International Tables for Crystallography (2006). Vol. A, Section 13.1.2.1, pp. 836–838.

13.1. Isomorphic subgroups

BY Y. BILLIET AND E. F. BERTAUT

13.1.1. Definitions

A subgroup \mathcal{H} of a space group \mathcal{G} is an *isomorphic subgroup* if \mathcal{H} is of the same or the enantiomorphic space-group type as \mathcal{G} . Thus, isomorphic space groups are a special subset of klassengleiche subgroups. The maximal isomorphic subgroups of lowest index are listed under **IIc** in the space-group tables of this volume (Part 7) (cf. Section 2.2.15). Isomorphic subgroups can easily be recognized because the standard space-group symbols of \mathcal{G} and \mathcal{H} are the same [isosymbolic subgroups (Billiet, 1973)] or the symbol of \mathcal{H} is enantiomorphic to that of G. Every space group has an infinite number of maximal isomorphic subgroups, whereas the number of maximal non-isomorphic subgroups is finite (cf. Section 8.3.3). For this reason, isomorphic subgroups are discussed in more detail in the present section.

If **a**, **b**, **c** are the basis vectors defining the conventional unit cell of \mathcal{G} and $\mathbf{a}', \mathbf{b}', \mathbf{c}'$ the basis vectors corresponding to \mathcal{H} the relation

$$(a', b', c') = (a, b, c)S$$
 (13.1.1)

holds, where $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ and $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$ are row matrices and S is a (3×3) matrix. The coefficients S_{ij} of **S** are integers.*

The index of \mathcal{H} in \mathcal{G} is equal to $|\det(S)|^*$, which is the ratio of the volumes $[\mathbf{a}'\mathbf{b}'\mathbf{c}']$ and $[\mathbf{abc}]$ of the two cells. det(S) is positive if the bases of the two cells have the same handedness and negative if they have opposite handedness.

If O and O' are the origins of the coordinate systems $(O, \mathbf{a}, \mathbf{b}, \mathbf{c})$ and $(O', \mathbf{a}', \mathbf{b}', \mathbf{c}')$, used for the description of \mathcal{G} and \mathcal{H} , the column matrix of the coordinates of O' referred to the system ($O, \mathbf{a}, \mathbf{b}, \mathbf{c}$) will be denoted by s. Thus, the coordinate system $(O', \mathbf{a}', \mathbf{b}', \mathbf{c}')$ will be specified completely by the square matrix S and the column matrix s, symbolized by \mathbb{S} : (S, s).

An example of the application of equation (13.1.1.1) is given at the end of this chapter.

13.1.1.1. The mathematical expression of equivalence

Let $\mathbb{W} = (\mathbf{W}, \mathbf{w})$ be the operator of a given symmetry operation of \mathcal{H} referred to $(O, \mathbf{a}, \mathbf{b}, \mathbf{c})$ and $\mathbb{W}' = (W', w')$ the operator of the same operation referred to $(O', \mathbf{a}', \mathbf{b}', \mathbf{c})$. Then the following relation applies

$$SW' = WS$$
 or $W' = S^{-1}WS$ (13.1.1.2)

(cf. Bertaut & Billiet, 1979). The latter expression is more conventional, the former is easier to manipulate. Identifying the rotational (matrix) and translational (column) parts of W, one obtains the following two conditions:

$$SW' = WS$$
,

$$SW' = WS,$$

+ $Sw' = w + Ws = \hat{w} + t_{\mathcal{G}} + Ws$ (13.1.1.2*a*)

or

S

$$Sw' - \hat{w} + (I - W)s = t_{\mathcal{G}}.$$
 (13.1.1.2b)

Here we have split w into a fractional part \hat{w} (smaller than any lattice translation) and $t_{\mathcal{G}}$ which describes a lattice translation in \mathcal{G} . The general expression of the matrix S is

$$\boldsymbol{S} = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix}.$$
 (13.1.1.3)

This general form, without any restrictions on the coefficients, applies only to the triclinic space groups P1 and $P\overline{1}$; P1 has only isomorphic subgroups (cf. Billiet, 1979; Billiet & Rolley Le Coz, 1980). For other space groups, restrictions have to be imposed on the coefficients S_{ii} .

