
10.1. Crystallographic and noncrystallographic point groups

BY TH. HAHN AND H. KLAPPER

10.1.1. Introduction and definitions

A point group* is a group of symmetry operations all of which leave
at least one point unmoved. Thus, all operations containing
translations are excluded. Point groups can be subdivided into
crystallographic and noncrystallographic point groups. A crystal-
lographic point group is a point group that maps a point lattice onto
itself. Consequently, rotations and rotoinversions are restricted to
the well known crystallographic cases 1, 2, 3, 4, 6 and 1, 2 �
m, 3, 4, 6 (cf. Chapter 1.3); matrices for these symmetry operations
are listed in Tables 11.2.2.1 and 11.2.2.2. No such restrictions apply
to the noncrystallographic point groups.

The numbers of the crystallographic point groups are finite: 2 for
one dimension, 10 for two dimensions and 32 for three dimensions.
The numbers of noncrystallographic point groups for dimensions
n � 2 are infinite. The two- and three-dimensional crystallographic
point groups and their crystal systems are summarized in Tables
10.1.1.1 and 10.1.1.2. They are described in detail in Section 10.1.2.
The two one-dimensional point groups are discussed in Section
2.2.17. The noncrystallographic point groups are treated in Section
10.1.4.

Crystallographic point groups occur:
(i) in vector space as symmetries of the external shapes of

crystals, i.e. of the set of vectors normal to the crystal faces
(morphological symmetry);

(ii) in point space as site symmetries of points in lattices or in
crystal structures and as symmetries of atomic groups and
coordination polyhedra.

General point groups, i.e. crystallographic and noncrystallographic
point groups, occur as:

(iii) symmetries of (rigid) molecules (molecular symmetry):
(iv) symmetries of physical properties of crystals (e.g. tensor

symmetries); here noncrystallographic point groups with axes of
order infinity are of particular importance, as in the symmetries of
spheres or rotation ellipsoids:

(v) approximate symmetries of the local environment of a point
in a crystal structure, i.e. as local site symmetries. Examples are
sphere-like atoms or ions in crystals, as well as icosahedral atomic
groups. These noncrystallographic symmetries, however, are only
approximate, even for the close neighbourhood of a site.

A (geometric) crystal class is the set of all crystals having the
same point-group symmetry. The word ‘class’, therefore, denotes a
classificatory pigeon-hole and should not be used as synonymous
with the point group of a particular crystal. The symbol of a crystal
class is that of the common point group. (For geometric and
arithmetic crystal classes of space groups, see Sections 8.2.3 and
8.2.4.)

Of particular importance for the structure determination of
crystals are the 11 centrosymmetric crystallographic point groups,
because they describe the possible symmetries of the diffraction
record of a crystal: 1; 2�m; mmm; 4�m; 4�mmm; 3; 3m; 6�m;
6�mmm; m3; m3m. This is due to Friedel’s rule, which states that,
provided anomalous dispersion is neglected, the diffraction record
of any crystal is centrosymmetric, even if the crystal is
noncentrosymmetric. The symmetry of the diffraction record
determines the Laue class of the crystal; this is further explained

in Part 3. For a given crystal, its Laue class is obtained if a
symmetry centre is added to its point group, as shown in Table
10.2.1.1.

In two dimensions, six ‘centrosymmetric’ crystallographic point
groups and hence six two-dimensional Laue classes exist: 2; 2mm;
4; 4mm; 6; 6mm. These point groups are, for instance, the only
possible symmetries of zero-layer X-ray photographs.

Among the centrosymmetric crystallographic point groups in
three dimensions, the lattice point groups (holohedral point groups,
holohedries) are of special importance because they constitute the
seven possible point symmetries of lattices, i.e. the site symmetries
of their nodes. In three dimensions, the seven holohedries are: 1;
2�m; mmm; 4�mmm; 3m; 6�mmm; m3m. Note that 3m is the point
symmetry of the rhombohedral lattice and 6�mmm the point
symmetry of the hexagonal lattice; both occur in the hexagonal
crystal family (cf. Chapter 2.1). Point groups that are, within a
crystal family, subgroups of a holohedry are called merohedries;
they are called specifically hemihedries for subgroups of index 2,
tetartohedries for index 4 and ogdohedries for index 8.

In two dimensions, four holohedries exist: 2; 2mm; 4mm; 6mm.
Note that the hexagonal crystal family in two dimensions contains
only one lattice type, with point symmetry 6mm.

Another classification of the crystallographic point groups is that
into isomorphism classes. Here all those point groups that have the
same kind of group table appear in one class. These isomorphism
classes are also known under the name of abstract point groups.

There are 18 abstract crystallographic point groups in three
dimensions: the point groups in each of the following lines are
isomorphous and belong to the same abstract group:

Order 1 � 1 Order 8 � 422, 4mm, 42m
2 � 1, 2, m 12 � 6�m
3 � 3 12 � 3m, 622, 6mm, 62m
4 � 2�m, 222, mm2 12 � 23
4 � 4, 4 16 � 4�mmm
6 � 3, 6, 6 24 � 6�mmm
6 � 32, 3m 24 � m3
8 � mmm 24 � 432, 43m
8 � 4�m 48 � m3m�

In two dimensions, the ten crystallographic point groups form nine
abstract groups; the groups 2 and m are isomorphous and belong to
the same abstract group, the remaining eight point groups
correspond to one abstract group each.

Table 10.1.1.1. The ten two-dimensional crystallographic point
groups, arranged according to crystal system

Dashed lines separate point groups with different Laue classes within one
crystal system.

Crystal system

General
symbol

Oblique (top)
Rectangular (bottom) Square Hexagonal

n 1 2 4 3 6

nmm m 2mm 4mm 3m 6mm

� For reasons of simplicity, in this chapter the same term ‘point group’ is used for a
‘particular point group’ and a ‘type of point group’. For space groups, this
distinction is explained in Section 8.2.2. For a different use of the term ‘point group’
see Section 8.1.6.
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10.1.2. Crystallographic point groups

10.1.2.1. Description of point groups

In crystallography, point groups usually are described
(i) by means of their Hermann–Mauguin or Schoenflies symbols;
(ii) by means of their stereographic projections;
(iii) by means of the matrix representations of their symmetry

operations, frequently listed in the form of Miller indices (hkl) of
the equivalent general crystal faces;

(iv) by means of drawings of actual crystals, natural or synthetic.
Descriptions (i) through (iii) are given in this section, whereas for
crystal drawings and actual photographs reference is made to
textbooks of crystallography and mineralogy; this also applies to the
construction and the properties of the stereographic projection.

In Tables 10.1.2.1 and 10.1.2.2, the two- and three-dimensional
crystallographic point groups are listed and described. The tables
are arranged according to crystal systems and Laue classes. Within
each crystal system and Laue class, the sequence of the point groups
corresponds to that in the space-group tables of this volume: pure
rotation groups are followed by groups containing reflections,
rotoinversions and inversions. The holohedral point group is always
given last.

In Tables 10.1.2.1 and 10.1.2.2, some point groups are described
in two or three versions, in order to bring out the relations to the
corresponding space groups (cf. Section 2.2.3):

(a) The three monoclinic point groups 2, m and 2�m are given
with two settings, one with ‘unique axis b’ and one with ‘unique
axis c’.

(b) The two point groups 42m and 6m2 are described for two
orientations with respect to the crystal axes, as 42m and 4m2 and as
6m2 and 62m.

(c) The five trigonal point groups 3, 3, 32, 3m and 3m are treated
with two axial systems, ‘hexagonal axes’ and ‘rhombohedral axes’.

(d) The hexagonal-axes description of the three trigonal point
groups 32, 3m and 3m is given for two orientations, as 321 and 312,
as 3m1 and 31m, and as 3m1 and 31m; this applies also to the
two-dimensional point group 3m.

The presentation of the point groups is similar to that of the space
groups in Part 7. The headline contains the short Hermann–
Mauguin and the Schoenflies symbols. The full Hermann–Mauguin
symbol, if different, is given below the short symbol. No
Schoenflies symbols exist for two-dimensional groups. For an
explanation of the symbols see Section 2.2.4 and Chapter 12.1.

Next to the headline, a pair of stereographic projections is given.
The diagram on the left displays a general crystal or point form, that
on the right shows the ‘framework of symmetry elements’. Except
as noted below, the c axis is always normal to the plane of the figure,

the a axis points down the page and the b axis runs horizontally
from left to right. For the five trigonal point groups, the c axis is
normal to the page only for the description with ‘hexagonal axes’; if
described with ‘rhombohedral axes’, the direction [111] is normal
and the positive a axis slopes towards the observer. The
conventional coordinate systems used for the various crystal
systems are listed in Table 2.1.2.1 and illustrated in Figs. 2.2.6.1
to 2.2.6.10.

In the right-hand projection, the graphical symbols of the
symmetry elements are the same as those used in the space-group
diagrams; they are listed in Chapter 1.4. Note that the symbol of a
symmetry centre, a small circle, is also used for a face-pole in the
left-hand diagram. Mirror planes are indicated by heavy solid lines
or circles; thin lines are used for the projection circle, for symmetry
axes in the plane and for some special zones in the cubic system.

In the left-hand projection, the projection circle and the
coordinate axes are indicated by thin solid lines, as are again
some special zones in the cubic system. The dots and circles in this
projection can be interpreted in two ways.

(i) As general face poles, where they represent general crystal
faces which form a polyhedron, the ‘general crystal form’ (face
form) �hkl� of the point group (see below). In two dimensions,
edges, edge poles, edge forms and polygons take the place of faces,
face poles, crystal forms (face forms) and polyhedra in three
dimensions.

Face poles marked as dots lie above the projection plane and
represent faces which intersect the positive c axis* (positive Miller
index l), those marked as circles lie below the projection plane
(negative Miller index l). In two dimensions, edge poles always lie
on the pole circle.

(ii) As general points (centres of atoms) that span a polyhedron
or polygon, the ‘general crystallographic point form’ x, y, z. This
interpretation is of interest in the study of coordination polyhedra,
atomic groups and molecular shapes. The polyhedron or polygon of
a point form is dual to the polyhedron of the corresponding crystal
form.†

The general, special and limiting crystal forms and point forms
constitute the main part of the table for each point group. The
theoretical background is given below under Crystal and point
forms; the explanation of the listed data is to be found under
Description of crystal and point forms.

Table 10.1.1.2. The 32 three-dimensional crystallographic point groups, arranged according to crystal system (cf. Chapter 2.1)

Full Hermann–Mauguin (left) and Schoenflies symbols (right). Dashed lines separate point groups with different Laue classes within one crystal system.

General
symbol

Crystal system

Triclinic
Monoclinic (top)
Orthorhombic (bottom) Tetragonal Trigonal Hexagonal Cubic

n 1 C1 2 C2 4 C4 3 C3 6 C6 23 T

n 1 Ci m � 2 Cs 4 S4 3 C3i 6 � 3�m C3h – –

n�m 2�m C2h 4�m C4h – – 6�m C6h 2�m3 Th

n22 222 D2 422 D4 32 D3 622 D6 432 O

nmm mm2 C2v 4mm C4v 3m C3v 6mm C6v – –

n2m – – 42m D2d 32�m D3d 62m D3h 43m Td

n�m 2�m 2�m 2�m 2�m 2�m D2h 4�m 2�m 2�m D4h – – 6�m 2�m 2�m D6h 4�m 3 2�m Oh

� This does not apply to ‘rhombohedral axes’: here the positive directions of all
three axes slope upwards from the plane of the paper: cf. Fig. 2.2.6.9.
� Dual polyhedra have the same number of edges, but the numbers of faces and
vertices are interchanged; cf. textbooks of geometry.
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The last entry for each point group contains the Symmetry of
special projections, i.e. the plane point group that is obtained if the
three-dimensional point group is projected along a symmetry
direction. The special projection directions are the same as for the
space groups; they are listed in Section 2.2.14. The relations
between the axes of the three-dimensional point group and those of
its two-dimensional projections can easily be derived with the help
of the stereographic projection. No projection symmetries are listed
for the two-dimensional point groups.

Note that the symmetry of a projection along a certain direction
may be higher than the symmetry of the crystal face normal to that
direction. For example, in point group 1 all faces have face
symmetry 1, whereas projections along any direction have
symmetry 2; in point group 422, the faces (001) and �001� have
face symmetry 4, whereas the projection along [001] has symmetry
4mm.

10.1.2.2. Crystal and point forms

For a point group � a crystal form is a set of all symmetrically
equivalent faces; a point form is a set of all symmetrically
equivalent points. Crystal and point forms in point groups
correspond to ‘crystallographic orbits’ in space groups; cf. Section
8.3.2.

Two kinds of crystal and point forms with respect to � can be
distinguished. They are defined as follows:

(i) General form: A face is called ‘general’ if only the identity
operation transforms the face onto itself. Each complete set of
symmetrically equivalent ‘general faces’ is a general crystal form.
The multiplicity of a general form, i.e. the number of its faces, is the
order of �. In the stereographic projection, the poles of general
faces do not lie on symmetry elements of �.

A point is called ‘general’ if its site symmetry, i.e. the group of
symmetry operations that transforms this point onto itself, is 1. A
general point form is a complete set of symmetrically equivalent
‘general points’.

(ii) Special form: A face is called ‘special’ if it is transformed
onto itself by at least one symmetry operation of �, in addition to
the identity. Each complete set of symmetrically equivalent ‘special
faces’ is called a special crystal form. The face symmetry of a
special face is the group of symmetry operations that transforms this
face onto itself; it is a subgroup of �. The multiplicity of a special
crystal form is the multiplicity of the general form divided by the
order of the face-symmetry group. In the stereographic projection,
the poles of special faces lie on symmetry elements of �. The Miller
indices of a special crystal form obey restrictions like �hk0�,
�hhl�, �100�.

A point is called ‘special’ if its site symmetry is higher than 1. A
special point form is a complete set of symmetrically equivalent
‘special points’. The multiplicity of a special point form is the
multiplicity of the general form divided by the order of the site-
symmetry group. It is thus the same as that of the corresponding
special crystal form. The coordinates of the points of a special point
form obey restrictions, like x, y, 0; x, x, z; x, 0, 0. The point 0, 0, 0 is
not considered to be a point form.

In two dimensions, point groups 1, 2, 3, 4 and 6 and, in three
dimensions, point groups 1 and 1 have no special crystal and point
forms.

General and special crystal and point forms can be represented by
their sets of equivalent Miller indices �hkl� and point coordinates
x, y, z. Each set of these ‘triplets’ stands for infinitely many crystal
forms or point forms which are obtained by independent variation of
the values and signs of the Miller indices h, k, l or the point
coordinates x, y, z.

It should be noted that for crystal forms, owing to the well known
‘law of rational indices’, the indices h, k, l must be integers; no such

restrictions apply to the coordinates x, y, z, which can be rational or
irrational numbers.

Example
In point group 4, the general crystal form �hkl� stands for the set
of all possible tetragonal pyramids, pointing either upwards or
downwards, depending on the sign of l; similarly, the general
point form x, y, z includes all possible squares, lying either above
or below the origin, depending on the sign of z. For the limiting
cases l � 0 or z � 0, see below.

In order to survey the infinite number of possible forms of a point
group, they are classified into Wyckoff positions of crystal and point
forms, for short Wyckoff positions. This name has been chosen in
analogy to the Wyckoff positions of space groups; cf. Sections
2.2.11 and 8.3.2. In point groups, the term ‘position’ can be
visualized as the position of the face poles and points in the
stereographic projection. Each ‘Wyckoff position’ is labelled by a
Wyckoff letter.

Definition
A ‘Wyckoff position of crystal and point forms’ consists of all
those crystal forms (point forms) of a point group � for which the
face poles (points) are positioned on the same set of conjugate
symmetry elements of �; i.e. for each face (point) of one form
there is one face (point) of every other form of the same
‘Wyckoff position’ that has exactly the same face (site)
symmetry.

