International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 5.1, pp. 80-83

Table 5.1.3.1 

H. Arnolda

a Institut für Kristallographie, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany

Table 5.1.3.1 | top | pdf |
Selected 3 × 3 transformation matrices [{\bi P}] and [{\bi Q} = {\bi P}^{ -1}]

For inverse transformations (against the arrow) replace P by Q and vice versa.

Transformation P [{\bi Q} = {\bi P}^{-1}] Crystal system
[{\bf c} \rightarrow {1 \over 2}{\bf c}] [\pmatrix{1 &0 &0\cr 0 &1 &0\cr 0 &0 &{1 \over 2}\cr}] [\pmatrix{1 &0 &0\cr 0 &1 &0\cr 0 &0 &2\cr}] All systems
[{\bf b} \rightarrow {1 \over 2}{\bf b}] [\pmatrix{1 &0 &0\cr 0 &{1 \over 2} &0\cr 0 &0 &1\cr}] [\pmatrix{1 &0 &0\cr 0 &2 &0\cr 0 &0 &1\cr}] All systems
[{\bf a} \rightarrow {1 \over 2}{\bf a}] [\pmatrix{{1 \over 2} &0 &0\cr 0 &1 &0\cr 0 &0 &1\cr}] [\pmatrix{2 &0 &0\cr 0 &1 &0\cr 0 &0 &1\cr}] All systems
Cell choice 1 [\rightarrow] cell choice 2: [\cases{P \rightarrow P\cr C \rightarrow A\cr}] [\pmatrix{\bar{1} &0 &1\cr 0 &1 &0\cr \bar{1} &0 &0\cr}] [\pmatrix{0 &0 &\bar{1}\cr 0 &1 &0\cr 1 &0 &\bar{1}\cr}] Monoclinic (cf. Section 2.2.16[link] )
Cell choice 2 [\rightarrow] cell choice 3: [\cases{P \rightarrow P\cr A \rightarrow I\cr}] [\matrix{\cr \hbox{Unique axis }{\bf b}\hfill\cr \hbox{invariant}\hfill\cr}]
Cell choice 3 [\rightarrow] cell choice 1: [\cases{P \rightarrow P\cr I \rightarrow C\cr}]
(Fig. 5.1.3.2a[link])      
Cell choice 1 [\rightarrow] cell choice 2: [\cases{P \rightarrow P\cr A \rightarrow B\cr}] [\pmatrix{0 &\bar{1} &0\cr 1 &\bar{1} &0\cr 0 &0 &1\cr}] [\pmatrix{\bar{1} &1 &0\cr \bar{1} &0 &0\cr 0 &0 &1\cr}] Monoclinic (cf. Section 2.2.16[link] )
Cell choice 2 [\rightarrow] cell choice 3: [\cases{P \rightarrow P\cr B \rightarrow I\cr}] [\matrix{\hbox{Unique axis }{\bf c}\hfill\cr \hbox{invariant}\hfill\cr}]
Cell choice 3 [\rightarrow] cell choice 1: [\cases{P \rightarrow P\cr I \rightarrow A\cr}]
(Fig. 5.1.3.2b[link])      
Cell choice 1 [\rightarrow] cell choice 2: [\cases{P \rightarrow P\cr B \rightarrow C\cr}] [\pmatrix{1 &0 &0\cr 0 &0 &\bar{1}\cr 0 &1 &\bar{1}\cr}] [\pmatrix{1 &0 &0\cr 0 &\bar{1} &1\cr 0 &\bar{1} &0\cr}] Monoclinic (cf. Section 2.2.16[link] )
Cell choice 2 [\rightarrow] cell choice 3: [\cases{P \rightarrow P\cr C \rightarrow I\cr}] [\matrix{\hbox{Unique axis } {\bf a}\hfill\cr \hbox{invariant}\hfill\cr}]
Cell choice 3 [\rightarrow] cell choice 1: [\cases{P \rightarrow P\cr I \rightarrow B\cr}]
(Fig. 5.1.3.2c[link])      
Unique axis b [\rightarrow] unique axis c      
Cell choice 1: [\cases{P \rightarrow P\cr C \rightarrow A\cr}] [\pmatrix{0 &1 &0\cr 0 &0 &1\cr 1 &0 &0\cr}] [\pmatrix{0 &0 &1\cr 1 &0 &0\cr 0 &1 &0\cr}] Monoclinic (cf. Section 2.2.16[link] )
Cell choice 2: [\cases{P \rightarrow P\cr A \rightarrow B\cr}] Cell choice invariant
Cell choice 3: [\cases{P \rightarrow P\cr I \rightarrow I\cr}]
Unique axis b [\rightarrow] unique axis a      