13.1.2. Isomorphic subgroups

For convenience, we consider first those crystal systems that possess a unique direction (the privileged axis being taken parallel to c). We also include here the monoclinic system (unique axis either c or b).

13.1.2.1. Monoclinic, tetragonal, trigonal, hexagonal systems

If W is the matrix corresponding to a rotation about the c axis, W' = W holds if the positive direction is the same for c and c'.[†] In consequence, W must commute with S [cf. equation (13.1.1.2a)]. This condition imposes relations on the coefficients S_{ii} of the matrix so that **S** and det(\mathbf{S}) take the following forms:

Monoclinic system

$$\boldsymbol{M}_{c} = \begin{pmatrix} S_{11} & S_{12} & 0 \\ S_{21} & S_{22} & 0 \\ 0 & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{M}_{c}) = S_{33}(S_{11}S_{22} - S_{12}S_{21});$$

or if b instead of c is used 1~

$$\boldsymbol{M}_{b} = \begin{pmatrix} S_{11} & 0 & S_{13} \\ 0 & S_{22} & 0 \\ S_{31} & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{M}_{b}) = S_{22}(S_{11}S_{33} - S_{13}S_{31}).$$

Tetragonal system

$$\boldsymbol{T}_{1} = \begin{pmatrix} S_{11} & -S_{21} & 0\\ S_{21} & S_{11} & 0\\ 0 & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{T}_{1}) = S_{33}(S_{11}^{2} + S_{21}^{2})$$

Hexagonal and trigonal systems

$$\boldsymbol{H}_{1} = \begin{pmatrix} S_{11} & -S_{21} & 0\\ S_{21} & S_{11} - S_{21} & 0\\ 0 & 0 & S_{33} \end{pmatrix},$$
$$\det(\boldsymbol{H}_{1}) = S_{33}(S_{11}^{2} + S_{21}^{2} - S_{11}S_{21}).$$

For *rhombohedral* space groups, the matrix H_1 applies only when hexagonal axes are used. If rhombohedral axes are used, the matrix *S* has the form

$$\boldsymbol{R}_{1} = \begin{pmatrix} S_{0} & S_{2} & S_{1} \\ S_{1} & S_{0} & S_{2} \\ S_{2} & S_{1} & S_{0} \end{pmatrix},$$

$$\det(\boldsymbol{R}_{1}) = S_{0}^{3} + S_{1}^{3} + S_{2}^{3} - 3S_{0}S_{1}S_{2}$$

$$= (S_{0} + S_{1} + S_{2})$$

$$\times (S_{0}^{2} + S_{1}^{2} + S_{2}^{2} - S_{0}S_{1} - S_{1}S_{2} - S_{2}S_{0}).$$

^{*} In general, this does not hold for non-isomorphic subgroups.

[†] If the positive directions of c and c' are opposite, $W' = W^{-1}$, but this does not bring in any new features.

 $2n_1 + 1$

 n_2

Table 13.1.2.1. Isomorphic subgroups of the plane groupsOBLIQUE SYSTEM

$$S = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix}$$

Conditions: $S_{11} > 0, S_{22} > 0, S_{11}S_{22} > 1, S_{21} = 0, -S_{11}/2 < S_{12} \le S_{11}/2$

RECTANGULAR SYSTEM

 n_1

 n_2

		$\boldsymbol{O} = \begin{pmatrix} S_1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 11 & 0 \\ S_{22} \end{pmatrix}$		
litions:	$S_{11} > 0, S_{22}$	$> 0, S_{11}S_{22}$	> 1		
	O^a	O^b	\boldsymbol{O}^{c}	O^d	0 ^e

 n_1

 $2n_2 + 1$

 $2n_1 + 1$

 $2n_2 + 1$

 $2n_1$

 $2n_2$

SQUARE SYSTEM

Condi

 S_{11}

 S_{22}

$m{T}_1 = egin{pmatrix} S_{11} & -S_{21} \ S_{21} & S_{11} \end{pmatrix}$
Conditions: $S_{11} > 0, S_{21} \ge 0, S_{11}^2 + S_{21}^2 > 1$
$oldsymbol{T}_2=egin{pmatrix} S_{11}&0\0&S_{11} \end{pmatrix}$
Conditions: $T_2^a : S_{11} > 1$; $T_2^b : S_{11} = 2n_1 + 1 > 1$
$m{T}_3 = egin{pmatrix} S_{11} & -S_{11} \ S_{11} & S_{11} \end{pmatrix}$
Condition: $S_{11} > 0$