Each point group contains one ‘general Wyckoff position’
comprising all general crystal and point forms. In addition, up to
two ‘special Wyckoff positions’ may occur in two dimensions and
up to six in three dimensions. They are characterized by the
different sets of conjugate face and site symmetries and correspond
to the seven positions of a pole in the interior, on the three edges,
and at the three vertices of the so-called ‘characteristic triangle’ of
the stereographic projection.

Examples
(1) All tetragonal pyramids �hkl� and tetragonal prisms �hk0� in

point group 4 have face symmetry 1 and belong to the same
general ‘Wyckoff position’ 4b, with Wyckoff letter b.

(2) All tetragonal pyramids and tetragonal prisms in point group
4mm belong to two special ‘Wyckoff positions’, depending on
the orientation of their face-symmetry groups m with respect to
the crystal axes: For the ‘oriented face symmetry’ .m., the forms
�h0l� and �100� belong to Wyckoff position 4c; for the oriented
face symmetry ..m, the forms �hhl� and �110� belong to
Wyckoff position 4b. The face symmetries .m. and ..m are not
conjugate in point group 4mm. For the analogous ‘oriented site
symmetries’ in space groups, see Section 2.2.12.

It is instructive to subdivide the crystal forms (point forms) of
one Wyckoff position further, into characteristic and nonchar-
acteristic forms. For this, one has to consider two symmetries that
are connected with each crystal (point) form:

(i) the point group � by which a form is generated (generating
point group), i.e. the point group in which it occurs;

(ii) the full symmetry (inherent symmetry) of a form (considered
as a polyhedron by itself), here called eigensymmetry 	. The
eigensymmetry point group 	 is either the generating point group
itself or a supergroup of it.

Examples
(1) Each tetragonal pyramid �hkl� �l 
� 0� of Wyckoff position 4b

in point group 4 has generating symmetry 4 and eigensymmetry
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4mm; each tetragonal prism �hk0� of the same Wyckoff
position has generating symmetry 4 again, but eigensymmetry
4�mmm.

(2) A cube �100� may have generating symmetry 23, m3, 432, 43m
or m3m, but its eigensymmetry is always m3m.

The eigensymmetries and the generating symmetries of the 47
crystal forms (point forms) are listed in Table 10.1.2.3. With the
help of this table, one can find the various point groups in which a
given crystal form (point form) occurs, as well as the face (site)
symmetries that it exhibits in these point groups; for experimental
methods see Sections 10.2.2 and 10.2.3.

With the help of the two groups � and 	, each crystal or point
form occurring in a particular point group can be assigned to one of
the following two categories:

(i) characteristic form, if eigensymmetry 	 and generating
symmetry � are the same;

(ii) noncharacteristic form, if 	 is a proper supergroup of �.
The importance of this classification will be apparent from the

following examples.

Examples
(1) A pedion and a pinacoid are noncharacteristic forms in all

crystallographic point groups in which they occur:
(2) all other crystal or point forms occur as characteristic forms in

their eigensymmetry group 	;
(3) a tetragonal pyramid is noncharacteristic in point group 4 and

characteristic in 4mm;
(4) a hexagonal prism can occur in nine point groups (12 Wyckoff

positions) as a noncharacteristic form; in 6�mmm, it occurs in
two Wyckoff positions as a characteristic form.

The general forms of the 13 point groups with no, or only one,
symmetry direction (‘monoaxial groups’) 1, 2, 3, 4, 6, 1, m, 3, 4, 6 �
3�m, 2�m, 4�m, 6�m are always noncharacteristic, i.e. their eigen-
symmetries are enhanced in comparison with the generating point
groups. The general positions of the other 19 point groups always
contain characteristic crystal forms that may be used to determine
the point group of a crystal uniquely (cf. Section 10.2.2).*

So far, we have considered the occurrence of one crystal or point
form in different point groups and different Wyckoff positions. We
now turn to the occurrence of different kinds of crystal or point
forms in one and the same Wyckoff position of a particular point
group.

In a Wyckoff position, crystal forms (point forms) of different
eigensymmetries may occur; the crystal forms (point forms) with
the lowest eigensymmetry (which is always well defined) are called
basic forms (German: Grundformen) of that Wyckoff position. The
crystal and point forms of higher eigensymmetry are called limiting
forms (German: Grenzformen) (cf. Table 10.1.2.3). These forms are
always noncharacteristic.

Limiting forms† occur for certain restricted values of the Miller
indices or point coordinates. They always have the same multi-
plicity and oriented face (site) symmetry as the corresponding basic
forms because they belong to the same Wyckoff position. The

enhanced eigensymmetry of a limiting form may or may not be
accompanied by a change in the topology‡ of its polyhedra,
compared with that of a basic form. In every case, however, the
name of a limiting form is different from that of a basic form.

The face poles (or points) of a limiting form lie on symmetry
elements of a supergroup of the point group that are not symmetry
elements of the point group itself. There may be several such
supergroups.

Examples
(1) In point group 4, the (noncharacteristic) crystal forms
�hkl� �l 
� 0� (tetragonal pyramids) of eigensymmetry 4mm
are basic forms of the general Wyckoff position 4b, whereas the
forms �hk0� (tetragonal prisms) of higher eigensymmetry
4�mmm are ‘limiting general forms’. The face poles of forms
�hk0� lie on the horizontal mirror plane of the supergroup 4�m.

(2) In point group 4mm, the (characteristic) special crystal forms
�h0l� with eigensymmetry 4mm are ‘basic forms’ of the special
Wyckoff position 4c, whereas �100� with eigensymmetry
4�mmm is a ‘limiting special form’. The face poles of �100�
are located on the intersections of the vertical mirror planes of
the point group 4mm with the horizontal mirror plane of the
supergroup 4�mmm, i.e. on twofold axes of 4�mmm.

Whereas basic and limiting forms belonging to one ‘Wyckoff
position’ are always clearly distinguished, closer inspection shows
that a Wyckoff position may contain different ‘types’ of limiting
forms. We need, therefore, a further criterion to classify the limiting
forms of one Wyckoff position into types: A type of limiting form of
a Wyckoff position consists of all those limiting forms for which the
face poles (points) are located on the same set of additional
conjugate symmetry elements of the holohedral point group (for the
trigonal point groups, the hexagonal holohedry 6�mmm has to be
taken). Different types of limiting forms may have the same
eigensymmetry and the same topology, as shown by the examples
below. The occurrence of two topologically different polyhedra as
two ‘realizations’ of one type of limiting form in point groups 23,
m3 and 432 is explained below in Section 10.1.2.4, Notes on crystal
and point forms, item (viii).

Examples
(1) In point group 32, the limiting general crystal forms are of four

types:
(i) ditrigonal prisms, eigensymmetry 62m (face poles on

horizontal mirror plane of holohedry 6�mmm);
(ii) trigonal dipyramids, eigensymmetry 62m (face poles on

one kind of vertical mirror plane);
(iii) rhombohedra, eigensymmetry 3m (face poles on second

kind of vertical mirror plane);
(iv) hexagonal prisms, eigensymmetry 6�mmm (face poles on

horizontal twofold axes).
Types (i) and (ii) have the same eigensymmetry but different

topologies; types (i) and (iv) have the same topology but
different eigensymmetries; type (iii) differs from the other three
types in both eigensymmetry and topology.

(2) In point group 222, the face poles of the three types of general
limiting forms, rhombic prisms, are located on the three (non-
equivalent) symmetry planes of the holohedry mmm. Geome-
trically, the axes of the prisms are directed along the three non-
equivalent orthorhombic symmetry directions. The three types

� For a survey of these relations, as well as of the ‘limiting forms’, it is helpful to
consider the (seven) normalizers of the crystallographic point groups in the group of
all rotations and reflections (orthogonal group, sphere group); normalizers of the
crystallographic and noncrystallographic point groups are listed in Tables 15.4.1.1
and 15.4.1.2.
� The treatment of ‘limiting forms’ in the literature is quite ambiguous. In some
textbooks, limiting forms are omitted or treated as special forms in their own right:
other authors define only limiting general forms and consider limiting special forms
as if they were new special forms. For additional reading, see P. Niggli (1941, pp.
80–98).

� The topology of a polyhedron is determined by the numbers of its vertices, edges
and faces, by the number of vertices of each face and by the number of faces
meeting in each vertex.
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of limiting forms have the same eigensymmetry and the same
topology but different orientations.

Similar cases occur in point groups 422 and 622 (cf. Table
10.1.2.3, footnote *).

Not considered in this volume are limiting forms of another kind,
namely those that require either special metrical conditions for the
axial ratios or irrational indices or coordinates (which always can be
closely approximated by rational values). For instance, a rhombic
disphenoid can, for special axial ratios, appear as a tetragonal or
even as a cubic tetrahedron; similarly, a rhombohedron can
degenerate to a cube. For special irrational indices, a ditetragonal
prism changes to a (noncrystallographic) octagonal prism, a
dihexagonal pyramid to a dodecagonal pyramid or a crystal-
lographic pentagon-dodecahedron to a regular pentagon-dodecahe-
dron. These kinds of limiting forms are listed by A. Niggli (1963).

In conclusion, each general or special Wyckoff position always
contains one set of basic crystal (point) forms. In addition, it may
contain one or more sets of limiting forms of different types. As a
rule,† each type comprises polyhedra of the same eigensymmetry
and topology and, hence, of the same name, for instance
‘ditetragonal pyramid’. The name of the basic general forms is
often used to designate the corresponding crystal class, for instance
‘ditetragonal-pyramidal class’; some of these names are listed in
Table 10.1.2.4.

10.1.2.3. Description of crystal and point forms

The main part of each point-group table describes the general and
special crystal and point forms of that point group, in a manner
analogous to the positions in a space group. The general Wyckoff
position is given at the top, followed downwards by the special
Wyckoff positions with decreasing multiplicity. Within each
Wyckoff position, the first block refers to the basic forms, the
subsequent blocks list the various types of limiting form, if any.

The columns, from left to right, contain the following data
(further details are to be found below in Section 10.1.2.4, Notes on
crystal and point forms):

Column 1: Multiplicity of the ‘Wyckoff position’, i.e. the number
of equivalent faces and points of a crystal or point form.

Column 2: Wyckoff letter. Each general or special ‘Wyckoff
position’ is designated by a ‘Wyckoff letter’, analogous to the
Wyckoff letter of a position in a space group (cf. Section 2.2.11).

Column 3: Face symmetry or site symmetry, given in the form of
an ‘oriented point-group symbol’, analogous to the oriented site-
symmetry symbols of space groups (cf. Section 2.2.12). The face
symmetry is also the symmetry of etch pits, striations and other face
markings. For the two-dimensional point groups, this column
contains the edge symmetry, which can be either 1 or m.

Column 4: Name of crystal form. If more than one name is in
common use, several are listed. The names of the limiting forms are
also given. The crystal forms, their names, eigensymmetries and
occurrence in the point groups are summarized in Table 10.1.2.3,
which may be useful for determinative purposes, as explained in
Sections 10.2.2 and 10.2.3. There are 47 different types of crystal
form. Frequently, 48 are quoted because ‘sphenoid’ and ‘dome’ are
considered as two different forms. It is customary, however, to
regard them as the same form, with the name ‘dihedron’.

Name of point form (printed in italics). There exists no general
convention on the names of the point forms. Here, only one name is
given, which does not always agree with that of other authors. The
names of the point forms are also contained in Table 10.1.2.3. Note

that the same point form, ‘line segment’, corresponds to both
sphenoid and dome. The letter in parentheses after each name of a
point form is explained below.

Column 5: Miller indices (hkl) for the symmetrically equivalent
faces (edges) of a crystal form. In the trigonal and hexagonal crystal
systems, when referring to hexagonal axes, Bravais–Miller indices
(hkil) are used, with h� k � i � 0.

Coordinates x, y, z for the symmetrically equivalent points of a
point form are not listed explicitly because they can be obtained
from data in this volume as follows: after the name of the point
form, a letter is given in parentheses. This is the Wyckoff letter of
the corresponding position in the symmorphic P space group that
belongs to the point group under consideration. The coordinate
triplets of this (general or special) position apply to the point form
of the point group.

The triplets of Miller indices (hkl) and point coordinates x, y, z
are arranged in such a way as to show analogous sequences; they are
both based on the same set of generators, as described in Sections
2.2.10 and 8.3.5. For all point groups, except those referred to a
hexagonal coordinate system, the correspondence between the (hkl)
and the x, y, z triplets is immediately obvious.‡

The sets of symmetrically equivalent crystal faces also represent
the sets of equivalent reciprocal-lattice points, as well as the sets of
equivalent X-ray (neutron) reflections.

Examples
(1) In point group 4, the general crystal form 4b is listed as
�hkl� �hkl� �khl� �khl�: the corresponding general position 4h
of the symmorphic space group P4 reads x, y, z; x, y, z; y, x, z;
y, x, z.

(2) In point group 3, the general crystal form 3b is listed as (hkil)
(ihkl) (kihl) with i � ��h� k�; the corresponding general
position 3d of the symmorphic space group P3 reads x, y, z;
y, x� y, z; �x� y, x, z.

(3) The Miller indices of the cubic point groups are arranged in one,
two or four blocks of �3 4� entries. The first block (upper left)
belongs to point group 23. The second block (upper right)
belongs to the diagonal twofold axes in 432 and m3m or to the
diagonal mirror plane in 43m. In point groups m3 and m3m, the
lower one or two blocks are derived from the upper blocks by
application of the inversion.

10.1.2.4. Notes on crystal and point forms

(i) As mentioned in Section 10.1.2.2, each set of Miller indices of
a given point group represents infinitely many face forms with the
same name. Exceptions occur for the following cases.

Some special crystal forms occur with only one representative.
Examples are the pinacoid �001�, the hexagonal prism �1010� and
the cube �100�. The Miller indices of these forms consist of fixed
numbers and signs and contain no variables.

In a few noncentrosymmetric point groups, a special crystal form
is realized by two representatives: they are related by a centre of
symmetry that is not part of the point-group symmetry. These cases
are

(a) the two pedions (001) and �001�;

� For the exceptions in the cubic crystal system cf. Section 10.1.2.4, Notes on
crystal and point forms, item (viii)

� The matrices of corresponding triplets ��h�k�l� and �x,�y,�z, i.e. of triplets generated by
the same symmetry operation from (hkl) and x, y, z, are inverse to each other,
provided the x, y, z and �x,�y,�z are regarded as columns and the (hkl) and ��h�k�l� as
rows: this is due to the contravariant and covariant nature of the point coordinates
and Miller indices, respectively. Note that for orthogonal matrices the inverse
matrix equals the transposed matrix; in crystallography, this applies to all coordinate
systems (including the rhombohedral one), except for the hexagonal system. The
matrices for the symmetry operations occurring in the crystallographic point groups
are listed in Tables 11.2.2.1 and 11.2.2.2.
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(b) the two trigonal prisms �1010� and �1010�; similarly for two
dimensions;

(c) the two trigonal prisms �1120� and �1120�; similarly for two
dimensions;

(d) the positive and negative tetrahedra �111� and �111�.
In the point-group tables, both representatives of these forms are
listed, separated by ‘or’, for instance ‘(001) or �001�’.

(ii) In crystallography, the terms tetragonal, trigonal, hexagonal,
as well as tetragon, trigon and hexagon, imply that the cross sections
of the corresponding polyhedra, or the polygons, are regular
tetragons (squares), trigons or hexagons. Similarly, ditetragonal,
ditrigonal, dihexagonal, as well as ditetragon, ditrigon and
dihexagon, refer to semi-regular cross sections or polygons.

(iii) Crystal forms can be ‘open’ or ‘closed’. A crystal form is
‘closed’ if its faces form a closed polyhedron; the minimum number
of faces for a closed form is 4. Closed forms are disphenoids,
dipyramids, rhombohedra, trapezohedra, scalenohedra and all cubic
forms; open forms are pedions, pinacoids, sphenoids (domes),
pyramids and prisms.

