International Tables for Crystallography (2006). Vol. A, ch. 8.1, pp. 720-725
doi: 10.1107/97809553602060000514 |

## Chapter 8.1. Basic concepts

## Chapter index

Affine

equivalence classes 8.1.1.1

Augmented matrix

**8.1.2**Axes

of rotation and rotoinversion 8.1.5

Bravais

(type of) lattice 8.1.1.1

Cell

parameters 8.1.4

Column part of a symmetry operation (motion)

**8.1.2**Coset and coset decomposition

**8.1.6**Direct space 8.1.2

Euclidean

space 8.1.2

Fixed point of a symmetry operation (motion)

**8.1.2**Generalized symmetry 8.1.1

General

position 8.1.6

Incommensurate phases 8.1.1

Intrinsic glide part of a symmetry operation 8.1.5

Intrinsic screw part of a symmetry operation 8.1.5

Intrinsic translation part of a symmetry operation

**8.1.5**Invariant (normal) subgroup

**8.1.6**Isometric mapping and isometry 8.1.2

Line (one-dimensional) groups and lattices 8.1.6

Mapping, linear 8.1.2

Metrics in point and vector space 8.1.2

Motion 8.1.2

*n*-Dimensional crystallography 8.1.1

One-dimensional (line)

groups and lattices 8.1.6

Plane (two-dimensional) space groups

**8.1.6**Position

general and special 8.1.6

Quasicrystals 8.1.1

Reflection (mirror reflection) 8.1.2

Rotation part of a symmetry operation (motion)

**8.1.2**Seitz symbol 8.1.2

Subgroups and supergroups

normal or invariant (subgroups) 8.1.6

Subperiodic groups 8.1.1

Symmorphic space group

**8.1.6**Two-dimensional (plane)

space groups 8.1.6

Unit cell

**8.1.4**