
8.2. Classifications of space groups, point groups and lattices

BY H. WONDRATSCHEK

8.2.1. Introduction

One of the main tasks of theoretical crystallography is to sort the
infinite number of conceivable crystal patterns into a finite number
of classes, where the members of each class have certain properties
in common. In such a classification, each crystal pattern is assigned
only to one class. The elements of a class are called equivalent, the
classes being equivalence classes in the mathematical sense of the
word. Sometimes the word ‘type’ is used instead of ‘class’.

An important principle in the classification of crystals and crystal
patterns is symmetry, in particular the space group of a crystal
pattern. The different classifications of space groups discussed here
are displayed in Fig. 8.2.1.1.

Classification of crystals according to symmetry implies three
steps. First, criteria for the symmetry classes have to be defined. The
second step consists of the derivation and complete listing of the
possible symmetry classes. The third step is the actual assignment
of the existing crystals to these symmetry classes. In this chapter,
only the first step is dealt with. The space-group tables of this
volume are the result of the second step. The third step is beyond the
scope of this volume.

8.2.2. Space-group types

The finest commonly used classification of three-dimensional space
groups, i.e. the one resulting in the highest number of classes, is the
classification into the 230 (crystallographic) space-group types.*
The word ‘type’ is preferred here to the word ‘class’, since in
crystallography ‘class’ is already used in the sense of ‘crystal class’,
cf. Sections 8.2.3 and 8.2.4. The classification of space groups into
space-group types reveals the common symmetry properties of all
space groups belonging to one type. Such common properties of the
space groups can be considered as ‘properties of the space-group
types’.

The practising crystallographer usually assumes the 230 space-
group types to be known and to be described in this volume by
representative data such as figures and tables. To the experimentally
determined space group of a particular crystal structure, e.g. of
pyrite FeS2, the corresponding space-group type No. 205 �Pa�3 �
T6

h � of International Tables is assigned. Two space groups, e.g.
those of FeS2 and CO2, belong to the same space-group type if their
symmetries correspond to the same entry in International Tables.

The rigorous definition of the classification of space groups into
space-group types can be given in a more geometric or a more
algebraic way. Here matrix algebra will be followed, by which
primarily the classification into the 219 so-called affine space-group
types is obtained.† For this classification, each space group is
referred to a primitive basis and an origin. In this case, the matrices
W j of the symmetry operations consist of integral coefficients and

det �W j� � �1 holds. Two space groups � and �� are then
represented by their �n � 1� 	 �n � 1� matrix groups 
�� and

���. These two matrix groups are now compared.

Definition: The space groups � and �� belong to the same space-
group type if, for each primitive basis and each origin of �, a
primitive basis and an origin of �� can be found so that the matrix
groups 
�� and 
��� are identical. In terms of matrices, this can be
expressed by the following definition:

Definition: The space groups � and �� belong to the same space-
group type if an �n � 1� 	 �n � 1� matrix � exists, for which the
matrix part P is an integral matrix with det �P� � �1 and the
column part p consists of real numbers, such that


��� � ��1
��� �8�2�2�1�
holds. The matrix part P of � describes the transition from the
primitive basis of � to the primitive basis of ��. The column part p
of � expresses the (possibly) different origin choices for the
descriptions of � and ��.

Equation (8.2.2.1) is an equivalence relation for space groups.
The corresponding classes are called affine space-group types. By
this definition, one obtains 17 plane-group types for E2 and 219
space-group types for E3, see Fig. 8.2.1.1. Listed in the space-group

Fig. 8.2.1.1. Classifications of space groups. In each box, the number of
classes, e.g. 32, and the section in which the corresponding term is
defined, e.g. 8.2.4, are stated.