A point form is always closed. It should be noted, however, that a
point form dual to a closed face form is a three-dimensional
polyhedron, whereas the dual of an open face form is a two- or one-
dimensional polygon, which, in general, is located ‘off the origin’
but may be centred at the origin (here called ‘through the origin’).

(iv) Crystal forms are well known; they are described and
illustrated in many textbooks. Crystal forms are ‘isohedral’
polyhedra that have all faces equivalent but may have more than
one kind of vertex; they include regular polyhedra. The in-sphere of
the polyhedron touches all the faces.

Crystallographic point forms are less known; they are described
in a few places only, notably by A. Niggli (1963), by Fischer et al.
(1973), and by Burzlaff & Zimmermann (1977). The latter
publication contains drawings of the polyhedra of all point forms.
Point forms are ‘isogonal’ polyhedra (polygons) that have all
vertices equivalent but may have more than one kind of face;*
again, they include regular polyhedra. The circumsphere of the
polyhedron passes through all the vertices.

In most cases, the names of the point-form polyhedra can easily
be derived from the corresponding crystal forms: the duals of
n-gonal pyramids are regular n-gons off the origin, those of n-gonal
prisms are regular n-gons through the origin. The duals of
di-n-gonal pyramids and prisms are truncated (regular) n-gons,
whereas the duals of n-gonal dipyramids are n-gonal prisms.

In a few cases, however, the relations are not so evident. This
applies mainly to some cubic point forms [see item (v) below]. A
further example is the rhombohedron, whose dual is a trigonal
antiprism (in general, the duals of n-gonal streptohedra are n-gonal
antiprisms).† The duals of n-gonal trapezohedra are polyhedra
intermediate between n-gonal prisms and n-gonal antiprisms; they
are called here ‘twisted n-gonal antiprisms’. Finally, the duals of di-
n-gonal scalenohedra are n-gonal antiprisms ‘sliced off’ perpendi-
cular to the prism axis by the pinacoid �001�.‡

(v) Some cubic point forms have to be described by
‘combinations’ of ‘isohedral’ polyhedra because no common

names exist for ‘isogonal’ polyhedra. The maximal number of
polyhedra required is three. The shape of the combination that
describes the point form depends on the relative sizes of the
polyhedra involved, i.e. on the relative values of their central
distances. Moreover, in some cases even the topology of the point
form may change.

Example
‘Cube truncated by octahedron’ and ‘octahedron truncated by
cube’. Both forms have 24 vertices, 14 faces and 36 edges but the
faces of the first combination are octagons and trigons, those of
the second are hexagons and tetragons. These combinations
represent different special point forms x, x, z and 0, y, z. One form
can change into the other only via the (semi-regular) cuboctahe-
dron 0, y, y, which has 12 vertices, 14 faces and 24 edges.

The unambiguous description of the cubic point forms by
combinations of ‘isohedral’ polyhedra requires restrictions on the
relative sizes of the polyhedra of a combination. The permissible
range of the size ratios is limited on the one hand by vanishing, on
the other hand by splitting of vertices of the combination. Three
cases have to be distinguished:

(a) The relative sizes of the polyhedra of the combination can
vary independently. This occurs whenever three edges meet in one
vertex. In Table 10.1.2.2, the names of these point forms contain the
term ‘truncated’.

Examples
(1) ‘Octahedron truncated by cube’ (24 vertices, dual to

tetrahexahedron).
(2) ‘Cube truncated by two tetrahedra’ (24 vertices, dual to

hexatetrahedron), implying independent variation of the
relative sizes of the two truncating tetrahedra.

(b) The relative sizes of the polyhedra are interdependent. This
occurs for combinations of three polyhedra whenever four edges
meet in one vertex. The names of these point forms contain the
symbol ‘&’.

Example
‘Cube & two tetrahedra’ (12 vertices, dual to tetragon-tritetrahe-
dron); here the interdependence results from the requirement that
in the combination a cube edge is reduced to a vertex in which
faces of the two tetrahedra meet. The location of this vertex on the
cube edge is free. A higher symmetrical ‘limiting’ case of this
combination is the ‘cuboctahedron’, where the two tetrahedra
have the same sizes and thus form an octahedron.

(c) The relative sizes of the polyhedra are fixed. This occurs for
combinations of three polyhedra if five edges meet in one vertex.
These point forms are designated by special names (snub
tetrahedron, snub cube, irregular icosahedron), or their names
contain the symbol ‘+’.

The cuboctahedron appears here too, as a limiting form of the
snub tetrahedron (dual to pentagon-tritetrahedron) and of the
irregular icosahedron (dual to pentagon-dodecahedron) for the
special coordinates 0, y, y.

(vi) Limiting crystal forms result from general or special crystal
forms for special values of certain geometrical parameters of the
form.

Examples
(1) A pyramid degenerates into a prism if its apex angle becomes 0,

i.e. if the apex moves towards infinity.

(continued on page 795)

� Thus, the name ‘prism’ for a point form implies combination of the prism with a
pinacoid.
� A tetragonal tetrahedron is a digonal streptohedron; hence, its dual is a ‘digonal
antiprism’, which is again a tetragonal tetrahedron.
� The dual of a tetragonal �� di-digonal� scalenohedron is a ‘digonal antiprism’,
which is ‘cut off’ by the pinacoid �001�.
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Table 10.1.2.1. The ten two-dimensional crystallographic point groups

General, special and limiting edge forms and point forms (italics), oriented edge and site symmetries, and Miller indices (hk) of equivalent edges [for hexagonal
groups Bravais–Miller indices (hki) are used if referred to hexagonal axes]; for point coordinates see text.

OBLIQUE SYSTEM

1

1 a 1 Single edge (hk)

Single point (a)

2

2 a 1 Pair of parallel edges �hk� ��h�k�
Line segment through origin (e)

RECTANGULAR SYSTEM

m

2 b 1 Pair of edges �hk� ��hk�
Line segment (c)

Pair of parallel edges �10� ��10�
Line segment through origin

1 a .m. Single edge (01) or �0�1�
Single point (a)

2mm

4 c 1 Rhomb �hk� ��h�k� ��hk� �h�k�
Rectangle (i)

2 b .m. Pair of parallel edges �01� �0�1�
Line segment through origin (g)

2 a ..m Pair of parallel edges �10� ��10�
Line segment through origin (e)

SQUARE SYSTEM

4

4 a 1 Square �hk� ��h�k� ��kh� �k�h�
Square (d)

4mm

8 c 1 Ditetragon �hk� ��h�k� ��kh� �k�h�
Truncated square (g) ��hk� �h�k� �kh� ��k�h�

4 b ..m Square �11� ��1�1� ��11� �1�1�Square ( f )

4 a .m. Square �10� ��10� �01� �0�1�
Square (d)
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HEXAGONAL SYSTEM

3

3 a 1 Trigon �hki� �ihk� �kih�
Trigon (d)

3m1

6 b 1 Ditrigon �hki� �ihk� �kih�
Truncated trigon (e) ��k�h�i� ��i�k�h� ��h�i�k�
Hexagon �11�2� ��211� �1�21�
Hexagon ��1�12� �2�1�1� ��12�1�

3 a .m. Trigon �10�1� ��110� �0�11�
Trigon (d) or ��101� �1�10� �01�1�

31m

6 b 1 Ditrigon �hki� �ihk� �kih�
Truncated trigon (d) �khi� �ikh� �hik�
Hexagon �10�1� ��110� �0�11�
Hexagon �01�1� ��101� �1�10�

3 a ..m Trigon �11�2� ��211� �1�21�
Trigon (c) or ��1�12� �2�1�1� ��12�1�

6

6 a 1 Hexagon �hki� �ihk� �kih�
Hexagon (d) ��h�k�i� ��i�h�k� ��k�i�h�

6mm

12 c 1 Dihexagon �hki� �ihk� �kih�
Truncated hexagon ( f ) ��h�k�i� ��i�h�k� ��k�i�h�

��k�h�i� ��i�k�h� ��h�i�k�
�khi� �ikh� �hik�

6 b .m. Hexagon �10�1� ��110� �0�11�
Hexagon (e) ��101� �1�10� �01�1�

6 a ..m Hexagon �11�2� ��211� �1�21�
Hexagon (d) ��1�12� �2�1�1� ��12�1�

Table 10.1.2.1. The ten two-dimensional crystallographic point groups (cont.)
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Table 10.1.2.2. The 32 three-dimensional crystallographic point groups

General, special and limiting face forms and point forms (italics), oriented face and site symmetries, and Miller indices (hkl) of equivalent faces [for trigonal and
hexagonal groups Bravais–Miller indices (hkil) are used if referred to hexagonal axes]; for point coordinates see text.

TRICLINIC SYSTEM

1 C1

1 a 1 Pedion or monohedron (hkl)
Single point (a)

Symmetry of special projections

Along any direction

1

�1 Ci

2 a 1 Pinacoid or parallelohedron �hkl� ��h�k�l�
Line segment through origin (i)

Symmetry of special projections

Along any direction

2

MONOCLINIC SYSTEM

2 C2

Unique axis b Unique axis c

2 b 1 Sphenoid or dihedron �hkl� ��hk�l� �hkl� ��h�kl�
Line segment (e)

Pinacoid or parallelohedron �h0l� ��h0�l� �hk0� ��h�k0�
Line segment through origin

1 a 2 Pedion or monohedron �010� or �0�10� �001� or �00�1�
Single point (a)

Symmetry of special projections
Along [100] Along [010] Along [001]

Unique axis b m 2 m
c m m 2

m Cs

Unique axis b Unique axis c

2 b 1 Dome or dihedron �hkl� �h�kl� �hkl� �hk�l�
Line segment (c)

Pinacoid or parallelohedron �010� �0�10� �001� �00�1�
Line segment through origin

1 a m Pedion or monohedron (h0l) (hk0)
Single point (a)

Symmetry of special projections
Along [100] Along [010] Along [001]

Unique axis b m 1 m
c m m 1
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2�m C2h

Unique axis b Unique axis c

4 c 1 Rhombic prism �hkl� ��hk�l� ��h�k�l� �h�kl� �hkl� ��h�kl� ��h�k�l� �hk�l�
Rectangle through origin (o)

2 b m Pinacoid or parallelohedron �h0l� ��h0�l� �hk0� ��h�k0�
Line segment through origin (m)

2 a 2 Pinacoid or parallelohedron �010� �0�10� �001� �00�1�
Line segment through origin (i)

Symmetry of special projections
Along �100� Along �010� Along �001�

Unique axis b 2mm 2 2mm
c 2mm 2mm 2

ORTHORHOMBIC SYSTEM

222 D2

4 d 1 Rhombic disphenoid or rhombic tetrahedron �hkl� ��h�kl� ��hk�l� �h�k�l�
Rhombic tetrahedron (u)

Rhombic prism �hk0� ��h�k0� ��hk0� �h�k0�
Rectangle through origin

Rhombic prism �h0l� ��h0l� ��h0�l� �h0�l�
Rectangle through origin

Rhombic prism �0kl� �0�kl� �0k�l� �0�k�l�
Rectangle through origin

2 c ..2 Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (q)

2 b .2. Pinacoid or parallelohedron �010� �0�10�
Line segment through origin (m)

2 a 2.. Pinacoid or parallelohedron �100� ��100�
Line segment through origin (i)

Symmetry of special projections
Along �100� Along �010� Along �001�

2mm 2mm 2mm

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)

MONOCLINIC SYSTEM (cont.)
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mm2 C2v

4 d 1 Rhombic pyramid �hkl� ��h�kl� �h�kl� ��hkl�
Rectangle (i)

Rhombic prism �hk0� ��h�k0� �h�k0� ��hk0�
Rectangle through origin

2 c m.. Dome or dihedron �0kl� �0�kl�
Line segment (g)

Pinacoid or parallelohedron �010� �0�10�
Line segment through origin

2 b .m. Dome or dihedron �h0l� ��h0l�
Line segment (e)

Pinacoid or parallelohedron �100� ��100�
Line segment through origin

1 a mm2 Pedion or monohedron �001� or �00�1�
Single point (a)

Symmetry of special projections
Along �100� Along �010� Along �001�

m m 2mm

m m m
2
m

2
m

2
m

D2h

8 g 1 Rhombic dipyramid �hkl� ��h�kl� ��hk�l� �h�k�l�
Quad (�) ��h�k�l� �hk�l� �h�kl� ��hkl�

4 f ..m Rhombic prism �hk0� ��h�k0� ��hk0� �h�k0�
Rectangle through origin (y)

4 e .m. Rhombic prism �h0l� ��h0l� ��h0�l� �h0�l�
Rectangle through origin (w)

4 d m.. Rhombic prism �0kl� �0�kl� �0k�l� �0�k�l�
Rectangle through origin (u)

2 c mm2 Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (q)

2 b m2m Pinacoid or parallelohedron �010� �0�10�
Line segment through origin (m)

2 a 2mm Pinacoid or parallelohedron �100� ��100�
Line segment through origin (i)

Symmetry of special projections
Along �100� Along �010� Along �001�

2mm 2mm 2mm

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)

ORTHORHOMBIC SYSTEM (cont.)
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TETRAGONAL SYSTEM

4 C4

4 b 1 Tetragonal pyramid �hkl� ��h�kl� ��khl� �k�hl�
Square (d)

Tetragonal prism �hk0� ��h�k0� ��kh0� �k�h0�
Square through origin

1 a 4.. Pedion or monohedron �001� or �00�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �110�

4 m m

�4 S4

4 b 1 Tetragonal disphenoid or tetragonal tetrahedron �hkl� ��h�kl� �k�h�l� ��kh�l�
Tetragonal tetrahedron (h)

Tetragonal prism �hk0� ��h�k0� �k�h0� ��kh0�
Square through origin

2 a 2.. Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (e)

Symmetry of special projections
Along �001� Along �100� Along �110�

4 m m

4�m C4h

8 c 1 Tetragonal dipyramid �hkl� ��h�kl� ��khl� �k�hl�
Tetragonal prism (l) ��h�k�l� �hk�l� �k�h�l� ��kh�l�

4 b m.. Tetragonal prism �hk0� ��h�k0� ��kh0� �k�h0�
Square through origin (j)

2 a 4.. Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �110�

4 2mm 2mm

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)

773

10.1. CRYSTALLOGRAPHIC AND NONCRYSTALLOGRAPHIC POINT GROUPS



422 D4

8 d 1 Tetragonal trapezohedron �hkl� ��h�kl� ��khl� �k�hl�
Twisted tetragonal antiprism (p) ��hk�l� �h�k�l� �kh�l� ��k�h�l�
Ditetragonal prism �hk0� ��h�k0� ��kh0� �k�h0�
Truncated square through origin ��hk0� �h�k0� �kh0� ��k�h0�
Tetragonal dipyramid �h0l� ��h0l� �0hl� �0�hl�
Tetragonal prism ��h0�l� �h0�l� �0h�l� �0�h�l�
Tetragonal dipyramid �hhl� ��h�hl� ��hhl� �h�hl�
Tetragonal prism ��hh�l� �h�h�l� �hh�l� ��h�h�l�

4 c .2. Tetragonal prism �100� ��100� �010� �0�10�
Square through origin (l)

4 b ..2 Tetragonal prism �110� ��1�10� ��110� �1�10�
Square through origin ( j )

2 a 4.. Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �110�

4mm 2mm 2mm

4mm C4v

8 d 1 Ditetragonal pyramid �hkl� ��h�kl� ��khl� �k�hl�
Truncated square (g) �h�kl� ��hkl� ��k�hl� �khl�
Ditetragonal prism �hk0� ��h�k0� ��kh0� �k�h0�
Truncated square through origin �h�k0� ��hk0� ��k�h0� �kh0�

4 c .m. Tetragonal pyramid �h0l� ��h0l� �0hl� �0�hl�
Square (e)