Cell choice 1: [\cases{P \rightarrow P\cr C \rightarrow B\cr}] [\pmatrix{0 &0 &1\cr 1 &0 &0\cr 0 &1 &0\cr}] [\pmatrix{0 &1 &0\cr 0 &0 &1\cr 1 &0 &0\cr}] Monoclinic (cf. Section 2.2.16[link] )
Cell choice 2: [\cases{P \rightarrow P\cr A \rightarrow C\cr}] Cell choice invariant
Cell choice 3: [\cases{P \rightarrow P\cr I \rightarrow I\cr}]
Unique axis c [\rightarrow] unique axis a      
Cell choice 1: [\cases{P \rightarrow P\cr A \rightarrow B\cr}] [\pmatrix{0 &1 &0\cr 0 &0 &1\cr 1 &0 &0\cr}] [\pmatrix{0 &0 &1\cr 1 &0 &0\cr 0 &1 &0\cr}] Monoclinic (cf. Section 2.2.16[link] )
Cell choice 2: [\cases{P \rightarrow P\cr B \rightarrow C\cr}] Cell choice invariant
Cell choice 3: [\cases{P \rightarrow P\cr I \rightarrow I\cr}]
[I \rightarrow P] (Fig. 5.1.3.3[link]) [{\hbox to 2pc{}}{1 \over 2}({\bf a} + {\bf b} + {\bf c}) \rightarrow ({\bf a}' + {\bf b}' + {\bf c}')] [\openup2pt\pmatrix{\bar{{1 \over 2}} &{1 \over 2} &{1 \over 2}\cr {1 \over 2} &\bar{{1 \over 2}} &{1 \over 2}\cr {1 \over 2} &{1 \over 2} &\bar{{1 \over 2}}\cr}] [\pmatrix{0 &1 &1\cr 1 &0 &1\cr 1 &1 &0\cr}] [\matrix{{\rm Orthorhombic}\hfill\cr {\rm Tetragonal}\hfill\cr {\rm Cubic}\hfill}]
[F \rightarrow P] (Fig. 5.1.3.4[link]) [{\hbox to 1.9pc{}}({\bf a} + {\bf b} + {\bf c})] invariant vector [\openup2pt\pmatrix{0 &{1 \over 2} &{1 \over 2}\cr {1 \over 2} &0 &{1 \over 2}\cr {1 \over 2} &{1 \over 2} &0\cr}] [\pmatrix{\bar{1} &1 &1\cr 1 &\bar{1} &1\cr 1 &1 &\bar{1}\cr}] [\matrix{{\rm Orthorhombic}\hfill\cr {\rm Tetragonal}\hfill\cr {\rm Cubic}\hfill}]
[({\bf b}, {\bf a}, \bar{{\bf c}}) \rightarrow ({\bf a}, {\bf b}, {\bf c})] [\pmatrix{0 &1 &0\cr 1 &0 &0\cr 0 &0 &\bar{1}\cr}] [\pmatrix{0 &1 &0\cr 1 &0 &0\cr 0 &0 &\bar{1}\cr}] Unconventional orthorhombic setting
[({\bf c}, {\bf a}, {\bf b}) \rightarrow ({\bf a}, {\bf b}, {\bf c})] [\pmatrix{0 &0 &1\cr 1 &0 &0\cr 0 &1 &0\cr}] [\pmatrix{0 &1 &0\cr 0 &0 &1\cr 1 &0 &0\cr}] Unconventional orthorhombic setting
[(\bar{{\bf c}}, {\bf b}, {\bf a}) \rightarrow ({\bf a}, {\bf b}, {\bf c})] [\pmatrix{0 &0 &\bar{1}\cr 0 &1 &0\cr 1 &0 &0\cr}] [\pmatrix{0 &0 &1\cr 0 &1 &0\cr \bar{1} &0 &0\cr}] Unconventional orthorhombic setting
[({\bf b}, {\bf c}, {\bf a}) \rightarrow ({\bf a}, {\bf b}, {\bf c})] [\pmatrix{0 &1 &0\cr 0 &0 &1\cr 1 &0 &0\cr}] [\pmatrix{0 &0 &1\cr 1 &0 &0\cr 0 &1 &0\cr}] Unconventional orthorhombic setting
[({\bf a}, \bar{{\bf c}}, {\bf b}) \rightarrow ({\bf a}, {\bf b}, {\bf c})] [\pmatrix{1 &0 &0\cr 0 &0 &\bar{1}\cr 0 &1 &0\cr}] [\pmatrix{1 &0 &0\cr 0 &0 &1\cr 0 &\bar{1} &0\cr}] Unconventional orthorhombic setting
[\left.\matrix{P\rightarrow C_{1}\cr I\rightarrow F_{1}\cr}\right\}] (Fig. 5.1.3.5[link]) c axis invariant [\pmatrix{1 &1 &0\cr \bar{1} &1 &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{{1 \over 2} &\bar{{1 \over 2}} &0\cr {1 \over 2} &{1 \over 2} &0\cr 0 &0 &1\cr}] Tetragonal (cf. Section 4.3.4[link] )
