International Tables for Crystallography (2006). Vol. A, ch. 2.2, pp. 17-41
doi: 10.1107/97809553602060000505

Chapter 2.2. Contents and arrangement of the tables

Contents

  • 2.2. Contents and arrangement of the tables  (pp. 17-41) | html | pdf | chapter contents |
    • 2.2.1. General layout  (p. 17) | html | pdf |
    • 2.2.2. Space groups with more than one description  (p. 17) | html | pdf |
    • 2.2.3. Headline  (pp. 17-18) | html | pdf |
    • 2.2.4. International (Hermann–Mauguin) symbols for plane groups and space groups ( cf. Chapter 12.2 [link] )  (pp. 18-19) | html | pdf |
      • 2.2.4.1. Present symbols  (pp. 18-19) | html | pdf |
      • 2.2.4.2. Changes in Hermann–Mauguin space-group symbols as compared with the 1952 and 1935 editions of International Tables   (p. 19) | html | pdf |
    • 2.2.5. Patterson symmetry  (p. 19) | html | pdf |
    • 2.2.6. Space-group diagrams  (pp. 20-24) | html | pdf |
      • 2.2.6.1. Plane groups  (p. 20) | html | pdf |
      • 2.2.6.2. Triclinic space groups  (p. 20) | html | pdf |
      • 2.2.6.3. Monoclinic space groups ( cf. Sections 2.2.2 and 2.2.16)  (p. 20) | html | pdf |
      • 2.2.6.4. Orthorhombic space groups and orthorhombic settings  (pp. 20-23) | html | pdf |
      • 2.2.6.5. Tetragonal, trigonal P and hexagonal P space groups  (p. 23) | html | pdf |
      • 2.2.6.6. Rhombohedral (trigonal R ) space groups  (p. 23) | html | pdf |
      • 2.2.6.7. Cubic space groups  (p. 23) | html | pdf |
      • 2.2.6.8. Diagrams of the general position  (pp. 23-24) | html | pdf |
    • 2.2.7. Origin  (pp. 24-25) | html | pdf |
      • 2.2.7.1. Origin statement  (pp. 24-25) | html | pdf |
    • 2.2.8. Asymmetric unit  (pp. 25-26) | html | pdf |
    • 2.2.9. Symmetry operations  (pp. 26-27) | html | pdf |
      • 2.2.9.1. Numbering scheme  (p. 26) | html | pdf |
      • 2.2.9.2. Designation of symmetry operations  (pp. 26-27) | html | pdf |
    • 2.2.10. Generators  (p. 27) | html | pdf |
    • 2.2.11. Positions  (pp. 27-28) | html | pdf |
    • 2.2.12. Oriented site-symmetry symbols  (pp. 28-29) | html | pdf |
    • 2.2.13. Reflection conditions  (pp. 29-32) | html | pdf |
      • 2.2.13.1. General reflection conditions  (pp. 29-32) | html | pdf |
      • 2.2.13.2. Special or `extra' reflection conditions  (p. 32) | html | pdf |
      • 2.2.13.3. Structural or non-space-group absences  (p. 32) | html | pdf |
    • 2.2.14. Symmetry of special projections  (pp. 33-35) | html | pdf |
      • 2.2.14.1. Data listed in the space-group tables  (pp. 33-34) | html | pdf |
      • 2.2.14.2. Projections of centred cells (lattices)  (p. 34) | html | pdf |
      • 2.2.14.3. Projections of symmetry elements  (pp. 34-35) | html | pdf |
    • 2.2.15. Maximal subgroups and minimal supergroups  (pp. 35-38) | html | pdf |
      • 2.2.15.1. Maximal non-isomorphic subgroups   (pp. 35-36) | html | pdf |
      • 2.2.15.2. Maximal isomorphic subgroups of lowest index ( cf. Part 13 [link] )  (pp. 36-37) | html | pdf |
      • 2.2.15.3. Minimal non-isomorphic supergroups  (p. 37) | html | pdf |
      • 2.2.15.4. Minimal isomorphic supergroups of lowest index  (p. 37) | html | pdf |
      • 2.2.15.5. Note on basis vectors  (pp. 37-38) | html | pdf |
    • 2.2.16. Monoclinic space groups  (pp. 38-40) | html | pdf |
      • 2.2.16.1. Cell choices  (p. 38) | html | pdf |
      • 2.2.16.2. Settings  (pp. 38-39) | html | pdf |