Tetragonal prism �100� ��100� �010� �0�10�
Square through origin

4 b ..m Tetragonal pyramid �hhl� ��h�hl� ��hhl� �h�hl�
Square (d)

Tetragonal prism �110� ��1�10� ��110� �1�10�
Square through origin

1 a 4mm Pedion or monohedron �001� or �00�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �110�

4mm m m

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)

TETRAGONAL SYSTEM (cont.)
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�42m D2d

8 d 1 Tetragonal scalenohedron �hkl� ��h�kl� �k�h�l� ��kh�l�
Tetragonal tetrahedron cut off by pinacoid (o) ��hk�l� �h�k�l� ��k�hl� �khl�
Ditetragonal prism �hk0� ��h�k0� �k�h0� ��kh0�
Truncated square through origin ��hk0� �h�k0� ��k�h0� �kh0�
Tetragonal dipyramid �h0l� ��h0l� �0�h�l� �0h�l�
Tetragonal prism ��h0�l� �h0�l� �0�hl� �0hl�

4 c ..m Tetragonal disphenoid or tetragonal tetrahedron �hhl� ��h�hl� �h�h�l� ��hh�l�
Tetragonal tetrahedron (n)

Tetragonal prism �110� ��1�10� �1�10� ��110�
Square through origin

4 b .2. Tetragonal prism �100� ��100� �0�10� �010�
Square through origin (i)

2 a 2.mm Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �110�

4mm 2mm m

�4m2 D2d

8 d 1 Tetragonal scalenohedron �hkl� ��h�kl� �k�h�l� ��kh�l�
Tetragonal tetrahedron cut off by pinacoid (l) �h�kl� ��hkl� �kh�l� ��k�h�l�
Ditetragonal prism �hk0� ��h�k0� �k�h0� ��kh0�
Truncated square through origin �h�k0� ��hk0� �kh0� ��k�h0�
Tetragonal dipyramid �hhl� ��h�hl� �h�h�l� ��hh�l�
Tetragonal prism �h�hl� ��hhl� �hh�l� ��h�h�l�

4 c .m. Tetragonal disphenoid or tetragonal tetrahedron �h0l� ��h0l� �0�h�l� �0h�l�
Tetragonal tetrahedron ( j )

Tetragonal prism �100� ��100� �0�10� �010�
Square through origin

4 b ..2 Tetragonal prism �110� ��1�10� �1�10� ��110�
Square through origin (h)

2 a 2mm. Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (e)

Symmetry of special projections
Along �001� Along �100� Along �110�

4mm m 2mm
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4�mmm
4
m

2
m

2
m

D4h

16 g 1 Ditetragonal dipyramid �hkl� ��h�kl� ��khl� �k�hl�
Edge-truncated tetragonal prism (u) ��hk�l� �h�k�l� �kh�l� ��k�h�l�

��h�k�l� �hk�l� �k�h�l� ��kh�l�
�h�kl� ��hkl� ��k�hl� �khl�

8 f .m. Tetragonal dipyramid �h0l� ��h0l� �0hl� �0�hl�
Tetragonal prism (s) ��h0�l� �h0�l� �0h�l� �0�h�l�

8 e ..m Tetragonal dipyramid �hhl� ��h�hl� ��hhl� �h�hl�
Tetragonal prism (r) ��hh�l� �h�h�l� �hh�l� ��h�h�l�

8 d m.. Ditetragonal prism �hk0� ��h�k0� ��kh0� �k�h0�
Truncated square through origin (p) ��hk0� �h�k0� �kh0� ��k�h0�

4 c m2m. Tetragonal prism �100� ��100� �010� �0�10�
Square through origin (l)

4 b m.m2 Tetragonal prism �110� ��1�10� ��110� �1�10�
Square through origin ( j )

2 a 4mm Pinacoid or parallelohedron �001� �00�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �110�

4mm 2mm 2mm

TRIGONAL SYSTEM

3 C3
HEXAGONAL AXES

3 b 1 Trigonal pyramid �hkil� �ihkl� �kihl�
Trigon (d)

Trigonal prism �hki0� �ihk0� �kih0�
Trigon through origin

1 a 3.. Pedion or monohedron �0001� or �000�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �210�

3 1 1

3 C3
RHOMBOHEDRAL AXES

3 b 1 Trigonal pyramid �hkl� �lhk� �klh�
Trigon (b)

Trigonal prism �hk�h�k�� ��h�k�hk� �k�h�k�h�
Trigon through origin

1 a 3. Pedion or monohedron �111� or ��1�1�1�
Single point (a)

Symmetry of special projections
Along �111� Along �1�10� Along �2�1�1�

3 1 1

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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�3 C3i
HEXAGONAL AXES

6 b 1 Rhombohedron �hkil� �ihkl� �kihl�
Trigonal antiprism (g) ��h�k�i�l� ��i�h�k�l� ��k�i�h�l�
Hexagonal prism �hki0� �ihk0� �kih0�
Hexagon through origin ��h�k�i0� ��i�h�k0� ��k�i�h0�

2 a 3.. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (c)

Symmetry of special projections
Along �001� Along �100� Along �210�

6 2 2

�3 C3i
RHOMBOHEDRAL AXES

6 b 1 Rhombohedron �hkl� �lhk� �klh�
Trigonal antiprism ( f ) ��h�k�l� ��l�h�k� ��k�l�h�
Hexagonal prism �hk�h�k�� ��h�k�hk� �k�h�k�h�
Hexagon through origin ��h�k�h�k�� ��h�k��h�k� ��k�h�k��h�

2 a 3. Pinacoid or parallelohedron �111� ��1�1�1�
Line segment through origin (c)

Symmetry of special projections
Along �111� Along �1�10� Along �2�1�1�

6 2 2

321 D3
HEXAGONAL AXES

6 c 1 Trigonal trapezohedron �hkil� �ihkl� �kihl�
Twisted trigonal antiprism (g) �khi�l� �hik�l� �ikh�l�
Ditrigonal prism �hki0� �ihk0� �kih0�
Truncated trigon through origin �khi0� �hik0� �ikh0�
Trigonal dipyramid �hh2hl� �2hhhl� �h2hhl�
Trigonal prism �hh2h�l� �h2hh�l� �2hhh�l�
Rhombohedron �h0�hl� ��hh0l� �0�hhl�
Trigonal antiprism �0h�h�l� �h�h0�l� ��h0h�l�
Hexagonal prism �10�10� ��1100� �0�110�
Hexagon through origin �01�10� �1�100� ��1010�

3 b .2. Trigonal prism �11�20� ��2110� �1�210�
Trigon through origin (e) or ��1�120� �2�1�10� ��12�10�

2 a 3.. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (c)

Symmetry of special projections
Along �001� Along �100� Along �210�

3m 2 1

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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312 D3
HEXAGONAL AXES

6 c 1 Trigonal trapezohedron �hkil� �ihkl� �kihl�
Twisted trigonal antiprism (l ) ��k�h�i�l� ��h�i�k�l� ��i�k�h�l�
Ditrigonal prism �hki0� �ihk0� �kih0�
Truncated trigon through origin ��k�h�i0� ��h�i�k0� ��i�k�h0�
Trigonal dipyramid �h0�hl� ��hh0l� �0�hhl�
Trigonal prism �0�hh�l� ��hh0�l� �h0�h�l�
Rhombohedron �hh2hl� �2hhhl� �h2hhl�
Trigonal antiprism ��h�h2h�l� ��h2h�h�l� �2h�h�h�l�
Hexagonal prism �11�20� ��2110� �1�210�
Hexagon through origin ��1�120� ��12�10� �2�1�10�

3 b ..2 Trigonal prism �10�10� ��1100� �0�110�
Trigon through origin ( j ) or ��1010� �1�100� �01�10�

2 a 3.. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �210�

3m 1 2

32 D3
RHOMBOHEDRAL AXES

6 c 1 Trigonal trapezohedron �hkl� �lhk� �klh�
Twisted trigonal antiprism ( f ) ��k�h�l� ��h�l�k� ��l�k�h�
Ditrigonal prism �hk�h�k�� ��h�k�hk� �k�h�k�h�
Truncated trigon through origin ��k�h�h�k�� ��h�h�k��k� ��h�k��k�h�
Trigonal dipyramid �hk�2k�h�� ��2k�h�hk� �k�2k�h�h�
Trigonal prism ��k�h�h�2k�� ��h�h�2k��k� ��h�2k��k�h�
Rhombohedron �hhl� �lhh� �hlh�
Trigonal antiprism ��h�h�l� ��h�l�h� ��l�h�h�
Hexagonal prism �11�2� ��211� �1�21�
Hexagon through origin ��1�12� ��12�1� �2�1�1�

3 b .2 Trigonal prism �01�1� ��101� �1�10�
Trigon through origin (d) or �0�11� �10�1� ��110�

2 a 3. Pinacoid or parallelohedron �111� ��1�1�1�
Line segment through origin (c)

Symmetry of special projections
Along �111� Along �1�10� Along �2�1�1�

3m 2 1

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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3m1 C3v
HEXAGONAL AXES

6 c 1 Ditrigonal pyramid �hkil� �ihkl� �kihl�
Truncated trigon (e) ��k�h�il� ��h�i�kl� ��i�k�hl�
Ditrigonal prism �hki0� �ihk0� �kih0�
Truncated trigon through origin ��k�h�i0� ��h�i�k0� ��i�k�h0�
Hexagonal pyramid �hh2hl� �2hhhl� �h2hhl�
Hexagon ��h�h2hl� ��h2h�hl� �2h�h�hl�
Hexagonal prism �11�20� ��2110� �1�210�
Hexagon through origin ��1�120� ��12�10� �2�1�10�

3 b .m. Trigonal pyramid �h0�hl� ��hh0l� �0�hhl�
Trigon (d)

Trigonal prism �10�10� ��1100� �0�110�
Trigon through origin or ��1010� �1�100� �01�10�

1 a 3m. Pedion or monohedron �0001� or �000�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �210�

3m 1 m

31m C3v
HEXAGONAL AXES

6 c 1 Ditrigonal pyramid �hkil� �ihkl� �kihl�
Truncated trigon (d) �khil� �hikl� �ikhl�
Ditrigonal prism �hki0� �ihk0� �kih0�
Truncated trigon through origin �khi0� �hik0� �ikh0�
Hexagonal pyramid �h0�hl� ��hh0l� �0�hhl�
Hexagon �0h�hl� �h�h0l� ��h0hl�
Hexagonal prism �10�10� ��1100� �0�110�
Hexagon through origin �01�10� �1�100� ��1010�

3 b ..m Trigonal pyramid �hh2hl� �2hhhl� �h2hhl�
Trigon (c)

Trigonal prism �11�20� ��2110� �1�210�
Trigon through origin or ��1�120� �2�1�10� ��12�10�

1 a 3.m Pedion or monohedron �0001� or �000�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �210�

3m m 1
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m C v

c �hkl� �lhk� �klh�
Truncated trigon c �khl� �hlk� �lkh�

�hk�h�k�� ��h�k�hk� �k�h�k�h�
Truncated trigon through origin �kh�h�k�� �h�h�k�k� ��h�k�kh�

�hk� k�h�� �� k�h�hk� �k� k�h�h�
Hexagon �kh� k�h�� �h� k�h�k� �� k�h�kh�

� �� �� � � � �
Hexagon through origin � �� � � � �� �

b m �hhl� �lhh� �hlh�
Trigon b

� �� �� � � � �
Trigon through origin ��� � � ��� �� ��

a m � � �����
Single point a

� � � � � � ���
m m

�m

�
m

D d

d

Trigonal antiprism sliced off by
pinacoid �j�

�hkil� �ihkl� �kihl�
�khi�l� �hik�l� �ikh�l�
��h�k�i�l� ��i�h�k�l� ��k�i�h�l�
��k�h�il� ��h�i�kl� ��i�k�hl�
�hki � �ihk � �kih �

Truncated hexagon through origin �khi � �hik � �ikh �
��h�k�i � ��i�h�k � ��k�i�h �
��k�h�i � ��h�i�k � ��i�k�h �

�hh hl� � hhhl� �h hhl�
Hexagonal prism �hh h�l� �h hh�l� � hhh�l�

��h�h h�l� � h�h�h�l� ��h h�h�l�
��h�h hl� ��h h�hl� � h�h�hl�

c .m. �h �hl� ��hh l� � �hhl�
Trigonal antiprism i � h�h�l� �h�h �l� ��h h�l�

� � � �� � � � �
Hexagon through origin � � � � � � �� �

b � � � �� � � � �
Hexagon through origin g ��� � �� � � � �� �

a m � � � ��
Line segment through origin c

� � � � � �
mm mm

The 32 three-dimensional crystallographic point groups cont

cont



�31m

�31
2
m

D3d

HEXAGONAL AXES

12 d 1 Ditrigonal scalenohedron or hexagonal
scalenohedron

�hkil� �ihkl� �kihl�
��k�h�i�l� ��h�i�k�l� ��i�k�h�l�

Trigonal antiprism sliced off by pinacoid (l) ��h�k�i�l� ��i�h�k�l� ��k�i�h�l�
�khil� �hikl� �ikhl�

Dihexagonal prism �hki0� �ihk0� �kih0�
Truncated hexagon through origin ��k�h�i0� ��h�i�k0� ��i�k�h0�

��h�k�i0� ��i�h�k0� ��k�i�h0�
�khi0� �hik0� �ikh0�

Hexagonal dipyramid �h0�hl� ��hh0l� �0�hhl�
Hexagonal prism �0�hh�l� ��hh0�l� �h0�h�l�

��h0h�l� �h�h0�l� �0h�h�l�
�0h�hl� �h�h0l� ��h0hl�

6 c ..m Rhombohedron �hh2hl� �2hhhl� �h2hhl�
Trigonal antiprism (k) ��h�h2h�l� ��h2h�h�l� �2h�h�h�l�
Hexagonal prism �11�20� ��2110� �1�210�
Hexagon through origin ��1�120� ��12�10� �2�1�10�

6 b ..2 Hexagonal prism �10�10� ��1100� �0�110�
Hexagon through origin (i) ��1010� �1�100� �01�10�

2 a 3.m Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (e)

Symmetry of special projections

Along �001� Along �100� Along �210�
6mm 2mm 2
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�3m

�3
2
m

D3d

RHOMBOHEDRAL AXES

12 d 1 Ditrigonal scalenohedron or hexagonal
scalenohedron

�hkl� �lhk� �klh�
��k�h�l� ��h�l�k� ��l�k�h�

Trigonal antiprism sliced off by pinacoid (i) ��h�k�l� ��l�h�k� ��k�l�h�
�khl� �hlk� �lkh�

Dihexagonal prism �hk�h�k�� ��h�k�hk� �k�h�k�h�
Truncated hexagon through origin ��k�h�h�k�� ��h�h�k��k� ��h�k��k�h�

��h�k�h�k�� ��h�k��h�k� ��k�h�k��h�
�kh�h�k�� �h�h�k�k� ��h�k�kh�

Hexagonal dipyramid �hk�2k�h�� ��2k�h�hk� �k�2k�h�h�
Hexagonal prism ��k�h�h�2k�� ��h�h�2k��k� ��h�2k��k�h�

��h�k�h�2k�� ��h�2k��h�k� ��k�h�2k��h�
�kh�2k�h�� �h�2k�h�k� ��2k�h�kh�

6 c .m Rhombohedron �hhl� �lhh� �hlh�
Trigonal antiprism (h) ��h�h�l� ��h�l�h� ��l�h�h�
Hexagonal prism �11�2� ��211� �1�21�
Hexagon through origin ��1�12� ��12�1� �2�1�1�

6 b .2 Hexagonal prism �01�1� ��101� �1�10�
Hexagon through origin ( f ) �0�11� �10�1� ��110�

2 a 3m Pinacoid or parallelohedron �111� ��1�1�1�
Line segment through origin (c)