� These space-group types are often denoted by the word ‘space group’ when
speaking of the 17 ‘plane groups’ or of the 219 or 230 ‘space groups’. In a number of
cases, the use of the same word ‘space group’ with two different meanings (‘space
group’ and ‘space-group type’ which is an infinite set of space groups) is of no
further consequence. In some cases, however, it obscures important relations. For
example, it is impossible to appreciate the concept of isomorphic subgroups of a
space group if one does not strictly distinguish between space groups and space-
group types: cf. Section 8.3.3 and Part 13.
� According to the ‘Theorem of Bieberbach’, in all dimensions the classification
into affine space-group types results in the same types as the classification into
isomorphism types of space groups. Thus, the affine equivalence of different space
groups can also be recognized by purely group-theoretical means: cf. Ascher &
Janner (1965, 1968/69).
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tables are 17 plane-group types for E2 and 230 space-group types
for E3. Obviously, the equivalence definition of the space-group
tables differs somewhat from the one used above. In practical
crystallography, one wants to distinguish between right- and left-
handed screws and does not want to change from a right-handed to a
left-handed coordinate system. In order to avoid such transforma-
tions, the matrix P of equation (8.2.2.1) is restricted by the
additional condition det �P� � �1. Using matrices � with det �P� �
�1 only, 11 space-group types of E3 split into pairs, which are the
so-called pairs of enantiomorphic space-group types. The Her-
mann–Mauguin and Schoenflies symbols (in parentheses) of the
pairs of enantiomorphic space-group types are P41---P43 �C2

4---C4
4�,

P4122---P4322 �D3
4---D7

4�, P41212---P43212 �D4
4---D8

4�, P31---P32

�C2
3---C3

3�, P3121---P3221 �D4
3---D6

3�, P3112---P3212 �D3
3---D5

3�,
P61---P65 �C2

6---C3
6�, P62---P64 �C4

6---C5
6�, P6122---P6522 �D2

6---D3
6�,

P6222---P6422 �D4
6---D5

6� and P4132---P4332 �O7---O6�. In order to
distinguish between the two definitions of space-group types, the
first is called the classification into the 219 affine space-group types
and the second the classification into the 230 crystallographic or
positive affine or proper affine space-group types, see Fig. 8.2.1.1.
Both classifications are useful.

In Section 8.1.6, symmorphic space groups were defined. It can
be shown (with either definition of space-group type) that all space
groups of a space-group type are symmorphic if one of these space
groups is symmorphic. Therefore, it is also possible to speak of
types of symmorphic and non-symmorphic space groups. In E3,
symmorphic space groups do not occur in enantiomorphic pairs.
This does happen, however, in E4.

The so-called space-group symbols are really symbols of
‘crystallographic space-group types’. There are several different
kinds of symbols (for details see Part 12). The numbers denoting the
crystallographic space-group types and the Schoenflies symbols are
unambiguous but contain little information. The Hermann–
Mauguin symbols depend on the choice of the coordinate system
but they are much more informative than the other notations.

8.2.3. Arithmetic crystal classes

As space groups not only of the same type but also of different types
have symmetry properties in common, coarser classifications can be
devised which are classifications of both space-group types and
individual space groups. The following classifications are of this
kind. Again each space group is referred to a primitive basis and an
origin.

Definition: All those space groups belong to the same arithmetic
crystal class for which the matrix parts are identical if suitable
primitive bases are chosen, irrespective of their column parts.

Algebraically, this definition may be expressed as follows.
Equation (8.2.2.1) of Section 8.2.2 relating space groups of the
same type may be written more explicitly as follows:


�W �, w��� � 
P�1WP, P�1�w � �W � I�p���, �8�2�3�1�
the matrix part of which is


W �� � 
P�1WP�� �8�2�3�2�
Space groups of different types belong to the same arithmetic
crystal class if equation (8.2.3.2), but not equation (8.2.2.1) or
equation (8.2.3.1), is fulfilled, e.g. space groups of types P2 and
P21. This gives rise to the following definition:

Definition: Two space groups belong to the same arithmetic
crystal class of space groups if there is an integral matrix P with
det �P� � �1 such that


W �� � 
P�1WP� �8�2�3�2�
holds.