HEXAGONAL SYSTEM

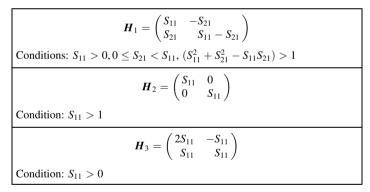


Table of plane subgroups

No. 1 p1: S; No. 2 p2: S; No. 3 $pm: O^a$; No. 4 $pg: O^b$; No. 5 $cm: O^c, O^d$; No. 6 $p2mm: O^a$; No. 7 $p2mg: O^e$; No. 8 $p2gg: O^c$; No. 9 $c2mm: O^c, O^d$; No. 10 $p4: T_1$; No. 11 $p4mm: T_2^a, T_3$; No. 12 $p4gm: T_2^b$; No. 13 $p3: H_1$; No. 14 $p3m1: H_2$; No. 15 $p31m: H_2$; No. 16 $p6: H_1$; No. 17 $p6mm: H_2, H_3$.

13.1.2.1.1. Additional restrictions

If mirror or glide planes parallel to and/or twofold rotation or screw axes perpendicular to the principal rotation axis exist, further conditions are imposed upon the coefficients S_{ij} and these are indicated below (*cf.* Bertaut & Billiet, 1979).

Monoclinic system

The matrices M_c and M_b apply without any further restrictions on the coefficients.

Tetragonal system

The matrix T_1 is valid for all space groups belonging to the crystal classes 4, $\overline{4}$ and 4/m.

For all other space groups, restrictions apply to the coefficients S_{21} according to the following two rules which are consequences of equation (13.1.1.2*a*):

(i) If the last two letters of the Hermann–Mauguin symbol are different, $S_{21} = 0$; the corresponding matrix is called T_2 .

Example: $P4_2/mmc$

$$\boldsymbol{T}_2 = \begin{pmatrix} S_{11} & 0 & 0\\ 0 & S_{11} & 0\\ 0 & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{T}_2) = S_{33}S_{11}^2$$

(ii) If the last two letters are the same (except for the three cases mentioned below), two matrices have to be applied, the matrix T_2 introduced above and the matrix T_1 with $S_{21} = S_{11}$; the corresponding matrix is called T_3 .

$$\boldsymbol{T}_{3} = \begin{pmatrix} S_{11} & -S_{11} & 0\\ S_{11} & S_{11} & 0\\ 0 & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{T}_{3}) = 2S_{33}S_{11}^{2}.$$

The following space groups have matrices T_2 and T_3 : P422, P4mm, P4/mmm, P4₁22, P4₃22, P4₂22, P4cc, P4/mcc, I422, I4mm and I4/mmm. The three exceptions to the rule mentioned above are the space groups P4/nmm, P4/ncc and I4₁22, which allow only T_2 .

Hexagonal and trigonal systems

The matrix H_1 is valid for all space groups belonging to the crystal classes 6, $\overline{6}$, 6/m, 3 and $\overline{3}$.

For all other space groups for which the last two letters of the Hermann–Mauguin symbol are different, $S_{22} = S_{11}$, and the matrix is called H_2 . Examples are $P6_3/mcm$, P312 and P62m.

$$\boldsymbol{H}_2 = \begin{pmatrix} S_{11} & 0 & 0\\ 0 & S_{11} & 0\\ 0 & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{H}_2) = S_{33}S_{11}^2.$$

If the last two letters of the Hermann–Mauguin symbol are the same, two matrices have to be applied, the matrix H_2 introduced above and the matrix H_1 with $S_{11} = 2S'_{11}$ and $S_{21} = S'_{11}$; this matrix is called H_3 ,

$$\boldsymbol{H}_{3} = \begin{pmatrix} 2S'_{11} & -S'_{11} & 0\\ S'_{11} & S'_{11} & 0\\ 0 & 0 & S_{33} \end{pmatrix}, \quad \det(\boldsymbol{H}_{3}) = 3S_{33}S'_{11}^{2}.$$

Examples are P622, P6/mmm and P6cc.