Symmetry of special projections

Along �111� Along �1�10� Along �2�1�1�
6mm 2 2mm

HEXAGONAL SYSTEM

6 C6

6 b 1 Hexagonal pyramid �hkil� �ihkl� �kihl� ��h�k�il� ��i�h�kl� ��k�i�hl�
Hexagon (d)

Hexagonal prism �hki0� �ihk0� �kih0� ��h�k�i0� ��i�h�k0� ��k�i�h0�
Hexagon through origin

1 a 6.. Pedion or monohedron �0001� or �000�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �210�

6 m m

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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�6 C3h

6 c 1 Trigonal dipyramid �hkil� �ihkl� �kihl�
Trigonal prism (l) �hki�l� �ihk�l� �kih�l�

3 b m.. Trigonal prism �hki0� �ihk0� �kih0�
Trigon through origin (j)

2 a 3.. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �210�

3 m m

6�m C6h

12 c 1 Hexagonal dipyramid �hkil� �ihkl� �kihl� ��h�k�il� ��i�h�kl� ��k�i�hl�
Hexagonal prism (l) �hki�l� �ihk�l� �kih�l� ��h�k�i�l� ��i�h�k�l� ��k�i�h�l�

6 b m.. Hexagonal prism �hki0� �ihk0� �kih0� ��h�k�i0� ��i�h�k0� ��k�i�h0�
Hexagon through origin ( j )

2 a 6.. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (e)

Symmetry of special projections
Along �001� Along �100� Along �210�

6 2mm 2mm

622 D6

12 d 1 Hexagonal trapezohedron �hkil� �ihkl� �kihl� ��h�k�il� ��i�h�kl� ��k�i�hl�
Twisted hexagonal antiprism (n) �khi�l� �hik�l� �ikh�l� ��k�h�i�l� ��h�i�k�l� ��i�k�h�l�
Dihexagonal prism �hki0� �ihk0� �kih0� ��h�k�i0� ��i�h�k0� ��k�i�h0�
Truncated hexagon through origin �khi0� �hik0� �ikh0� ��k�h�i0� ��h�i�k0� ��i�k�h0�
Hexagonal dipyramid �h0�hl� ��hh0l� �0�hhl� ��h0hl� �h�h0l� �0h�hl�
Hexagonal prism �0h�h�l� �h�h0�l� ��h0h�l� �0�hh�l� ��hh0�l� �h0�h�l�
Hexagonal dipyramid �hh2hl� �2hhhl� �h2hhl� ��h�h2hl� �2h�h�hl� ��h2h�hl�
Hexagonal prism �hh2h�l� �h2hh�l� �2hhh�l� ��h�h2h�l� ��h2h�h�l� �2h�h�h�l�

6 c ..2 Hexagonal prism �10�10� ��1100� �0�110� ��1010� �1�100� �01�10�
Hexagon through origin (l)

6 b .2. Hexagonal prism �11�20� ��2110� �1�210� ��1�120� �2�1�10� ��12�10�
Hexagon through origin ( j )

2 a 6.. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (e)

Symmetry of special projections
Along �001� Along �100� Along �210�

6mm 2mm 2mm

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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6mm C6v

12 d 1 Dihexagonal pyramid �hkil� �ihkl� �kihl� ��h�k�il� ��i�h�kl� ��k�i�hl�
Truncated hexagon ( f ) �khil� �hikl� �ikhl� ��k�h�il� ��h�i�kl� ��i�k�hl�
Dihexagonal prism �hki0� �ihk0� �kih0� ��h�k�i0� ��i�h�k0� ��k�i�h0�
Truncated hexagon through origin �khi0� �hik0� �ikh0� ��k�h�i0� ��h�i�k0� ��i�k�h0�

6 c .m. Hexagonal pyramid �h0�hl� ��hh0l� �0�hhl� ��h0hl� �h�h0l� �0h�hl�
Hexagon (e)

Hexagonal prism �10�10� ��1100� �0�110� ��1010� �1�100� �01�10�
Hexagon through origin

6 b ..m Hexagonal pyramid �hh2hl� �2hhhl� �h2hhl� ��h�h2hl� �2h�h�hl� ��h2h�hl�
Hexagon (d)

Hexagonal prism �11�20� ��2110� �1�210� ��1�120� �2�1�10� ��12�10�
Hexagon through origin

1 a 6mm Pedion or monohedron �0001� or �000�1�
Single point (a)

Symmetry of special projections
Along �001� Along �100� Along �210�

6mm m m

�6m2 D3h

12 e 1 Ditrigonal dipyramid �hkil� �ihkl� �kihl�
Edge-truncated trigonal prism (o) �hki�l� �ihk�l� �kih�l�

��k�h�il� ��h�i�kl� ��i�k�hl�
��k�h�i�l� ��h�i�k�l� ��i�k�h�l�

Hexagonal dipyramid �hh2hl� �2hhhl� �h2hhl�
Hexagonal prism �hh2h�l� �2hhh�l� �h2hh�l�

��h�h2hl� ��h2h�hl� �2h�h�hl�
��h�h2h�l� ��h2h�h�l� �2h�h�h�l�

6 d m.. Ditrigonal prism �hki0� �ihk0� �kih0�
Truncated trigon through origin (l) ��k�h�i0� ��h�i�k0� ��i�k�h0�
Hexagonal prism �11�20� ��2110� �1�210�
Hexagon through origin ��1�120� ��12�10� �2�1�10�

6 c .m. Trigonal dipyramid �h0�hl� ��hh0l� �0�hhl�
Trigonal prism (n) �h0�h�l� ��hh0�l� �0�hh�l�

3 b mm2 Trigonal prism �10�10� ��1100� �0�110�
Trigon through origin ( j) or ��1010� �1�100� �01�10�

2 a 3m. Pinacoid or parallelohedron �0001� �000�1�
Line segment through origin (g)

Symmetry of special projections
Along �001� Along �100� Along �210�

3m m 2mm

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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� m D h

e �hkil� �ihkl� �kihl�
Edge-truncated trigonal prism l �hki�l� �ihk�l� �kih�l�

�khi�l� �hik�l� �ikh�l�
�khil� �hikl� �ikhl�

�h �hl� ��hh l� � �hhl�
Hexagonal prism �h �h�l� ��hh �l� � �hh�l�

� h�h�l� �h�h �l� ��h h�l�
� h�hl� �h�h l� ��h hl�

d m.. �hki � �ihk � �kih �
Truncated trigon through origin j �khi � �hik � �ikh �

� � � �� � � � �
Hexagon through origin � � � � � � �� �

c ..m �hh hl� � hhhl� �h hhl�
Trigonal prism i �hh h�l� � hhh�l� �h hh�l�

b m m � � � �� � � � �
Trigon through origin f ��� � � �� � �� � �

a m � � � ��
Line segment through origin e

� � � � � �
m mm m

�mmm

m m m

D h

g �hkil� �ihkl� �kihl� ��h�k�il� ��i�h�kl� ��k�i�hl�
Edge-truncated hexagonal prism r �khi�l� �hik�l� �ikh�l� ��k�h�i�l� ��h�i�k�l� ��i�k�h�l�

��h�k�i�l� ��i�h�k�l� ��ki�h�l� �hki�l� �ihk�l� �kih�l�
��k�h�il� ��h�i�kl� ��i�k�hl� �khil� �hikl� �ikhl�

f m.. �hki � �ihk � �kih � ��h�k�i � ��i�h�k � ��k�i�h �
Truncated hexagon through origin p �khi � �hik � �ikh � ��k�h�i � ��h�i�k � ��i�k�h �

e .m. �h �hl� ��hh l� � �hhl� ��h hl� �h�h l� � h�hl�
Hexagonal prism o � h�h�l� �h�h �l� ��h h�l� � �hh�l� ��hh �l� �h �h�l�

d ..m �hh hl� � hhhl� �h hhl� ��h�h hl� � h�h�hl� ��h h�hl�
Hexagonal prism n �hh h�l� �h hh�l� � hhh�l� ��h�h h�l� ��h h�h�l� � h�h�h�l�

c mm � � � �� � � � � �� � � � � � � �
Hexagon through origin l

b m m � � � �� � � � � ��� � � �� � �� � �
Hexagon through origin j

a mm � � � ��
Line segment through origin e

� � � � � �
mm mm mm

The 32 three-dimensional crystallographic point groups cont

cont.
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CUBIC SYSTEM

23 T

12 c 1 Pentagon-tritetrahedron or tetartoid
or tetrahedral pentagon-dodecahedron
Snub tetrahedron �� pentagon-tritetra-
hedron� two tetrahedra� � j�

�hkl� ��h�kl� ��hk�l� �h�k�l�
�lhk� �l�h�k� ��l�hk� ��lh�k�
�klh� ��kl�h� �k�l�h� ��k�lh�

Trigon-tritetrahedron
or tristetrahedron (for �h� � �l�)
Tetrahedron truncated by tetrahedron
�for �x� � �z��

Tetragon-tritetrahedron or deltohedron
or deltoid-dodecahedron (for �h� � �l�)
Cube � two tetrahedra �for �x� � �z��

�
�����������

�����������

�
�����������

�����������

�hhl� ��h�hl� ��hh�l� �h�h�l�
�lhh� �l�h�h� ��l�hh� ��lh�h�
�hlh� ��hl�h� �h�l�h� ��h�lh�

Pentagon-dodecahedron
or dihexahedron or pyritohedron
Irregular icosahedron
�� pentagon-dodecahedron � octahedron�

�0kl� �0�kl� �0k�l� �0�k�l�
�l0k� �l0�k� ��l0k� ��l0�k�
�kl0� ��kl0� �k�l0� ��k�l0�

Rhomb-dodecahedron
Cuboctahedron

�011� �0�11� �01�1� �0�1�1�
�101� �10�1� ��101� ��10�1�
�110� ��110� �1�10� ��1�10�

6 b Cube or hexahedron
Octahedron � f �

�100� ��100�
�010� �0�10�
�001� �00�1�

4 a Tetrahedron
Tetrahedron �e�

�111� ��1�11� ��11�1� �1�1�1�
or ��1�1�1� �11�1� �1�11� ��111�

Symmetry of special projections
Along �001� Along �111� Along �110�

2mm 3 m

Table 10.1.2.2. The 32 three-dimensional crystallographic point groups (cont.)
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m�

m
�

Th

d

Cube � octahedron �
pentagon dodecahedron �l�

�hkl� ��h�kl� ��hk�l� �h�k�l�
�lhk� �l�h�k� ��l�hk� ��lh�k�
�klh� ��kl�h� �k�l�h� ��k�lh�

��h�k�l� �hk�l� �h�kl� ��hkl�
��l�h�k� ��lhk� �lh�k� �l�hk�
��k�l�h� �k�lh� ��klh� �kl�h�

�h� � �l�
Cube � octahedron � rhomb
dodecahedron
�for �x� � �z��

�h� �l�
Cube truncated by octahedron
�for �x� � �z��

�
���������������

���������������

�
���������������

���������������

�hhl� ��h�hl� ��hh�l� �h�h�l�
�lhh� �l�h�h� ��l�hh� ��lh�h�
�hlh� ��hl�h� �h�l�h� ��h�lh�
��h�h�l� �hh�l� �h�hl� ��hhl�
��l�h�h� ��lhh� �lh�h� �l�hh�
��h�l�h� �h�lh� ��hlh� �hl�h�

c m..

Irregular icosahedron
�� pentagon dodecahedron � octahedron� � j�

� kl� � �kl� � k�l� � �k�l�
�l k� �l �k� ��l k� ��l �k�
�kl � ��kl � �k�l � ��k�l �

Cuboctahedron
� � � � � � �� � ���
� � � �� �� � �� ��
� � �� � � � � ��� �

b
Cube �i�

� � ��� � �� �� � ���
����� � �� � � � �� �

a mm..
Octahedron �e�

� � �� �
� � � � �
� � � ��

� � � � � �
mm mm

The 32 three-dimensional crystallographic point groups cont

cont
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O

d

Snub cube�� cube �
octahedron � pentagon
trioctahedron� �k�

�hkl� ��h�kl� ��hk�l� �h�k�l� �kh�l� ��k�h�l� �k�hl� ��khl�
�lhk� �l�h�k� ��l�hk� ��lh�k� ��lkh� ��l�k�h� �lk�h� �l�kh�
�klh� ��kl�h� �k�l�h� ��k�lh� �h�lk� ��h�l�k� ��hlk� �hl�k�

�h� � �l�
Cube � octahedron �
rhomb dodecahedron
�for �x� � �z��

�h� � �l��
Cube truncated by octahedron
�for �x� �z��

�
���������������������

���������������������

�
���������������������

���������������������

�hhl� ��h�hl� ��hh�l� �h�h�l� �hh�l� ��h�h�l� �h�hl� ��hhl�
�lhh� �l�h�h� ��l�hh� ��lh�h� ��lhh� ��l�h�h� �lh�h� �l�hh�
�hlh� ��hl�h� �h�l�h� ��h�lh� �h�lh� ��h�l�h� ��hlh� �hl�h�

Octahedron truncated by cube

� kl� � �kl� � k�l� � �k�l� �k �l� ��k �l� �k l� ��k l�
�l k� �l �k� ��l k� ��l �k� ��lk � ��l�k � �lk � �l�k �
�kl � ��kl � �k�l � ��k�l � � �lk� � �l�k� � lk� � l�k�

c
Cuboctahedron �i�

� � � � � � �� � ���
� � � �� �� � �� ��
� � �� � � � � ��� �

b
Cube �g�

� � ��� � �� �� � ���
����� � �� � � � �� �

a
Octahedron �e�

� � �� �
� � � � �
� � � ��

� � � � � �
mm m mm

The 32 three-dimensional crystallographic point groups cont

cont
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� m Td

d

Cube truncated by
two tetrahedra � j�

�hkl� ��h�kl� ��hk�l� �h�k�l� �khl� ��k�hl� �k�h�l� ��kh�l�
�lhk� �l�h�k� ��l�hk� ��lh�k� �lkh� �l�k�h� ��lk�h� ��l�kh�
�klh� ��kl�h� �k�l�h� ��klh� �hlk� ��hl�k� ��h�lk� �h�l�k�

Octahedron truncated by cube

� kl� � �kl� � k�l� � �k�l� �k l� ��k l� �k �l� ��k �l�
�l k� �l �k� ��l k� ��l �k� �lk � �l�k � ��lk � ��l�k �
�kl � ��kl � �k�l � ��k�l � � lk� � l�k� � �lk� � �l�k�

m

�h� � �l�
Tetrahedron truncated
by tetrahedron �i�
�for �x� � �z��

�h� � �l�
Cube � two tetrahedra �i�
�for �x� � �z��

�
���������������������

���������������������

�
���������������������

���������������������

�hhl� ��h�hl� ��hh�l� �h�h�l�
�lhh� �l�h�h� ��l�hh� ��lh�h�
�hlh� ��hl�h� �h�l�h� ��h�lh�

Cuboctahedron
� � ��� � �� � � � �
� � � ��� � � � � ��
� � �� �� � �� �� �

b .mm
Octahedron � f �

� � �� �
� � � � �
� � � ��

a m
Tetrahedron �e�

� � ��� � �� �� � ���
����� � �� � � � �� �

� � � � � �
mm m m

The 32 three-dimensional crystallographic point groups cont

cont
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m�m

m
�

m

Oh

f l

Cube truncated by
octahedron and by rhomb
dodecahedron �n�

�hkl� ��h�kl� ��hk�l� �h�k�l� �kh�l� ��k�h�l� �k�hl� ��khl�
�lhk� �l�h�k� ��l�hk� ��lh�k� ��lkh� ��l�k�h� �lk�h� �l�kh�
�klh� ��kl�h� �k�l�h� ��k�lh� �h�lk� ��h�l�k� ��hlk� �hl�k�
��h�k�l� �hk�l� �h�kl� ��hkl� ��k�hl� �khl� ��kh�l� �k�h�l�
��l�h�k� ��lhk� �lh�k� �l�hk� �l�k�h� �lkh� ��l�kh� ��lk�h�
��k�l�h� �k�lh� ��klh� �kl�h� ��hl�k� �hlk� �h�l�k� ��h�lk�

e ..m

�h� � �l�
Cube � octahedron � rhomb
dodecahedron �m�
�for �x� � �z��

�h� � �l��
Cube truncated by
octahedron �m�
�for �x� �z��

�
�����������������������

�����������������������

�
�����������������������

�����������������������

�hhl� ��h�hl� ��hh�l� �h�h�l� �hh�l� ��h�h�l� �h�hl� ��hhl�
�lhh� �l�h�h� ��l�hh� ��lh�h� ��lhh� ��l�h�h� �lh�h� �l�hh�
�hlh� ��hl�h� �h�l�h� ��h�lh� �h�lh� ��h�l�h� ��hlh� �hl�h�

d m..