      • 2.2.16.3. Cell choices and settings in the present tables  (pp. 39-40) | html | pdf |
      • 2.2.16.4. Comparison with earlier editions of International Tables   (p. 40) | html | pdf |
      • 2.2.16.5. Selection of monoclinic cell  (p. 40) | html | pdf |
    • 2.2.17. Crystallographic groups in one dimension  (p. 40) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 2.2.6.1. Triclinic space groups ([\hbox{\sf G}] = general-position diagram)  (p. 21) | html | pdf |
      • Fig. 2.2.6.2. Monoclinic space groups, setting with unique axis b ([\hbox{\sf G}] = general-position diagram)  (p. 21) | html | pdf |
      • Fig. 2.2.6.3. Monoclinic space groups, setting with unique axis c   (p. 21) | html | pdf |
      • Fig. 2.2.6.4. Monoclinic space groups, cell choices 1, 2, 3  (p. 22) | html | pdf |
      • Fig. 2.2.6.5. Orthorhombic space groups  (p. 22) | html | pdf |
      • Fig. 2.2.6.6. Orthorhombic space groups  (p. 22) | html | pdf |
      • Fig. 2.2.6.7. Tetragonal space groups ([\hbox{\sf G}] = general-position diagram)  (p. 23) | html | pdf |
      • Fig. 2.2.6.8. Trigonal P and hexagonal P space groups ([\hbox{\sf G}] = general-position diagram)  (p. 23) | html | pdf |
      • Fig. 2.2.6.9. Rhombohedral R space groups  (p. 23) | html | pdf |
      • Fig. 2.2.6.10. Cubic space groups ([\hbox{\sf G}] = general-position stereodiagrams)  (p. 23) | html | pdf |
      • Fig. 2.2.8.1. Boundary planes of asymmetric units occurring in the space-group tables  (p. 26) | html | pdf |
      • Fig. 2.2.16.1. The three primitive two-dimensional cells which are spanned by the shortest three translation vectors e , f , g in the monoclinic plane  (p. 38) | html | pdf |
      • Fig. 2.2.17.1. The two line groups (one-dimensional space groups)  (p. 40) | html | pdf |
    • Tables
      • Table 2.2.4.1. Lattice symmetry directions for two and three dimensions  (p. 18) | html | pdf |
      • Table 2.2.4.2. Changes in Hermann–Mauguin symbols for two-dimensional groups  (p. 19) | html | pdf |
      • Table 2.2.5.1. Patterson symmetries for two and three dimensions  (p. 20) | html | pdf |
      • Table 2.2.6.1. Numbers of distinct projections and different Hermann–Mauguin symbols for the orthorhombic space groups (space-group number placed between parentheses), listed according to point group as indicated in the headline  (p. 21) | html | pdf |
      • Table 2.2.7.1. Examples of origin statements  (p. 25) | html | pdf |
      • Table 2.2.13.1. Integral reflection conditions for centred cells (lattices)  (p. 29) | html | pdf |
      • Table 2.2.13.2. Zonal and serial reflection conditions for glide planes and screw axes ( cf. Chapter 1.3 [link] )  (pp. 30-31) | html | pdf |
      • Table 2.2.13.3. Reflection conditions for the plane groups  (p. 31) | html | pdf |
      • Table 2.2.14.1. Cell parameters a ′, b ′, γ′ of the two-dimensional cell in terms of cell parameters a , b , c , α, β, γ of the three-dimensional cell for the projections listed in the space-group tables of Part 7 [link]   (p. 33) | html | pdf |
      • Table 2.2.14.2. Projections of crystallographic symmetry elements  (p. 34) | html | pdf |
      • Table 2.2.16.1. Monoclinic setting symbols (unique axis is underlined)  (p. 39) | html | pdf |
      • Table 2.2.16.2. Symbols for centring types and glide planes of monoclinic space groups  (p. 39) | html | pdf |