By definition, both space groups and space-group types may be
classified into arithmetic crystal classes. It is apparent from
equation (8.2.3.2) that ‘arithmetic equivalence’ refers only to the
matrix parts and not to the column parts of the symmetry operations.
Among the space-group types of each arithmetic crystal class there
is exactly one for which the column parts vanish for a suitable
choice of the origin. This is the symmorphic space-group type, cf.
Sections 8.1.6 and 8.2.2. The nomenclature for arithmetic crystal
classes makes use of this relation: The lattice letter and the point-
group part of the Hermann–Mauguin symbol for the symmorphic
space-group type are interchanged to designate the arithmetic
crystal class, cf. de Wolff et al. (1985). This symbolism enables one
to recognize easily the arithmetic crystal class to which a space
group belongs: One replaces in the Hermann–Mauguin symbol of
the space group all screw rotations and glide reflections by the
corresponding rotations and reflections and interchanges then the
lattice letter and the point-group part.

Examples
The space groups with Hermann–Mauguin symbols P2�m,
P21�m, P2�c and P21�c belong to the arithmetic crystal class
2�mP, whereas C2�m and C2�c belong to the different
arithmetic crystal class 2�mC. The space groups with symbols
P31m and P31c form the arithmetic crystal class 31mP; those
with symbols P3m1 and P3c1 form the different arithmetic
crystal class 3m1P. A further arithmetic crystal class, 3mR, is
composed of the space groups R3m and R3c.

Remark: In order to belong to the same arithmetic crystal class,
space groups must belong to the same geometric crystal class, cf.
Section 8.2.4 and to the same Bravais flock; cf. Section 8.2.6. These
two conditions, however, are only necessary but not sufficient.

There are 13 arithmetic crystal classes of plane groups in E2 and
73 arithmetic crystal classes of space groups in E3, see Fig. 8.2.1.1.
Arithmetic crystal classes are rarely used in practical crystal-
lography, even though they play some role in structural crystal-
lography because the ‘permissible origins’ (see Giacovazzo, 2002)
are the same for all space groups of one arithmetic crystal class. The
classification of space-group types into arithmetic crystal classes,
however, is of great algebraic consequence. In fact, the arithmetic
crystal classes are the basis for the further classifications of space
groups.

In E3, enantiomorphic pairs of space groups always belong to the
same arithmetic crystal class. Enantiomorphism of arithmetic
crystal classes can be defined analogously to enantiomorphism of
space groups. It does not occur in E2 and E3, but appears in spaces
of higher dimensions, e.g. in E4; cf. Brown et al. (1978).

In addition to space groups, equation (8.2.3.2) also classifies the
set of all finite integral-matrix groups. Thus, one can speak of
arithmetic crystal classes of finite integral-matrix groups. It is
remarkable, however, that this classification of the matrix groups
does not imply a classification of the corresponding point groups.
Although every finite integral-matrix group represents the point
group of some space group, referred to a primitive coordinate basis,
there are no arithmetic crystal classes of point groups. For example,
space-group types P2 and C2 both have point groups of the same
type, 2, but referred to primitive bases their �3 	 3� matrix groups
are not arithmetically equivalent, i.e. there is no integral matrix P
with det �P� � �1, such that equation (8.2.3.2) holds.

The arithmetic crystal classes of finite integral-matrix groups are
the basis for the classification of lattices into Bravais types of
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lattices: see Section 8.2.5. Even though the consideration of finite
integral-matrix groups in connection with space groups is not
common in practical crystallography, these matrix groups play a
very important role in the classifications discussed in subsequent
sections. Finite integral-matrix groups have the advantage of being
particularly suitable for computer calculations.

8.2.4. Geometric crystal classes

The widely used term ‘crystal class’ corresponds to the ‘geometric
crystal class’ described in this section, and must be distinguished
from the ‘arithmetic’ crystal class, introduced in Section 8.2.3.
Geometric crystal classes classify the space groups and their point
groups, i.e. the symmetry groups of the external shape of
macroscopic crystals. Classification by morphological symmetry
was done long before space groups were known. In Section 8.1.6,
the reasons are stated why the two seemingly different classifica-
tions agree, namely that of space groups according to their matrix
groups 
W�, and that of macroscopic crystals according to the
‘point groups’ of their sets of face normals.

To define geometric crystal classes, we again compare the matrix
parts of the space groups.