Octahedron truncated
by cube �k�

� kl� � �kl� � k�l� � �k�l� �k �l� ��k �l� �k l� ��k l�
�l k� �l �k� ��l k� ��l �k� ��lk � ��l�k � �lk � �l�k �
�kl � ��kl � �k�l � ��k�l � � �lk� � �l�k� � lk� � l�k�

c m.m
Cuboctahedron �i�

� � � � � � �� � ���
� � � �� �� � �� ��
� � �� � � � � ��� �

b m
Cube �g�

� � ��� � �� �� � ��� � �� ����� � � � �� �

a m.m
Octahedron �e�

� � �� �
� � � � �
� � � ��

� � � � � �
mm mm mm

The 32 three-dimensional crystallographic point groups cont
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Table 10.1.2.3. The 47 crystallographic face and point forms, their names, eigensymmetries, and their occurrence in the
crystallographic point groups (generating point groups)

The oriented face (site) symmetries of the forms are given in parentheses after the Hermann–Mauguin symbol (column 6); a symbol such as mm2��m�, m���
indicates that the form occurs in point group mm2 twice, with face (site) symmetries .m. and m... Basic (general and special) forms are printed in bold face, limiting
(general and special) forms in normal type. The various settings of point groups 32, 3m, 3m, 42m and 6m2 are connected by braces.

No. Crystal form Point form

Number of
faces or
points Eigensymmetry

Generating point groups with oriented face (site)
symmetries between parentheses

1 Pedion or monohedron Single point 1 �m 1�1�� 2�2�� m�m�� 3�3�� 4�4��
6�6�� mm2�mm2�� 4mm�4mm��
3m�3m�� 6mm�6mm�

2 Pinacoid or
parallelohedron

Line segment through
origin

2 �
m

m 1�1�� 2�1�� m�1�� 2
m
�2.m�� 222�2.., .2., ..2��

mm2��m�, m���� mmm�2mm, m2m, mm2��
4�2..�� 4

m
�4..�� 422�4..�, 42m�2.mm�

4m2�2mm.�
�

�

4
m

mm�4mm�� 3�3..��
321�3..�
312�3..��
32 �3.�

�
�

�

3m1�3m.�
31m�3.m��
3m1�3m�

�
�

�

6�3..�� 6
m
�6..�� 622�6..��

6m2�3m.�
62m�3.m�

�

�
6
m

mm�6mm�

3 Sphenoid, dome, or
dihedron

Line segment 2 mm2 2�1�� m�1�� mm2�.m., m..�

4 Rhombic disphenoid
or rhombic
tetrahedron

Rhombic tetrahedron 4 222 222�1�

5 Rhombic pyramid Rectangle 4 mm2 mm2�1�
6 Rhombic prism Rectangle through

origin
4 mmm 2�m�1�� 222�1�*� mm2�1�� mmm�m.., .m., ..m�

7 Rhombic dipyramid Quad 8 mmm mmm�1�
8 Tetragonal pyramid Square 4 4mm 4�1�� 4mm�..m, .m.�
9 Tetragonal disphenoid

or tetragonal
tetrahedron

Tetragonal
tetrahedron

4 42m
4�1�� 42m�..m�

4m2�.m.�
�

10 Tetragonal prism Square through origin 4 4
m

mm 4�1�� 4�1�� 4
m
�m..�� 422�..2, .2.�� 4mm���m, �m���

� 42m�.2.� � 42m���m�
4m2�..2� � 4m2��m��

	

�

4
m

mm�m.m2, m2m.�

11 Tetragonal
trapezohedron

Twisted tetragonal
antiprism

8 422 422�1�

12 Ditetragonal pyramid Truncated square 8 4mm 4mm�1�
13 Tetragonal

scalenohedron
Tetragonal

tetrahedron cut off
by pinacoid

8 42m 42m�1�
4m2�1�

�

14 Tetragonal dipyramid Tetragonal prism 8 4
m

mm
4
m
�1�� 422�1�*� † 42m�1�

4m2�1�
�

�
4
m

mm�.m, .m.�

15 Ditetragonal prism Truncated square
through origin

8 4
m

mm 422�1�� 4mm�1�� 42m�1�
4m2�1�

�

�
4
m

mm�m..�

16 Ditetragonal dipyramid Edge-truncated
tetragonal prism

16 4
m

mm
4
m

mm�1�
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No. Crystal form Point form

Number of
faces or
points Eigensymmetry

Generating point groups with oriented face (site)
symmetries between parentheses

17 Trigonal pyramid Trigon 3 3m
3�1��

3m1�.m.�
31m�..m�
3m �.m�

�
�

�

18 Trigonal prism Trigon through origin 3 62m
3�1��

321�.2.�
312�..2��
32 �.2�

�
�

�

3m1��m��
31m���m��
3m ��m�

�
�

�

6�m..�� 6m2�mm2�
62m�m2m�

�

19 Trigonal
trapezohedron

Twisted trigonal
antiprism

6 32 321�1�
312�1�
32 �1�

�
�

�

20 Ditrigonal pyramid Truncated trigon 6 3m 3m�1�
21 Rhombohedron Trigonal antiprism 6 3m

3�1��
321�1�
312�1��
32 �1�

�
�

�

3m1�.m.�
31m�..m�
3m �.m�

�
�

�

22 Ditrigonal prism Truncated trigon
through origin

6 62m 321�1�
312�1��
32 �1�

�
�

�

3m1�1�
31m�1��
3m �1�

�
�

�

6m2�m..�
62m�m..�

�

23 Hexagonal pyramid Hexagon 6 6mm 3m1�1�
31m�1��
3m �1�

�
�

�
6�1�� 6mm�..m, .m.�

24 Trigonal dipyramid Trigonal prism 6 62m 321�1�
312�1��
32 �1�

�
�

�
6�1�� 6m2�.m.�

62m�..m�
�

25 Hexagonal prism Hexagon through
origin

6 6
m

mm
3�1��

321�1�
312�1��
32 �1�

�
��

��

3m1�1�
31m�1�
3m �1�

�
��

��

�
3m1�.2.� � 3m1��m��
31m�..2� � 31m���m��
3m�.2� � 3m��m�

�
��

��

6�1�� 6
m
�m..�� 622�.2., ..2��

6mm���m, �m��� 6m2�m���
62m�m���

	

�

6
m

mm�m2m, mm2�

26 Ditrigonal
scalenohedron or
hexagonal
scalenohedron

Trigonal antiprism
sliced off by
pinacoid

12 3m 3m1�1�
31m�1�
3m �1�

�
�

�

27 Hexagonal
trapezohedron

Twisted hexagonal
antiprism

12 622 622�1�

28 Dihexagonal pyramid Truncated hexagon 12 6mm 6mm�1�
29 Ditrigonal dipyramid Edge-truncated

trigonal prism
12 62m 6m2�1�

62m�1�
�

30 Dihexagonal prism Truncated hexagon 12 6
m

mm 3m1�1�
31m�1��
3m �1�

�
�

�
622�1�� 6mm�1��

6
m

mm�m..�

Table 10.1.2.3. The 47 crystallographic face and point forms, their names, eigensymmetries, and their occurrence in the
crystallographic point groups (generating point groups) (cont.)
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No. Crystal form Point form

Number of
faces or
points Eigensymmetry

Generating point groups with oriented face (site)
symmetries between parentheses

31 Hexagonal dipyramid Hexagonal prism 12 6
m

mm 3m1�1�
31m�1��
3m �1�

�
��

��

6
m
�1�� 622�1���

6m2�1�
62m�1�

	

�
6
m

mm�..m, .m.�

32 Dihexagonal
dipyramid

Edge-truncated
hexagonal prism

24 6
m

mm
6
m

mm�1�

33 Tetrahedron Tetrahedron 4 43m 23�.3.�� 43m�.3m�
34 Cube or hexahedron Octahedron 6 m3m 23�2..�� m3�2mm..��

432�4..�� 43m�2.mm�� m3m�4m.m�
35 Octahedron Cube 8 m3m m3�.3.�� 432�.3.�� m3m�.3m�
36 Pentagon-

tritetrahedron or
tetartoid or
tetrahedral
pentagon-
dodecahedron

Snub tetrahedron
(=pentagon-
tritetrahedron +
two tetrahedra)

12 23 23�1�

37 Pentagon-
dodecahedron or
dihexahedron or
pyritohedron

Irregular icosahedron
(= pentagon-
dodecahedron +
octahedron)

12 m3 23�1�� m3�m..�

38 Tetragon-tritetrahedron
or deltohedron or
deltoid-
dodecahedron

Cube and two
tetrahedra

12 43m 23�1�� 43m�..m�

39 Trigon-tritetrahedron
or tristetrahedron

Tetrahedron truncated
by tetrahedron

12 43m 23�1�� 43m�..m�

40 Rhomb-dodecahedron Cuboctahedron 12 m3m 23�1�� m3�m���� 432�..2��
43m���m�� m3m�m.m2�

41 Didodecahedron or
diploid or
dyakisdodecahedron

Cube & octahedron
& pentagon-
dodecahedron

24 m3 m3�1�

42 Trigon-trioctahedron
or trisoctahedron

Cube truncated by
octahedron

24 m3m m3�1�� 432�1�� m3m�..m�

43 Tetragon-trioctahedron
or trapezohedron or
deltoid-
icositetrahedron

Cube & octahedron
& rhomb-
dodecahedron

24 m3m m3�1�� 432�1�� m3m�..m�

44 Pentagon-trioctahedron
or gyroid

Cube + octahedron +
pentagon-
trioctahedron

24 432 432�1�

45 Hexatetrahedron or
hexakistetrahedron

Cube truncated by
two tetrahedra

24 43m 43m�1�

46 Tetrahexahedron or
tetrakishexahedron

Octahedron truncated
by cube

24 m3m 432�1�� 43m�1�� m3m�m..�

47 Hexaoctahedron or
hexakisoctahedron

Cube truncated by
octahedron and by
rhomb-
dodecahedron

48 m3m m3m�1�

* These limiting forms occur in three or two non-equivalent orientations (different types of limiting forms); cf. Table 10.1.2.2.
† In point groups 42m and 3m, the tetragonal prism and the hexagonal prism occur twice, as a ‘basic special form’ and as a ‘limiting special form’. In these cases, the point
groups are listed twice, as 42m�.2.� & 42m���m� and as 3m1�.2.� & 3m1��m��.

Table 10.1.2.3. The 47 crystallographic face and point forms, their names, eigensymmetries, and their occurrence in the
crystallographic point groups (generating point groups) (cont.)
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Table 10.1.2.4. Names and symbols of the 32 crystal classes

Point group

System used in
this volume

International symbol
Schoenflies
symbol

Class names

Short Full Groth (1921) Friedel (1926)

Triclinic 1 1 C1 Pedial (asymmetric) Hemihedry

1 1 Ci�S2� Pinacoidal Holohedry

Monoclinic 2 2 C2 Sphenoidal Holoaxial hemihedry

m m Cs�C1h� Domatic Antihemihedry

2�m
2
m C2h Prismatic Holohedry

Orthorhombic 222 222 D2�V � Disphenoidal Holoaxial hemihedry

mm2 mm2 C2v Pyramidal Antihemihedry

mmm
2
m

2
m

2
m D2h�Vh� Dipyramidal Holohedry

Tetragonal 4 4 C4 Pyramidal Tetartohedry with 4-axis

4 4 S4 Disphenoidal Sphenohedral tetartohedry

4�m
4
m C4h Dipyramidal Parahemihedry

422 422 D4 Trapezohedral Holoaxial hemihedry

4mm 4mm C4v Ditetragonal-pyramidal Antihemihedry with 4-axis

42m 42m D2d�Vd� Scalenohedral Sphenohedral antihemihedry

4/mmm
4
m

2
m

2
m D4h Ditetragonal-dipyramidal Holohedry

Hexagonal Rhombohedral

Trigonal 3 3 C3 Pyramidal Ogdohedry Tetartohedry

3 3 C3i�S6� Rhombohedral Paratetartohedry Parahemihedry

32 32 D3 Trapezohedral Holoaxial
tetartohedry
with 3-axis

Holoaxial
hemihedry

3m 3m C3v Ditrigonal-pyramidal Hemimorphic
antitetartohedry

Antihemihedry

3m 3
2
m

D3d Ditrigonal-scalenohedral Parahemihedry
with 3-axis

Holohedry

Hexagonal 6 6 C6 Pyramidal Tetartohedry with 6-axis

6 6 C3h Trigonal-dipyramidal Trigonohedral antitetartohedry

6�m
6
m C6h Dipyramidal Parahemihedry with 6-axis

622 622 D6 Trapezohedral Holoaxial hemihedry

6mm 6mm C6v Dihexagonal-pyramidal Antihemihedry with 6-axis

62m 62m D3h Ditrigonal-dipyramidal Trigonohedral antihemihedry

6�mmm
6
m

2
m

2
m D6h Dihexagonal-dipyramidal Holohedry

Cubic 23 23 T Tetrahedral-pentagondodecahedral
�� tetartoidal�

Tetartohedry

m3
2
m

3 Th Disdodecahedral
�� diploidal�

Parahemihedry

432 432 O Pentagon-icositetrahedral
�� gyroidal�

Holoaxial hemihedry

43m 43m Td Hexakistetrahedral
�� hextetrahedral�

Antihemihedry

m3m
4
m

3
2
m

Oh Hexakisoctahedral
�� hexoctahedral�

Holohedry
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(2) In point group 32, the general form is a trigonal trapezohedron
�hkl�; this form can be considered as two opposite trigonal
pyramids, rotated with respect to each other by an angle �. The
trapezohedron changes into the limiting forms ‘trigonal dipyr-
amid’ �hhl� for � � 0� and ‘rhombohedron’ �h0l� for � � 60�.

(vii) One and the same type of polyhedron can occur as a general,
special or limiting form.

Examples
(1) A tetragonal dipyramid is a general form in point group 4�m, a

special form in point group 4�mmm and a limiting general form
in point groups 422 and 42m.

(2) A tetragonal prism appears in point group 42m both as a basic
special form (4b) and as a limiting special form (4c).

(viii) A peculiarity occurs for the cubic point groups. Here the
crystal forms �hhl� are realized as two topologically different kinds
of polyhedra with the same face symmetry, multiplicity and, in
addition, the same eigensymmetry. The realization of one or other of
these forms depends upon whether the Miller indices obey the
conditions �h� � �l� or �h� � �l�, i.e. whether, in the stereographic
projection, a face pole is located between the directions [110] and
[111] or between the directions [111] and [001]. These two kinds of
polyhedra have to be considered as two realizations of one type of
crystal form because their face poles are located on the same set of
conjugate symmetry elements. Similar considerations apply to the
point forms x, x, z.

In the point groups m3m and 43m, the two kinds of polyhedra
represent two realizations of one special ‘Wyckoff position’; hence,
they have the same Wyckoff letter. In the groups 23, m3 and 432,
they represent two realizations of the same type of limiting general
forms. In the tables of the cubic point groups, the two entries are
always connected by braces.