Rhombohedral space groups

For R3 and R3, one has the matrix H_1 for hexagonal axes and R_1 for rhombohedral axes. For all other rhombohedral space groups, one has H_2 (hexagonal axes) and the matrix R_1 with $S_1 = S_2$ (rhombohedral axes). This last matrix is called R_2 . Example: R32.

13. ISOMORPHIC SUBGROUPS OF SPACE GROUPS

Table 13.1.2.2. Isomorphic subgroups of the space groups

TRICLINIC SYSTEM

$m{S} = egin{pmatrix} S_{11} & S_{12} & S_{13} \ S_{21} & S_{22} & S_{23} \ S_{31} & S_{32} & S_{33} \end{pmatrix}$					
Conditions: $S_{11} > 0, S_{22} > 0, S_{33} > 0, S_{11}S_{22}S_{33} > 1$,					
$S_{21} = S_{31} = S_{32} = 0, \ -S_{11}/2 < S_{12} \le S_{11}/2,$					
$-S_{11}/2 < S_{13} \le S_{11}/2, \ -S_{22}/2 < S_{23} \le S_{22}/2$					

MONOCLINIC SYSTEM

Unique axis c $M_{c} = \begin{pmatrix} S_{11} & S_{12} & 0 \\ S_{21} & S_{22} & 0 \\ 0 & 0 & S_{33} \end{pmatrix}$ Conditions: $S_{33} > 0, (S_{11}S_{22} - S_{12}S_{21})S_{33} > 1$										
M_c^a	$n_1 > 0$	0	<i>n</i> ₃	$n_4 > 0$	<i>n</i> ₅	$-n_4/2 < n_3 \le n_4/2$				
\boldsymbol{M}_{c}^{b}	$n_1 > 0$	0	<i>n</i> ₃	$n_4 > 0$	$2n_5 + 1$	$-n_4/2 < n_3 \le n_4/2$				
M_c^c	$n_1 > 0$	$2n_2$	0	$2n_4 + 1 > 0$	$2n_5 + 1$	$-n_1/2 < n_2 \le n_1/2$				
\boldsymbol{M}_{c}^{d}	$n_1 > 0$	$2n_2$	0	$2n_4 > 0$	$2n_5$	$-n_1/2 < n_2 \le n_1/2$				
M_c^e	n_1	$2n_2 > 0$	$n_3 < 0$	0	$2n_5$	$-n_2 < n_1 \le n_2$				
M^f_c	$2n_1 + 1 > 0$	0	$2n_3$	$n_4 > 0$	n_5	$-n_4/2 < n_3 \le n_4/2$				
M_c^g	$2n_1 + 1 > 0$	$2n_2$	0	$2n_4 + 1 > 0$	$2n_5 + 1$	$-(2n_1+1)/2 < n_2 \le (2n_1+1)/2$				
\boldsymbol{M}_{c}^{h}	$2n_1 + 1 > 0$	$2n_2$	0	$2n_4 > 0$	$2n_5$	$-(2n_1+1)/2 < n_2 \le (2n_1+1)/2$				
\boldsymbol{M}_{c}^{i}	$2n_1 + 1$	$2n_2 > 0$	$n_3 < 0$	0	$2n_5$	$-(n_2+1)/2 < n_1 \le (n_2-1)/2$				
\boldsymbol{M}_{c}^{j}	$2n_1+1>0$	0	$2n_3$	$n_4 > 0$	$2n_5 + 1$	$-n_4/2 < n_3 \le n_4/2$				
Unique axis Conditions:	s b $S_{22} > 0, (S_{11}S_{33} - S_{13}S_{33})$	$S_{31})S_{22} > 1$	$oldsymbol{M}_b =$	$\begin{pmatrix} S_{11} & 0 & S_{13} \\ 0 & S_{22} & 0 \\ S_{31} & 0 & S_{33} \end{pmatrix}$						
	S_{11}	<i>S</i> ₁₃	<i>S</i> ₂₂	<i>S</i> ₃₁	S ₃₃	Extra condition				
M_b^a	$n_1 > 0$	n_2	<i>n</i> ₃	0	$n_5 > 0$	$-n_1/2 < n_2 \le n_1/2$				
\boldsymbol{M}_{b}^{b}	$n_1 > 0$	n_2	$2n_3 + 1$	0	$n_{5} > 0$	$-n_1/2 < n_2 \le n_1/2$				
\boldsymbol{M}_{b}^{c}	$2n_1 + 1 > 0$	0	$2n_3 + 1$	$2n_4$	$n_{5} > 0$	$-n_5/2 < n_4 \le n_5/2$				
M^d_b	$2n_1 > 0$	0	$2n_3$	$2n_4$	$n_{5} > 0$	$-n_5/2 < n_4 \le n_5/2$				
M_b^e	0	$n_2 < 0$	$2n_3$	$2n_4 > 0$	n_5	$-n_4 < n_5 \leq n_4$				
\boldsymbol{M}_{b}^{f}	n_1	$2n_2$	<i>n</i> ₃	0	$2n_5 + 1 > 0$	$-n_1/2 < n_2 \le n_1/2$				
M_b^g	$2n_1 + 1 > 0$	0	$2n_3 + 1$	$2n_4$	$2n_5 + 1 > 0$	$-(2n_5+1)/2 < n_4 \le (2n_5+1)/2$				
\boldsymbol{M}_{b}^{h}	$2n_1 > 0$	0	$2n_3$	$2n_4$	$2n_5+1>0$	$-(2n_5+1)/2 < n_4 \le (2n_5+1)/2$				
M_b^i	0	$n_2 < 0$	$2n_3$	$2n_4 > 0$	$2n_5 + 1$	$-(n_4+1)/2 < n_5 \le (n_4-1)/2$				
\boldsymbol{M}_{b}^{j}	$n_1 > 0$	$2n_2$	$2n_3 + 1$	0	$2n_5 + 1 > 0$	$-n_1/2 < n_2 \le n_1/2$				