Definition: All space groups belong to the same geometric crystal
class for which the matrix parts are identical if suitable bases are
chosen, irrespective of their column parts.

In contrast to the definition of arithmetic crystal classes,
nonprimitive bases are admitted. To express this definition in
matrix terms, we refer to equation (8.2.3.2) of the previous section.

Definition: Two space groups belong to the same geometric
crystal class or crystal class if there is a real matrix P such that


W �� � 
P�1WP� �8�2�4�1�
holds.

In contrast to arithmetic crystal classes where P is a unimodular
integral matrix, for geometric crystal classes only a real matrix P is
required. Thus, the restriction det �P� � �1 is no longer necessary,
det(P) may have any value except zero.

Example
Referred to appropriate primitive bases, the matrix parts of
mirror and glide reflections in space groups Pm and Cm are

W 1 �
1 0 0
0 �1 0
0 0 1

�
�

�
� and W 2 �

0 1 0
1 0 0
0 0 1

�
�

�
�,

respectively. There is no integral matrix P with det �P� � �1 for
which equation (8.2.3.2) holds because det �P� �
2�P11P22P33 � P31P22P13�.

Thus, Pm and Cm are members of different arithmetic crystal
classes. The matrix

P �
1 1 0
�1 1 0
0 0 1

�
�

�
� with det �P� � 2,

however, does solve equation (8.2.4.1) and, therefore, Pm and
Cm are members of the same geometric crystal class, as are Pc
and Cc.

Clearly, space groups of the same arithmetic crystal class always
obey condition (8.2.4.1). Thus, the geometric crystal classes form a
classification not only of space groups and space-group types but
also of arithmetic crystal classes. There are ten geometric crystal

classes in E2 and 32 geometric crystal classes in E3; see Fig. 8.2.1.1.
As 
�W�� is a matrix representation of the point group of a space
group, the definition may be restated as follows:

Definition: Two space groups � and �� belong to the same
geometric crystal class if the matrix representations 
W� and 
W ��
of their point groups are equivalent, i.e. if there is a real matrix P
such that equation (8.2.4.1) holds.

This definition may also be used to classify point groups, via their
matrix groups, into geometric crystal classes of point groups.
Moreover, the geometric crystal classes provide a classification of
the finite groups of integral matrices. Again, matrix groups of the
same arithmetic crystal class always belong to the same geometric
crystal class.

Enantiomorphism of geometric crystal classes may occur in
dimensions greater than three, as it does for arithmetic crystal
classes.

8.2.5. Bravais classes of matrices and Bravais types of
lattices (lattice types)

Every space group � has a vector lattice L of translation vectors.
The elements of the point group � of � are symmetry operations of
L. The lattice L of �, however, may have additional symmetry in
comparison with �.

The symmetry of a vector lattice L is its point group according to
the following definition:

Definition: The group � of all linear mappings which map a
vector lattice L onto itself is called the point group or the point
symmetry of the lattice L. Those geometric crystal classes to which
point symmetries of lattices belong are called holohedries.

The inversion x � �x is always a symmetry operation of L,
even if � does not contain inversions. If, for instance, � belongs to
space-group type P63mc, its point group � is 6mm but the point
symmetry � of L is 6�mmm. Thus, the point group� of the lattice L
is of higher order than the point group � of �.

Other symmetry operations of L may also have no counterpart in
�. Space groups of type P63�m, for instance, have inversions but no
reflections across ‘vertical’ mirror planes. The point symmetry of
their lattices again is 6�mmm, i.e. in this case too there are more
elements in the point group � of L than in the point group � of �.

For purposes of classification, lattices L will now be considered
independently of their space groups �. Associated with each vector
lattice L is a finite group � of �n 	 n� integral matrices which
describes the point group � of L with respect to some primitive
basis of L. This matrix group � is a member of an arithmetic crystal
class; cf. Section 8.2.3. Thus, there are some arithmetic crystal
classes with matrix groups � of lattices, e.g. the arithmetic crystal
class 6�mmmP. Other arithmetic crystal classes, however, are not
associated with lattices, like 6�mP or 6mmP. One can distinguish
these two cases with the following definition:

Definition: An arithmetic crystal class with matrix groups � of
lattices is called a Bravais arithmetic crystal class or a Bravais class.