The same kind of peculiarity occurs for the two icosahedral point
groups, as mentioned in Section 10.1.4 and listed in Table 10.1.4.3.

10.1.2.5. Names and symbols of the crystal classes

Several different sets of names have been devised for the 32
crystal classes. Their use, however, has greatly declined since the
introduction of the international point-group symbols. As examples,
two sets (both translated into English) that are frequently found in
the literature are given in Table 10.1.2.4. To the name of the class
the name of the system has to be added: e.g. ‘tetragonal pyramidal’
or ‘tetragonal tetartohedry’.

Note that Friedel (1926) based his nomenclature on the point
symmetry of the lattice. Hence, two names are given for the five
trigonal point groups, depending whether the lattice is hexagonal or
rhombohedral: e.g. ‘hexagonal ogdohedry’ and ‘rhombohedral
tetartohedry’.

10.1.3. Subgroups and supergroups of the
crystallographic point groups

In this section, the sub- and supergroup relations between the
crystallographic point groups are presented in the form of a ‘family
tree’.* Figs. 10.1.3.1 and 10.1.3.2 apply to two and three
dimensions. The sub- and supergroup relations between two groups
are represented by solid or dashed lines. For a given point group �
of order kP the lines to groups of lower order connect � with all its
maximal subgroups � with orders kH ; the index [i] of each
subgroup is given by the ratio of the orders kP�kH . The lines to
groups of higher order connect � with all its minimal supergroups �

with orders kS; the index [i] of each supergroup is given by the ratio
kS�kP. In other words: if the diagram is read downwards, subgroup
relations are displayed; if it is read upwards, supergroup relations
are revealed. The index is always an integer (theorem of Lagrange)
and can be easily obtained from the group orders given on the left of
the diagrams. The highest index of a maximal subgroup is [3] for
two dimensions and [4] for three dimensions.

Two important kinds of subgroups, namely sets of conjugate
subgroups and normal subgroups, are distinguished by dashed and
solid lines. They are characterized as follows:

The subgroups �1,�2, � � � ,�n of a group � are conjugate
subgroups if�1,�2, � � � ,�n are symmetrically equivalent in �, i.e.
if for every pair �i,�j at least one symmetry operation � of �
exists which maps �i onto �j � �

�1�i� � �j; cf. Section 8.3.6.

Examples
(1) Point group 3m has three different mirror planes which are

equivalent due to the threefold axis. In each of the three
maximal subgroups of type m, one of these mirror planes is
retained. Hence, the three subgroups m are conjugate in 3m.
This set of conjugate subgroups is represented by one dashed
line in Figs. 10.1.3.1 and 10.1.3.2.

(2) Similarly, group 432 has three maximal conjugate subgroups of
type 422 and four maximal conjugate subgroups of type 32.

The subgroup� of a group � is a normal (or invariant) subgroup
if no subgroup �� of � exists that is conjugate to � in �. Note that
this does not imply that � is also a normal subgroup of any
supergroup of �. Subgroups of index [2] are always normal and
maximal. (The role of normal subgroups for the structure of space
groups is discussed in Section 8.1.6.)

Examples
(1) Fig. 10.1.3.2 shows two solid lines between point groups 422

and 222, indicating that 422 has two maximal normal subgroups
222 of index [2]. The symmetry elements of one subgroup are
rotated by 45� around the c axis with respect to those of the other
subgroup. Thus, in one subgroup the symmetry elements of the
two secondary, in the other those of the two tertiary tetragonal
symmetry directions (cf. Table 2.2.4.1) are retained, whereas the
primary twofold axis is the same for both subgroups. There
exists no symmetry operation of 422 that maps one subgroup
onto the other. This is illustrated by the stereograms below. The
two normal subgroups can be indicated by the ‘oriented

Fig. 10.1.3.1. Maximal subgroups and minimal supergroups of the two-
dimensional crystallographic point groups. Solid lines indicate maximal
normal subgroups; double solid lines mean that there are two maximal
normal subgroups with the same symbol. Dashed lines refer to sets of
maximal conjugate subgroups. The group orders are given on the left.

� This type of diagram was first used in IT (1935): in IT (1952) a somewhat
different approach was employed.
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symbols’ 222. and 2.22.

(2) Similarly, group 432 has one maximal normal subgroup, 23.

Figs. 10.1.3.1 and 10.1.3.2 show that there exist two ‘summits’ in
both two and three dimensions from which all other point groups can
be derived by ‘chains’ of maximal subgroups. These summits are
formed by the square and the hexagonal holohedry in two dimensions
and by the cubic and the hexagonal holohedry in three dimensions.

The sub- and supergroups of the point groups are useful both in
their own right and as basis of the translationengleiche or t
subgroups and supergroups of space groups; this is set out in Section
2.2.15. Tables of the sub- and supergroups of the plane groups and
space groups are contained in Parts 6 and 7. A general discussion of
sub- and supergroups of crystallographic groups, together with
further explanations and examples, is given in Section 8.3.3.

10.1.4. Noncrystallographic point groups

10.1.4.1. Description of general point groups

In Sections 10.1.2 and 10.1.3, only the 32 crystallographic point
groups (crystal classes) are considered. In addition, infinitely many
noncrystallographic point groups exist that are of interest as
possible symmetries of molecules and of quasicrystals and as

approximate local site symmetries in crystals. Crystallographic and
noncrystallographic point groups are collected here under the name
general point groups. They are reviewed in this section and listed in
Tables 10.1.4.1 to 10.1.4.3.

Because of the infinite number of these groups only classes of
general point groups (general classes)* can be listed. They are
grouped into general systems, which are similar to the crystal
systems. The ‘general classes’ are of two kinds: in the cubic,
icosahedral, circular, cylindrical and spherical system, each general
class contains one point group only, whereas in the 4N-gonal,
�2N � 1�-gonal and �4N � 2�-gonal system, each general class
contains infinitely many point groups, which differ in their principal
n-fold symmetry axis, with n � 4, 8, 12, � � � for the 4N-gonal
system, n � 1, 3, 5, � � � for the �2N � 1�-gonal system and n �
2, 6, 10, � � � for the �4N � 2�-gonal system.

Furthermore, some general point groups are of order infinity
because they contain symmetry axes (rotation or rotoinversion axes)
of order infinity† (�-fold axes). These point groups occur in the

Fig. 10.1.3.2. Maximal subgroups and minimal supergroups of the three-dimensional crystallographic point groups. Solid lines indicate maximal normal
subgroups; double or triple solid lines mean that there are two or three maximal normal subgroups with the same symbol. Dashed lines refer to sets of
maximal conjugate subgroups. The group orders are given on the left. Full Hermann–Mauguin symbols are used.

� The ‘classesof general point groups’are not the same as the commonly used ‘crystal
classes’ because some of them contain point groups of different orders. All these
orders, however, follow a common scheme. In this sense, the ‘general classes’ are an
extension of the concept of (geometric) crystal classes. For example, the general class
nmm of the 4N-gonal system contains the point groups 4mm (tetragonal), 8mm
(octagonal), 12mm (dodecagonal), 16mm etc.
� The axes of order infinity, as considered here, do not correspond to cyclic groups (as
do the axes of finite order) because there is no smallest rotation from which all other
rotations can be derived as higher powers, i.e. by successive application. Instead,
rotations of all possible angles exist. Nevertheless, it is customary to symbolize these
axes as � or C�; note that the Hermann–Mauguin symbols ��m and � are
equivalent, and so are the Schoenflies symbols C�h, S� and C�i. (There exist also
axes of order infinity that do correspond to cyclic groups, namely axes based upon
smallest rotations with irrational values of the rotation angle.)
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circular system (two dimensions) and in the cylindrical and
spherical systems (three dimensions).

The Hermann–Mauguin and Schoenflies symbols for the general
point groups follow the rules of the crystallographic point groups
(cf. Section 2.2.4 and Chapter 12.1). This extends also to the infinite
groups where symbols like �m or C�v are immediately obvious.

In two dimensions (Table 10.1.4.1), the eight general classes are
collected into three systems. Two of these, the 4N-gonal and the
�4N � 2�-gonal systems, contain only point groups of finite order
with one n-fold rotation point each. These systems are general-
izations of the square and hexagonal crystal systems. The circular
system consists of two infinite point groups, with one �-fold
rotation point each.

In three dimensions (Table 10.1.4.2), the 28 general classes are
collected into seven systems. Three of these, the 4N-gonal, the
�2N � 1�-gonal and the �4N � 2�-gonal systems,* contain only
point groups of finite order with one principal n-fold symmetry axis
each. These systems are generalizations of the tetragonal, trigonal,
and hexagonal crystal systems (cf. Table 10.1.1.2). The five cubic
groups are well known as crystallographic groups. The two
icosahedral groups of orders 60 and 120, characterized by special
combinations of twofold, threefold and fivefold symmetry axes, are
discussed in more detail below. The groups of the cylindrical and
the spherical systems are all of order infinity; they describe the
symmetries of cylinders, cones, rotation ellipsoids, spheres etc.

It is possible to define the three-dimensional point groups on the
basis of either rotoinversion axes n or rotoreflection axes �n. The
equivalence between these two descriptions is apparent from the
following examples:

n� 4N � 4� �4 8� �8 � � � n� �n
n� 2N � 1 � 1� �2 3� �6� 3 1 � � � n�
2n� n 1
n� 4N � 2 � 2� �1� m 6� �3� 3�m � � � n�
1

2 n� 1
2 n�m�

In the present tables, the standard convention of using rotoinversion
axes is followed.

Tables 10.1.4.1 and 10.1.4.2 contain for each class its general
Hermann–Mauguin and Schoenflies symbols, the group order and
the names of the general face form and its dual, the general point
form.† Special and limiting forms are not given, nor are ‘Miller
indices’ (hkl) and point coordinates x, y, z. They can be derived easily
from Tables 10.1.2.1 and 10.1.2.2 for the crystallographic groups.‡

10.1.4.2. The two icosahedral groups

The two point groups 235 and m�3�5 of the icosahedral system
(orders 60 and 120) are of particular interest among the
noncrystallographic groups because of the occurrence of fivefold
axes and their increasing importance as symmetries of molecules
(viruses), of quasicrystals, and as approximate local site symmetries
in crystals (alloys, B12 icosahedron). Furthermore, they contain as
special forms the two noncrystallographic platonic solids, the

regular icosahedron (20 faces, 12 vertices) and its dual, the regular
pentagon-dodecahedron (12 faces, 20 vertices).

The icosahedral groups (cf. diagrams in Table 10.1.4.3) are
characterized by six fivefold axes that include angles of 63�43�.
Each fivefold axis is surrounded by five threefold and five twofold
axes, with angular distances of 37�38� between a fivefold and a
threefold axis and of 31�72� between a fivefold and a twofold axis.
The angles between neighbouring threefold axes are 41�81�,
between neighbouring twofold axes 36�. The smallest angle
between a threefold and a twofold axis is 20�90�.

Each of the six fivefold axes is perpendicular to five twofold
axes; there are thus six maximal conjugate pentagonal subgroups of
types 52 (for 235) and 5m (for m�3�5) with index [6]. Each of the ten
threefold axes is perpendicular to three twofold axes, leading to ten
maximal conjugate trigonal subgroups of types 32 (for 235) and 3m
(for m�3�5) with index [10]. There occur, furthermore, five maximal
conjugate cubic subgroups of types 23 (for 235) and m3 (for m�3�5)
with index [5].

The two icosahedral groups are listed in Table 10.1.4.3, in a form
similar to the cubic point groups in Table 10.1.2.2. Each group is
illustrated by stereographic projections of the symmetry elements
and the general face poles (general points); the complete sets of
symmetry elements are listed below the stereograms. Both groups
are referred to a cubic coordinate system, with the coordinate axes
along three twofold rotation axes and with four threefold axes along
the body diagonals. This relation is well brought out by symbolizing
these groups as 235 and m�3�5 instead of the customary symbols 532
and �5�3m.

The table contains also the multiplicities, the Wyckoff letters and
the names of the general and special face forms and their duals, the
point forms, as well as the oriented face- and site-symmetry
symbols. In the icosahedral ‘holohedry’ m�3�5, the special ‘Wyckoff
position’ 60d occurs in three realizations, i.e. with three types of
polyhedra. In 235, however, these three types of polyhedra are
different realizations of the limiting general forms, which depend
on the location of the poles with respect to the axes 2, 3 and 5. For
this reason, the three entries are connected by braces; cf. Section
10.1.2.4, Notes on crystal and point forms, item (viii).

Not included are the sets of equivalent Miller indices and point
coordinates. Instead, only the ‘initial’ triplets (hkl) and x, y, z for
each type of form are listed. The complete sets of indices and
coordinates can be obtained in two steps§ as follows:

(i) For the face forms the cubic point groups 23 and m3 (Table
10.1.2.2), and for the point forms the cubic space groups P23 (195)
and Pm3 (200) have to be considered. For each ‘initial’ triplet (hkl),
the set of Miller indices of the (general or special) crystal form with
the same face symmetry in 23 (for group 235) or m3 (for m�3�5) is
taken. For each ‘initial’ triplet x, y, z, the coordinate triplets of the
(general or special) position with the same site symmetry in P23 or
Pm3 are taken; this procedure is similar to that described in Section
10.1.2.3 for the crystallographic point forms.

(ii) To obtain the complete set of icosahedral Miller indices and
point coordinates, the ‘cubic’ (hkl) triplets (as rows) and x, y, z
triplets (as columns) have to be multiplied with the identity matrix
and with

(a) the matrices Y , Y 2, Y 3 and Y 4 for the Miller indices;� Here, the �2N � 1�-gonal and the �4N � 2�-gonal systems are distinguished in
order to bring out the analogy with the trigonal and the hexagonal crystal systems.
They could equally well be combined into one, in correspondence with the
hexagonal ‘crystal family’ (cf. Chapter 2.1).
� The noncrystallographic face and point forms are extensions of the corresponding
crystallographic forms: cf. Section 10.1.2.4, Notes on crystal and point forms. The
name streptohedron applies to the general face forms of point groups n with n � 4N
and n � 2N � 1; it is thus a generalization of the tetragonal disphenoid or tetragonal
tetrahedron �4� and the rhombohedron �3�.
� The term ‘Miller indices’ is used here also for the noncrystallographic point
groups. Note that these indices do not have to be integers or rational numbers, as for
the crystallographic point groups. Irrational indices, however, can always be closely
approximated by integers, quite often even by small integers.

� A one-step procedure applies to the icosahedral ‘Wyckoff position’ 12a, the face
poles and points of which are located on the fivefold axes. Here, step (ii) is
redundant and can be omitted. The forms �01�� and 0, y, �y are contained in the
cubic point groups 23 and m3 and in the cubic space groups P23 and Pm3 as limiting
cases of Wyckoff positions�0kl� and 0, y, z with specialized (irrational) values of
the indices and coordinates. In geometric terms, the regular pentagon-dodecahedron
is a noncrystallographic ‘limiting polyhedron’ of the ‘crystallographic’ pentagon-
dodecahedron and the regular icosahedron is a ‘limiting polyhedron’ of the
‘irregular’ icosahedron (cf. Section 10.1.2.2, Crystal and point forms).
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Table 10.1.4.1. Classes of general point groups in two dimensions �N � integer � 0�

General Hermann–Mauguin
symbol Order of group General edge form General point form Crystallographic groups

4N-gonal system (n-fold rotation point with n � 4N )

n n Regular n-gon Regular n-gon 4

nmm 2n Semiregular di-n-gon Truncated n-gon 4mm

�4N � 2�-gonal system (n-fold or 1
2 n-fold rotation point with n � 4N � 2)

1
2 n 1

2 n Regular 1
2 n-gon Regular 1

2 n-gon 1, 3
1
2 nm n Semiregular di-1

2 n-gon Truncated 1
2 n-gon m, 3m

n n Regular n-gon Regular n-gon 2, 6

nmm 2n Semiregular di-n-gon Truncated n-gon 2mm, 6mm

Circular system *

� � Rotating circle Rotating circle –

�m � Stationary circle Stationary circle –

* A rotating circle has no mirror lines; there exist two enantiomorphic circles with opposite senses of rotation. A stationary circle has infinitely many mirror lines through its
centre.