[\left.\matrix{P\rightarrow C_{2}\cr I\rightarrow F_{2}\cr}\right\}] (Fig. 5.1.3.5[link]) c axis invariant [\pmatrix{1 &\bar{1} &0\cr 1 &1 &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{{1 \over 2} &{1 \over 2} &0\cr \bar{1 \over 2} &{1 \over 2} &0\cr 0 &0 &1\cr}] Tetragonal (cf. Section 4.3.4[link] )
Primitive rhombohedral cell [\rightarrow] triple hexagonal cell [R_{1}], obverse setting (Fig. 5.1.3.6c[link]) [\pmatrix{1 &0 &1\cr \bar{1} &1 &1\cr 0 &\bar{1} &1\cr}] [\openup2pt\pmatrix{{2 \over 3} &\bar{{1 \over 3}} &\bar{{1 \over 3}}\cr {1 \over 3} &{1 \over 3} &\bar{{2} \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow] triple hexagonal cell [R_{2}], obverse setting (Fig. 5.1.3.6c[link]) [\pmatrix{0 &\bar{1} &1\cr 1 &0 &1\cr \bar{1} &1 &1\cr}] [\openup2pt\pmatrix{\bar{{1 \over 3}} &{2 \over 3} &\bar{{1 \over 3}}\cr \bar{{2} \over 3} &{1 \over 3} &{1 \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow] triple hexagonal cell [R_{3}], obverse setting (Fig. 5.1.3.6c[link]) [\pmatrix{\bar{1} &1 &1\cr 0 &\bar{1} &1\cr 1 &0 &1\cr}] [\openup2pt\pmatrix{\bar{{1 \over 3}} &\bar{{1 \over 3}} &{2 \over 3}\cr {1 \over 3} &\bar{{2} \over 3} &{1 \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow] triple hexagonal cell [R_{1}], reverse setting (Fig. 5.1.3.6d[link]) [\pmatrix{\bar{1} &0 &1\cr 1 &\bar{1} &1\cr 0 &1 &1\cr}] [\openup2pt\pmatrix{\bar{{2 \over 3}} &{1 \over 3} &{1 \over 3}\cr \bar{{1} \over 3} &\bar{{1} \over 3} &{2 \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow] triple hexagonal cell [R_{2}], reverse setting (Fig. 5.1.3.6d[link]) [\pmatrix{0 &1 &1\cr \bar{1} &0 &1\cr 1 &\bar{1} &1\cr}] [\openup2pt\pmatrix{{1 \over 3} &\bar{{2 \over 3}} &{1 \over 3}\cr {2 \over 3} &\bar{{1} \over 3} &\bar{{1} \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow] triple hexagonal cell [R_{3}], reverse setting (Fig. 5.1.3.6d[link]) [\pmatrix{1 &\bar{1} &1\cr 0 &1 &1\cr \bar{1} &0 &1\cr}] [\openup2pt\pmatrix{{1 \over 3} &{1 \over 3} &\bar{{2 \over 3}}\cr \bar{{1} \over 3} &{2 \over 3} &\bar{{1} \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] orthohexagonal centred cell [C_{1}] (Fig. 5.1.3.7[link]) [\pmatrix{1 &1 &0\cr 0 &2 &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{1 &\bar{{1 \over 2}} &0\cr 0 &{1 \over 2} &0\cr 0 &0 &1\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] orthohexagonal centred cell [C_{2}] (Fig. 5.1.3.7[link]) [\pmatrix{1 &\bar{1} &0\cr 1 &1 &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{{1 \over 2} &{1 \over 2} &0\cr \bar{{1} \over 2} &{1 \over 2} &0\cr 0 &0 &1\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] orthohexagonal centred cell [C_{3}] (Fig. 5.1.3.7[link]) [\pmatrix{0 &\bar{2} &0\cr 1 &\bar{1} &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{\bar{{1 \over 2}} &1 &0\cr \bar{1 \over 2} &0 &0\cr 0 &0 &1\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] triple hexagonal cell [H_{1}] (Fig. 5.1.3.8[link]) [\pmatrix{1 &1 &0\cr \bar{1} &2 &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{{2 \over 3} &\bar{{1 \over 3}} &0\cr {1 \over 3} &{1 \over 3} &0\cr 0 &0 &1\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] triple hexagonal cell [H_{2}] (Fig. 5.1.3.8[link]) [\pmatrix{2 &\bar{1} &0\cr 1 &1 &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{{1 \over 3} &{1 \over 3} &0\cr \bar{{1} \over 3} &{2 \over 3} &0\cr 0 &0 &1\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] triple hexagonal cell [H_{3}] (Fig. 5.1.3.8[link]) [\pmatrix{1 &\bar{2} &0\cr 2 &\bar{1} &0\cr 0 &0 &1\cr}] [\openup2pt\pmatrix{\bar{{1 \over 3}} &{2 \over 3} &0\cr \bar{{2 \over 3}} &{1 \over 3} &0\cr 0 &0 &1\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] triple rhombohedral cell [D_{1}] [\pmatrix{1 &0 &\bar{1}\cr 0 &1 &\bar{1}\cr 1 &1 &1\cr}] [\openup2pt\pmatrix{{2 \over 3} &\bar{{1 \over 3}} &{1 \over 3}\cr \bar{1 \over 3} &{2 \over 3} &{1 \over 3}\cr \bar{1 \over 3} &\bar{1 \over 3} &{1 \over 3}\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Hexagonal cell [P \rightarrow] triple rhombohedral cell [D_{2}] [\pmatrix{\bar{1} &0 &1\cr 0 &\bar{1} &1\cr 1 &1 &1\cr}] [\openup2pt\pmatrix{\bar{{2 \over 3}} &{1 \over 3} &{1 \over 3}\cr {1 \over 3} &\bar{2 \over 3} &{1 \over 3}\cr {1 \over 3} &{1 \over 3} &{1 \over 3}\cr}] Trigonal
Hexagonal (cf. Section 4.3.5[link] )
Triple hexagonal cell R, obverse setting [\rightarrow] C-centred monoclinic cell, unique axis b, cell choice 1
(Fig. 5.1.3.9a[link]) c and b axes invariant
[\openup3pt\pmatrix{{2 \over 3} &0 &0\cr {1 \over 3} &1 &0\cr \bar{{2 \over 3}} &0 &1\cr}] [\openup3pt\pmatrix{{3 \over 2} &0 &0\cr \bar{{1 \over 2}} &1 &0\cr 1 &0 &1\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Triple hexagonal cell R, obverse setting [\rightarrow] C-centred monoclinic cell, unique axis b, cell choice 2
(Fig. 5.1.3.9a[link]) c axis invariant
[\openup2pt\pmatrix{\bar{{1 \over 3}} &\bar{1} &0\cr {1 \over 3} &\bar{1} &0\cr \bar{{2 \over 3}} &0 &1\cr}] [\openup2pt\pmatrix{\bar{{3 \over 2}} &{3 \over 2} &0\cr \bar{{1 \over 2}} &\bar{{1 \over 2}} &0\cr \bar{1} &1 &1\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Triple hexagonal cell R, obverse setting [\rightarrow] C-centred monoclinic cell, unique axis b, cell choice 3
(Fig. 5.1.3.9a[link]) [{\bf a}_{\rm h} \rightarrow {\bf b}_{\rm m}, {\bf c}] axis invariant
[\openup3pt\pmatrix{\bar{{1 \over 3}} &1 &0\cr \bar{{2 \over 3}} &0 &0\cr \bar{{2 \over 3}} &0 &1\cr}] [\openup3pt\pmatrix{0 &\bar{{3 \over 2}} &0\cr 1 &\bar{{1 \over 2}} &0\cr 0 &\bar{1} &1\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Triple hexagonal cell R, obverse setting [\rightarrow] A-centred monoclinic cell, unique axis c, cell choice 1
(Fig. 5.1.3.9b[link]) [{\bf b}_{\rm h} \rightarrow {\bf c}_{\rm m}, {\bf c}_{\rm h} \rightarrow {\bf a}_{\rm m}]
[\openup2pt\pmatrix{0 &{2 \over 3} &0\cr 0 &{1 \over 3} &1\cr 1 &\bar{{2 \over 3}} &0\cr}] [\openup3pt\pmatrix{1 &0 &1\cr {3 \over 2} &0 &0\cr \bar{{1 \over 2}} &1 &0\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Triple hexagonal cell R, obverse setting [\rightarrow] A-centred monoclinic cell, unique axis c, cell choice 2