By this definition, each lattice is associated with a Bravais class.
On the other hand, each matrix group of a Bravais class represents
the point group of a lattice referred to an appropriate primitive basis.
Closer inspection shows that there are five Bravais classes of E2 and
14 of E3. With the use of Bravais classes, lattices may be classified
using the following definition:

Definition: All those vector lattices belong to the same Bravais
type or lattice type of vector lattices, for which the matrix groups
belong to the same Bravais class.
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Thus, five Bravais types of lattices exist in E2, and 14 in E3. This
classification can be transferred from vector lattices L to point
lattices L. To each point lattice L a vector lattice L is uniquely
assigned. Thus, one can define Bravais types of point lattices via the
Bravais types of vector lattices by the definition:

Definition: All those point lattices belong to the same Bravais
type of point lattices for which the vector lattices belong to the same
Bravais type of (vector) lattices.

Usually the Bravais types are called ‘the five’ or ‘the 14 Bravais
lattices’ of E2 or E3. It must be emphasized, however, that ‘Bravais
lattices’ are not individual lattices but types (or classes) of all
lattices with certain common properties. Geometrically, these
common properties are expressed by the ‘centring type’ and the
well known relations between the lattice parameters, provided the
lattices are referred to conventional bases, cf. Chapters 2.1 and 9.1.
In these chapters a nomenclature of Bravais types is presented.

8.2.6. Bravais flocks of space groups

Another plausible classification of space groups and space-group
types, as well as of arithmetic crystal classes, is based on the lattice
of the space group. One is tempted to use the definition: ‘Two space
groups are members of the same class if their lattices belong to the
same Bravais type’. There is, however, a difficulty which will
become apparent by an example.

It was shown in Section 8.2.5 with the two examples of space
groups P63mc and P63�m that the lattice L of the space group �may
systematically have higher symmetry than the point group � of �.
The lattice L, however, may also accidentally have higher
symmetry than � because the lattice parameters may have special
metrical values.

Example
For a monoclinic crystal structure at some temperature T1, the
monoclinic angle � may be equal to 91�, whereas, for the same
monoclinic crystal structure at some other temperature T2, � �
90� may hold. In this case, the lattice L at temperature T2, if
considered to be detached from the crystal structure and its space
group, has orthorhombic symmetry, because all the symmetry
operations of an orthorhombic lattice map L onto itself. The
lattice L at other temperatures, however, has always monoclinic
symmetry.

This is of importance for the practising crystallographer, because
quite often difficulties arise in the interpretation of X-ray powder
diagrams if no single crystals are available. In some cases, changes
of temperature or pressure may enable one to determine the true
symmetry of the substance. The example shows, however, that the
lattices of different space groups of the same space-group type may
have different symmetries. The possibility of accidental lattice
symmetry prevents the direct use of lattice types for a rigorous
classification of space-group types.

Such a classification is possible, however, via the point group �
of the space group � and its matrix groups. Referred to a primitive
basis, the point group � of � is represented by a finite group of
integral �n 	 n� matrices which belongs to some arithmetic crystal
class. This matrix group can be uniquely assigned to a Bravais class:
It either belongs already to a Bravais class, e.g. for space groups
Pmna and C2�c, or it may be uniquely connected to a Bravais class
by the following two conditions:

(i) The matrix group of � is a subgroup of a matrix group of the
Bravais class.

(ii) The order of the matrix group of the Bravais class is the
smallest possible one compatible with condition (i).

Example
A space group of type I41 belongs to the arithmetic crystal class
4I. The Bravais classes fulfilling condition (i) are 4�mmmI and
m�3mI . With condition (ii), the Bravais class m�3mI is excluded.
Thus, the space group I41 is uniquely assigned to the Bravais
class 4�mmmI. Even though, with accidental lattice parameters
a � b � c � 5 A

�
, the symmetry of the lattice alone is higher,

namely Im�3m, this does not change the Bravais class of I41.

