 2×3d

[3] C1m1 (8) 2a+b, b, c 1
2 x,– 1

2 x+y,z 2a 2a 2a 2a;4b 3×4b

conjugate: a−b, a+b, c 1
2 (x–y), 1

2 (x+y),z

conjugate: a+2b, –a, c 1
2 y,−x+ 1

2 y,z

II Maximal klassengleiche subgroups
Enlarged unit cell, non-isomorphic

[2] P3c1 a, b, 2c x,y, 1
2 z; +(0,0, 1

2 ) 2a 2b 2c 6d 2×6d

(158)

[3] P31m 2a+b,–a+b,c 1
3 (x+y), 1

3 (–x+2y),z; 1a;2b 3c 3c 3c;6d 3×6d
(157) ±( 2

3 ,
1
3 ,0)

[3] P31m 2a+b,–a+b,c 1
3 (x+y)+ 1

3 ,
1
3 (–x+2y),z; 3c 1a;2b 3c 3c;6d 3×6d

(157) ±( 2
3 ,

1
3 ,0)

[3] P31m 2a+b,–a+b,c 1
3 (x+y)– 1

3 ,
1
3 (–x+2y),z; 3c 3c 1a;2b 3c;6d 3×6d

(157) ±( 2
3 ,

1
3 ,0)

Enlarged unit cell, isomorphic

[2] P3m1 a, b, 2c x,y, 1
2 z; +(0,0, 1

2 ) 2×1a 2×1b 2×1c 2×3d 2×6e

[3] P3m1 a, b, 3c x,y, 1
3 z; ±(0,0, 1

3 ) 3×1a 3×1b 3×1c 3×3d 3×6e

[p] P3m1 a, b, pc x,y, 1
p z; +(0,0, u

p ) p×1a p×1b p×1c p×3d p×6e

p =prime; u = 1, . . . , p−1

[4] P3m1 2a, 2b, c 1
2 x, 1

2 y,z; +( 1
2 ,0,0); 1a;3d 1c;3d 1b;3d 2×3d;6e 4×6e

+(0, 1
2 ,0); +( 1

2 ,
1
2 ,0)

[p2]P3m1 pa, pb, c 1
p x, 1

p y,z; +( u
p ,

v
p ,0) 1a;(p –1)×3d; 1b(c∗); 1c(b∗); p×3d; p2×6e

p = prime �= 3; u,v = 1, . . . , p−1 (p–1)(p–2)
6 ×6e (p –1)×3d; (p –1)×3d; p(p –1)

2 ×6e
(p–1)(p–2)

6 ×6e (p–1)(p–2)
6 ×6e

∗ p = 3n−1
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Pn 3̄n No. 222 P4/n 3̄2/n O2
h

Axes Coordinates Wyckoff positions
origin 1 origin 2 2a 6b 8c 12d 12e 16 f

24g 24h 48i

I Maximal translationengleiche subgroups

[2] P4̄3n x+ 1
4 ,y+

1
4 ,z+

1
4 2a 6b 8e 6c;6d 12 f 2×8e

(218) 12g;12h 24i 2×24i

[2] P432 x+ 1
4 ,y+

1
4 ,z+

1
4 1a;1b 3c;3d 8g 12h 6e;6 f 2×8g

(207) 2×12h 12i;12 j 2×24k

[2] Pn3̄ 2a 6d 4b;4c 12g 12 f 2×8e
(201) 2×12g 24h 2×24h

[4] R3̄c x– 1
4 ,y– 1

4 ,z– 1
4 2a 6e 2b;6d 12 f 12 f 4c;12 f

(167) ( rhombohedral axes) 2×12 f 2×6e;12 f 4×12 f

a−b, b−c, 1
3 (2x–y–z), 1

3 (2x–y–z), 6a 18e 6b;18d 36 f 36 f 12c;36 f
a+b+c 1

3 (x+y–2z), 1
3 (x+y–2z), 2×36 f 2×18e;36 f 4×36 f

(hex. axes) 1
3 (x+y+z)– 1

4
1
3 (x+y+z)

conjugate: –a−b, b+c, 1
3 (–2x–y+z), 1

3 (–2x–y+z)+ 1
2 ,

–a+b−c 1
3 (–x+y+2z), 1

3 (–x+y+2z)+ 1
2 ,

(hex. axes) 1
3 (–x+y–z)– 1

4
1
3 (–x+y–z)

conjugate: a+b, –b+c, 1
3 (2x+y+z), 1

3 (2x+y+z),
a−b−c 1

3 (x–y+2z), 1
3 (x–y+2z)+ 1

2 ,

(hex. axes) 1
3 (x–y–z)– 1

4
1
3 (x–y–z)

conjugate: –a+b,–b−c, 1
3 (–2x+y–z), 1

3 (–2x+y–z)+ 1
2 ,

–a−b+c 1
3 (–x–y–2z), 1

3 (–x–y–2z),
(hex. axes) 1

3 (–x–y+z)– 1
4

1
3 (–x–y+z)

[3] P4/nnc 2a 2b;4c 8 f 4d;8 j 4e;8i 16k
(126) 8g;2×8 j 8h;16k 3×16k

conjugate: b, c, a y,z,x y,z,x
conjugate: c, a, b z,x,y z,x,y

II Maximal klassengleiche subgroups
Enlarged unit cell, isomorphic

[27]Pn3̄n 3a, 3b, 3c 1
3 x, 1

3 y, 1
3 z; 1

3 x, 1
3 y, 1

3 z; 2a;12e;16 f ; 6b;12e;24g; 8c;16 f ; 12d;24g; 3×12e; 3×16 f ;︸ ︷︷ ︸
±( 1

3 ,0,0); ±(0, 1
3 ,0); ±(0,0, 1

3 );
24h 24h;2×48i 4×48i 6×48i 6×48i 8×48i

±(0, 1
3 ,

1
3 );±( 1

3 ,0,
1
3 );±( 1

3 ,
1
3 ,0); 3×24g; 3×24h; 27×48i

±(0, 1
3 ,

2
3 );±( 1

3 ,0,
2
3 );±( 1

3 ,
2
3 ,0); 12×48i 12×48i

±( 1
3 ,

1
3 ,

1
3 ); ±( 1

3 ,
1
3 ,

2
3 );

±( 1
3 ,

2
3 ,

1
3 ); ±( 2

3 ,
1
3 ,

1
3 )

[p3]Pn3̄n pa, pb, pc 1
p x, 1

p y, 1
p z; 1

p x, 1
p y, 1

p z; 2a; p–1
2 ×12e; 6b; p–1

2 ×12e; 8c; 12d; p×12e; p×16 f ;

+( u
p ,

v
p ,

w
p ) +( u

p ,
v
p ,

w
p )

p –1
2 ×16 f p –1

2 ×24g; p –1
2 ×16 f ; p –1

2 ×24g; p(p2–1)
4 ×48i p(p2–1)

3 ×
p = prime > 2; u,v,w = 1, . . . , p−1 p –1

2 ×24h; p –1
2 ×24h; p(p2–1)

6 ×48i p(p2–1)
4 ×48i 48i

p3–13p+12
24 × p3–5p+4

8 ×48i
48i

p×24g; p×24h; p3×48i
p(p2–1)

2 ×48i p(p2–1)
2 ×48i
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