Table 10.1.4.2. Classes of general point groups in three dimensions �N � integer � 0�

Short general Hermann–
Mauguin symbol, followed
by full symbol where
different Schoenflies symbol

Order of
group General face form General point form

Crystallographic
groups

4N-gonal system (single n-fold symmetry axis with n � 4N )

n Cn n n-gonal pyramid Regular n-gon 4

n Sn n 1
2 n-gonal streptohedron 1

2 n-gonal antiprism 4

n�m Cnh 2n n-gonal dipyramid n-gonal prism 4�m

n22 Dn 2n n-gonal trapezohedron Twisted n-gonal antiprism 422

nmm Cnv 2n Di-n-gonal pyramid Truncated n-gon 4mm

n2m D1
2nd 2n n-gonal scalenohedron 1

2 n-gonal antiprism sliced
off by pinacoid

42m

n�mmm,
n
m

2
m

2
m

Dnh 4n Di-n-gonal dipyramid Edge-truncated n-gonal
prism

4�mmm

�2N � 1�-gonal system (single n-fold symmetry axis with n � 2N � 1)

n Cn n n-gonal pyramid Regular n-gon 1, 3

n � n 1 Cni 2n n-gonal streptohedron n-gonal antiprism 1, 3 � 3 1

n2 Dn 2n n-gonal trapezohedron Twisted n-gonal antiprism 32

nm Cnv 2n Di-n-gonal pyramid Truncated n-gon 3m

nm, n
2
m

Dnd 4n Di-n-gonal scalenohedron n-gonal antiprism sliced
off by pinacoid

3m

�4N � 2�-gonal system (single n-fold symmetry axis with n � 4N � 2)

n Cn n n-gonal pyramid Regular n-gon 2, 6

n � 1
2n�m C1

2nh n 1
2n-gonal dipyramid 1

2n-gonal prism 2 � m, 6 � 3�m

n�m Cnh 2n n-gonal dipyramid n-gonal prism 2�m, 6�m

n22 Dn 2n n-gonal trapezohedron Twisted n-gonal antiprism 222, 622

nmm Cnv 2n Di-n-gonal pyramid Truncated n-gon mm2, 6mm

n2m � 1
2n�m2m D1

2nh 2n Di-1
2n-gonal dipyramid Truncated 1

2n-gonal prism 62m

n�mmm,
n
m

2
m

2
m Dnh 4n Di-n-gonal dipyramid

Edge-truncated n-gonal
prism

mmm, 6�mmm
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Table 10.1.4.2. Classes of general point groups in three dimensions �N � integer � 0� (cont.)

Short general Hermann–
Mauguin symbol, followed
by full symbol where
different Schoenflies symbol

Order of
group General face form General point form

Crystallographic
groups

Cubic system (for details see Table 10.1.2.2)

23 T 12 Pentagon-tritetrahedron Snub tetrahedron 23

m3,
2
m

3 Th 24 Didodecahedron Cube & octahedron &
pentagon-dodecahedron

m3

432 O 24 Pentagon-trioctahedron Snub cube 432

43m Td 24 Hexatetrahedron Cube truncated by two
tetrahedra

43m

m3m,
4
m

3
2
m

Oh 48 Hexaoctahedron Cube truncated by
octahedron and by
rhomb-dodecahedron

m3m

Icosahedral system* (for details see Table 10.1.4.3)

235 I 60 Pentagon-
hexecontahedron

Snub pentagon-
dodecahedron

–

m35,
2
m

35 Ih 120 Hecatonicosahedron Pentagon-dodecahedron
truncated by
icosahedron and by
rhomb-triacontahedron

–

Cylindrical system†

� C� � Rotating cone Rotating circle –

��m � � C�h � S� � C�i � Rotating double cone Rotating finite cylinder –

�2 D� � ‘Anti-rotating’ double
cone

‘Anti-rotating’ finite
cylinder

–

�m C�v � Stationary cone Stationary circle –

��mm � �m,
�
m

2
m
� �2

m
D�h � D�d � Stationary double cone Stationary finite cylinder –

Spherical system‡

2� K � Rotating sphere Rotating sphere –

m�,
2
m
� Kh � Stationary sphere Stationary sphere –

* The Hermann–Mauguin symbols of the two icosahedral point groups are often written as 532 and �5�3m (see text).
† Rotating and ‘anti-rotating’ forms in the cylindrical system have no ‘vertical’ mirror planes, whereas stationary forms have infinitely many vertical mirror planes. In
classes� and�2, enantiomorphism occurs, i.e. forms with opposite senses of rotation. Class��m � � exhibits no enantiomorphism due to the centre of symmetry, even
though the double cone is rotating in one direction. This can be understood as follows: One single rotating cone can be regarded as a right-handed or left-handed screw,
depending on the sense of rotation with respect to the axial direction from the base to the tip of the cone. Thus, the rotating double cone consists of two cones with opposite
handedness and opposite orientations related by the (single) horizontal mirror plane. In contrast, the ‘anti-rotating’ double cone in class �2 consists of two cones of equal
handedness and opposite orientations, which are related by the (infinitely many) twofold axes. The term ‘anti-rotating’ means that upper and lower halves of the forms rotate
in opposite directions.
‡ The spheres in class 2� of the spherical system must rotate around an axis with at least two different orientations, in order to suppress all mirror planes. This class exhibits
enantiomorphism, i.e. it contains spheres with either right-handed or left-handed senses of rotation around the axes (cf. Section 10.2.4, Optical properties). The stationary
spheres in class m� contain infinitely many mirror planes through the centres of the spheres.
Group 2� is sometimes symbolized by��; group m� by�� or��m. The symbols used here indicate the minimal symmetry necessary to generate the groups; they
show, furthermore, the relation to the cubic groups. The Schoenflies symbol K is derived from the German name Kugelgruppe.
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Table 10.1.4.3. The two icosahedral point groups

General, special and limiting face forms and point forms, oriented face- and site-symmetry symbols, and ‘initial’ values of (hkl) and x, y, z (see text).

235 I

60 d 1 Pentagon-hexecontahedron (hkl)
Snub pentagon-dodecahedron (= pentagon-dodecahedron +
icosahedron + pentagon-hexecontahedron)

x, y, z

Trisicosahedron
Pentagon-dodecahedron truncated by icosahedron
�poles between axes 2 and 3�

Deltoid-hexecontahedron
Rhomb-triacontahedron �
pentagon-dodecahedron � icosahedron
�poles between axes 3 and 5�

Pentakisdodecahedron
Icosahedron truncated by
pentagon-dodecahedron
�poles between axes 5 and 2)

�
���������������������

���������������������

�0kl� with �l� � 0�382�k�
0, y, z with �z� � 0�382�y�

�0kl� with 0�382�k� � �l� � 1�618�k�
0, y, z with 0�382�y� � �z� � 1�618�y�

�0kl� with �l� � 1�618�k�
0, y, z with �z� � 1�618�y�

30 c 2.. Rhomb-triacontahedron
Icosadodecahedron �� pentagon-
dodecahedron � icosahedron�

�100�
x, 0, 0

20 b .3. Regular icosahedron
Regular pentagon-dodecahedron

�111�
x, x, x

12 a ..5 Regular pentagon-dodecahedron
Regular icosahedron

�01��
0, y, �y

�

with � � 1
2�

���
5

� � 1� � 1�618

Symmetry of special projections

Along �001� Along �111� Along �1�0�
2mm 3m 5m

800

10. POINT GROUPS AND CRYSTAL CLASSES



m��

m
��

Ih

e hkl
Pentagon-dodecahedron truncated by icosahedron and by

rhomb-triacontahedron
x y z

d m..

Pentagon dodecahedron truncated by icosahedron
�

Rhomb triacontahedron � pentagon dodecahedron �
icosahedron

�

Icosahedron truncated by pentagon dodecahedron
�

�
�������������������

�������������������

� kl� �l� � � �k�
y z with �z� � � �y�

� kl� � �k� � �l� � � �k�
y z with � �y� � �z� � � �y�

� kl� �l� � � �k�
y z with �z� � � �y�

c mm..
Icosadodecahedron pentagon-dodecahedron �
icosahedron

x

b m m
Regular pentagon-dodecahedron x x x

a m m.
Regular icosahedron

� ��
y �y

�

� � � ���� � � � �

� � � � � � �
mm mm mm

The two icosahedral point groups cont.



(b) the matrices Y�1, Y�2, Y�3 and Y�4 for the point coordinates.
This sequence of matrices ensures the same correspondence

between the Miller indices and the point coordinates as for the
crystallographic point groups in Table 10.1.2.2.

The matrices* are

Y � Y�4 �
1
2 g G

g G � 1
2

�G 1
2 g



�
�

�

�
�, Y 2 � Y�3 �

�g G 1
2

G 1
2 �g

� 1
2 g �G



�
�

�

�
�,

Y 3 � Y�2 �
�g G � 1

2

G 1
2 g

1
2 �g �G



�
�

�

�
�, Y 4 � Y�1 �

1
2 g �G

g G 1
2

G � 1
2 g



�
�

�

�
�,

with†

G �
���
5

� � 1
4

� �

2
� cos 36� � 0�80902 � 72

89

g �
���
5

� � 1
4

� � � 1
2

� cos 72� � 0�30902 � 17
55

�

These matrices correspond to counter-clockwise rotations of 72,
144, 216 and 288� around a fivefold axis parallel to �1�0�.

The resulting indices h, k, l and coordinates x, y, z are irrational
but can be approximated closely by rational (or integral) numbers.
This explains the occurrence of almost regular icosahedra or
pentagon-dodecahedra as crystal forms (for instance pyrite) or
atomic groups (for instance B12 icosahedron).

Further descriptions (including diagrams) of noncrystallographic
groups are contained in papers by Nowacki (1933) and A. Niggli
(1963) and in the textbooks by P. Niggli (1941, pp. 78–80, 96),
Shubnikov & Koptsik (1974) and Vainshtein (1994). For the
geometry of polyhedra, the well known books by H. S. M. Coxeter
(especially Coxeter, 1973) are recommended.

10.1.4.3. Sub- and supergroups of the general point groups

In Figs. 10.1.4.1 to 10.1.4.3, the subgroup and supergroup
relations between the two-dimensional and three-dimensional
general point groups are illustrated. It should be remembered that
the index of a group–subgroup relation between two groups of order
infinity may be finite or infinite. For the two spherical groups, for
instance, the index is [2]; the cylindrical groups, on the other hand,
are subgroups of index [�] of the spherical groups.

Fig. 10.1.4.1 for two dimensions shows that the two circular
groups �m and � have subgroups of types nmm and n,
respectively, each of index [�]. The order of the rotation point
may be n � 4N , n � 4N � 2 or n � 2N � 1. In the first case, the
subgroups belong to the 4N-gonal system, in the latter two cases,
they belong to the �4N � 2�-gonal system. [In the diagram of the
�4N � 2�-gonal system, the �2N � 1�-gonal groups appear with the
symbols 1

2 nm and 1
2 n.] The subgroups of the circular groups are not

maximal because for any given value of N there exists a group with
N � � 2N which is both a subgroup of the circular group and a
supergroup of the initial group.

The subgroup relations, for a specified value of N, within the 4N-
gonal and the �4N � 2�-gonal system, are shown in the lower part of
the figure. They correspond to those of the crystallographic groups.
A finite number of further maximal subgroups is obtained for lower

values of N, until the crystallographic groups (Fig. 10.1.3.1) are
reached. This is illustrated for the case N � 4 in Fig. 10.1.4.2.

Fig. 10.1.4.3 for three dimensions illustrates that the two
spherical groups 2�m� and 2� each have one infinite set of
cylindrical maximal conjugate subgroups, as well as one infinite set

Fig. 10.1.4.1. Subgroups and supergroups of the two-dimensional general
point groups. Solid lines indicate maximal normal subgroups, double
solid lines mean that there are two maximal normal subgroups with the
same symbol. Dashed lines refer to sets of maximal conjugate
subgroups. For the finite groups, the orders are given on the left. Note
that the subgroups of the two circular groups are not maximal and the
diagram applies only to a specified value of N (see text). For complete
examples see Fig. 10.1.4.2.

Fig. 10.1.4.2. The subgroups of the two-dimensional general point groups
16mm (4N-gonal system) and 18mm [�4N � 2�-gonal system, including
the �2N � 1�-gonal groups]. Compare with Fig. 10.1.4.1 which applies
only to one value of N.

� Note that for orthogonal matrices Y�1 � Y t �t � transposed�.
� The number � � 2G � 2g � 1 � 1�618034 (Fibonacci number) is the character-
istic value of the golden section �� � 1� � � � � � 1, i.e. ��� � 1� � 1. Furthermore,
� is the distance between alternating vertices of a regular pentagon of unit edge
length and the distance from centre to vertex of a regular decagon of unit edge
length.

802

10. POINT GROUPS AND CRYSTAL CLASSES



of cubic and one infinite set of icosahedral maximal finite conjugate
subgroups, all of index [�].

Each of the two icosahedral groups 235 and 2�m�3�5 has one set of
five cubic, one set of six pentagonal and one set of ten trigonal
maximal conjugate subgroups of indices [5], [6] and [10],
respectively (cf. Section 10.1.4.2, The two icosahedral groups);
they are listed on the right of Fig. 10.1.4.3. For crystallographic
groups, Fig. 10.1.3.2 applies. The subgroup types of the five
cylindrical point groups are shown on the left of Fig. 10.1.4.3. As
explained above for two dimensions, these subgroups are not
maximal and of index [�]. Depending upon whether the main
symmetry axis has the multiplicity 4N, 4N � 2 or 2N � 1, the
subgroups belong to the 4N-gonal, �4N � 2�-gonal or �2N � 1�-
gonal system.

The subgroup and supergroup relations within these three
systems are displayed in the lower left part of Fig 10.1.4.3. They
are analogous to the crystallographic groups. To facilitate the use of

the diagrams, the �4N � 2�-gonal and the �2N � 1�-gonal systems
are combined, with the consequence that the five classes of
the �2N � 1�-gonal system now appear with the symbols
1
2 n 2

m , 1
2 n2, 1

2 nm, 1
2 n and 1

2 n. Again, the diagrams apply to a
specified value of N. A finite number of further maximal subgroups
is obtained for lower values of N, until the crystallographic groups
(Fig. 10.1.3.2) are reached (cf. the two-dimensional examples in
Fig. 10.1.4.2).
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Fig. 10.1.4.3. Subgroups and supergroups of the three-dimensional general point groups. Solid lines indicate maximal normal subgroups, double solid
lines mean that there are two maximal normal subgroups with the same symbol. Dashed lines refer to sets of maximal conjugate subgroups. For the
finite groups, the orders are given on the left and on the right. Note that the subgroups of the five cylindrical groups are not maximal and that the
diagram applies only to a specified value of N (see text). Only those crystallographic point groups are included that are maximal subgroups of
noncrystallographic point groups. Full Hermann–Mauguin symbols are used.

803

10.1. CRYSTALLOGRAPHIC AND NONCRYSTALLOGRAPHIC POINT GROUPS



References

10.1

Burzlaff, H. & Zimmermann, H. (1977). Symmetrielehre, especially
ch. II.3. Stuttgart: Thieme.

Coxeter, H. S. M. (1973). Regular polytopes, 3rd ed. New York: Dover.
Fischer, W., Burzlaff, H., Hellner, E. & Donnay, J. D. H. (1973).

Space groups and lattice complexes. NBS Monograph No. 134,
especially pp. 28–33. Washington, DC: National Bureau of
Standards.
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