$$\boldsymbol{R}_{2} = \begin{pmatrix} S_{0} & S_{1} & S_{1} \\ S_{1} & S_{0} & S_{1} \\ S_{1} & S_{1} & S_{0} \end{pmatrix}, \quad \det(\boldsymbol{R}_{2}) = (S_{0} + 2S_{1})(S_{0} - S_{1})^{2}.$$

13.1.2.2. Cubic and orthorhombic systems

Cubic system

For cubic space groups, equation (13.1.1.2a) leads to the matrix C:

$$C = \begin{pmatrix} S & 0 & 0 \\ 0 & S & 0 \\ 0 & 0 & S \end{pmatrix}, \quad \det(C) = S^3.$$

Orthorhombic system There are six choices of matrices O_i (i = 1, 2, 3, 4, 5, 6)corresponding to the identical orientation (O_1) , to cyclic permuta-tions of the three axes $(O_2$ and $O_3)$ and to the interchange of two The determinant is always equal to the zero coefficients, $det(O_i) = \pm S_{1j}S_{2k}S_{3l}$.

axes $(O_4, O_5 \text{ and } O_6)$, *i.e.* to the six orthorhombic 'settings'.

$$\boldsymbol{O}_{1} = \begin{pmatrix} S_{11} & 0 & 0 \\ 0 & S_{22} & 0 \\ 0 & 0 & S_{33} \end{pmatrix}; \quad \boldsymbol{O}_{2} = \begin{pmatrix} 0 & S_{12} & 0 \\ 0 & 0 & S_{23} \\ S_{31} & 0 & 0 \end{pmatrix}; \\ \boldsymbol{O}_{3} = \begin{pmatrix} 0 & 0 & S_{13} \\ S_{21} & 0 & 0 \\ 0 & S_{32} & 0 \end{pmatrix}; \quad \boldsymbol{O}_{4} = \begin{pmatrix} S_{11} & 0 & 0 \\ 0 & 0 & S_{23} \\ 0 & S_{32} & 0 \end{pmatrix}; \\ \boldsymbol{O}_{5} = \begin{pmatrix} 0 & 0 & S_{13} \\ 0 & S_{22} & 0 \\ S_{31} & 0 & 0 \end{pmatrix}; \quad \boldsymbol{O}_{6} = \begin{pmatrix} 0 & S_{12} & 0 \\ S_{21} & 0 & 0 \\ 0 & 0 & S_{33} \end{pmatrix}.$$

The determinant is always equal to the product of the three non-