(Fig. 5.1.3.9b[link]) [{\bf c}_{\rm h} \rightarrow {\bf a}_{\rm m}]
[\openup3pt\pmatrix{0 &\bar{{1 \over 3}} &\bar{1}\cr 0 &{1 \over 3} &\bar{1}\cr 1 &\bar{{2 \over 3}} &0\cr}] [\openup3pt\pmatrix{\bar{1} &1 &1\cr \bar{{3 \over 2}} &{3 \over 2} &0\cr \bar{{1 \over 2}} &\bar{{1 \over 2}} &0\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Triple hexagonal cell R, obverse setting [\rightarrow] A-centred monoclinic cell, unique axis c, cell choice 3
(Fig. 5.1.3.9b[link]) [{\bf a}_{\rm h} \rightarrow {\bf c}_{\rm m}, {\bf c}_{\rm h} \rightarrow {\bf a}_{\rm m}]
[\openup3pt\pmatrix{0 &\bar{{1 \over 3}} &1\cr 0 &\bar{{2 \over 3}} &0\cr 1 &\bar{{2 \over 3}} &0\cr}] [\openup3pt\pmatrix{0 &\bar{1} &1\cr 0 &\bar{{3 \over 2}} &0\cr 1 &\bar{{1 \over 2}} &0\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow C]-centred monoclinic cell, unique axis b, cell choice 1
(Fig. 5.1.3.10a[link]) [[111]_{\rm r} \rightarrow {\bf c}_{\rm m}]
[\pmatrix{0 &0 &1\cr \bar{1} &1 &1\cr \bar{1} &\bar{1} &1\cr}] [\openup2pt\pmatrix{1 &\bar{{1 \over 2}} &\bar{{1 \over 2}}\cr 0 &{1 \over 2} &\bar{{1 \over 2}}\cr 1 &0 &0\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow C]-centred monoclinic cell, unique axis b, cell choice 2
(Fig. 5.1.3.10a[link]) [[111]_{\rm r} \rightarrow {\bf c}_{\rm m}]
[\pmatrix{\bar{1} &\bar{1} &1\cr 0 &0 &1\cr \bar{1} &1 &1\cr}] [\openup3pt\pmatrix{\bar{{1 \over 2}} &1 &\bar{{1 \over 2}}\cr \bar{{1 \over 2}} &0 &{1 \over 2}\cr 0 &1 &0\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow C]-centred monoclinic cell, unique axis b, cell choice 3
(Fig. 5.1.3.10a[link]) [[111]_{\rm r} \rightarrow {\bf c}_{\rm m}]
[\pmatrix{\bar{1} &1 &1\cr \bar{1} &\bar{1} &1\cr 0 &0 &1\cr}] [\pmatrix{\bar{{1 \over 2}} &\bar{{1 \over 2}} &1\cr {1 \over 2} &\bar{{1 \over 2}} &0\cr 0 &0 &1\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow A]-centred monoclinic cell, unique axis c, cell choice 1
(Fig. 5.1.3.10b[link]) [[111]_{\rm r} \rightarrow {\bf a}_{\rm m}]
[\pmatrix{1 &0 &0\cr 1 &\bar{1} &1\cr 1 &\bar{1} &\bar{1}\cr}] [\openup3pt\pmatrix{1 &0 &0\cr 1 &\bar{{1 \over 2}} &\bar{{1 \over 2}}\cr 0 &{1 \over 2} &\bar{{1 \over 2}}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow A]-centred monoclinic cell, unique axis c, cell choice 2
(Fig. 5.1.3.10b[link]) [[111]_{\rm r} \rightarrow {\bf a}_{\rm m}]
[\pmatrix{1 &\bar{1} &\bar{1}\cr 1 &0 &0\cr 1 &\bar{1} &1\cr}] [\openup3pt\pmatrix{0 &1 &0\cr \bar{{1 \over 2}} &1 &\bar{{1 \over 2}}\cr \bar{{1 \over 2}} &0 &{1 \over 2}\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )
Primitive rhombohedral cell [\rightarrow A]-centred monoclinic cell, unique axis c, cell choice 3
(Fig. 5.1.3.10b[link]) [[111]_{\rm r} \rightarrow {\bf a}_{\rm m}]
[\pmatrix{1 &\bar{1} &1\cr 1 &\bar{1} &\bar{1}\cr 1 &0 &0\cr}] [\openup3pt\pmatrix{0 &0 &1\cr \bar{{1 \over 2}} &\bar{{1 \over 2}} &1\cr {1 \over 2} &\bar{{1 \over 2}} &0\cr}] Rhombohedral space groups (cf. Section 4.3.5[link] )