This assignment leads to the definition:

Definition: Space groups that are assigned to the same Bravais
class belong to the same Bravais flock of space groups.

By this definition, the space group I41 mentioned above belongs
to the Bravais flock of 4�mmmI, despite the fact that the Bravais
class of the lattice may be m�3mI as a result of accidental symmetry.

Obviously, to each Bravais class a Bravais flock corresponds.
Thus, there exist five Bravais flocks of plane groups and 14 Bravais
flocks of space groups, see Fig. 8.2.1.1, and the Bravais flocks may
be denoted by the symbols of the corresponding Bravais classes; cf.
Section 8.2.5.

Though Bravais flocks themselves are of little practical
importance, they are necessary for the definition of crystal families
and lattice systems, as described in Sections 8.2.7 and 8.2.8.

8.2.7. Crystal families

Another classification of space groups, which is a classification of
geometric crystal classes and Bravais flocks as well, is that into
crystal families.

Definition: A crystal family* is the smallest set of space groups
containing, for any of its members, all space groups of the Bravais
flock and all space groups of the geometric crystal class to which
this member belongs.

Example
The space-group types R3 and P61 belong to the same crystal
family because both R3 and P3 belong to the geometric crystal
class 3, whereas both P3 and P61 are members of the same
Bravais flock 6�mmmP. In this example, P3 serves as a link
between R3 and P61.

There are four crystal families in E2 (oblique m, rectangular o,
square t and hexagonal h) and six crystal families in E3 [triclinic
(anorthic) a, monoclinic m, orthorhombic o, tetragonal t, hexagonal
h and cubic c]; see Fig. 8.2.1.1.

The classification into crystal families is a rather universal
crystallographic concept as it applies to many crystallographic
objects: space groups, space-group types, arithmetic and geometric
crystal classes of space groups, point groups (morphology of
crystals), lattices and Bravais types of lattices.

Remark: In most cases of E2 and E3, the lattices of a given crystal
family of lattices have the same point symmetry (for the symbols,
see Table 2.1.2.1): rectangular op and oc in E2; monoclinic mP and
mS, orthorhombic oP, oS, oF and oI, tetragonal tP and tI, cubic cP,
cF and cI in E3. Only to the hexagonal crystal family in E3 do
lattices with two different point symmetries belong: the hexagonal
lattice type hP with point symmetry 6�mmm and the rhombohedral

� The classes defined here have been called ‘crystal families’ by Neubüser et al.
(1971). For the same concept the term ‘crystal system’ has been used, particularly in
American and Russian textbooks. In these Tables, however, ‘crystal system’
designates a different classification, described in Section 8.2.8. To avoid confusion,
the term ‘crystal family’ is used here.
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lattice type hR with point symmetry �3m. In E4 and higher
dimensions, such cases are much more abundant.

Usually, the same type of coordinate system, the so-called
‘conventional coordinate system’, is used for all space groups of a
crystal family, for instance ‘hexagonal axes’ for both hexagonal and
rhombohedral lattices; cf. Chapters 2.1, 2.2 and 9.1. Other
coordinate systems, however, may be used when convenient. To
avoid confusion, the use of unconventional coordinate systems
should be stated explicitly.

8.2.8. Crystal systems and lattice systems*

At least three different classifications of space groups, crystal-
lographic point groups and lattice types have been called ‘crystal
systems’ in crystallographic literature. Only one of them classifies
space groups, crystallographic point groups and lattice types. It has
been introduced in the preceding section under the name ‘crystal
families’. The two remaining classifications are called here ‘crystal
systems’ and ‘lattice systems’, and are considered in this section.
Crystal systems classify space groups and crystallographic point
groups but not lattice types. Lattice systems classify space groups
and lattice types but not crystallographic point groups.

The ‘crystal-class systems’ or ‘crystal systems’ are used in these
Tables. In E2 and E3, the crystal systems provide the same
classification as the crystal families, with the exception of the
hexagonal crystal family in E3. Here, the hexagonal family is
subdivided into the trigonal and the hexagonal crystal system.
Each of these crystal systems consists of complete geometric
crystal classes of space groups. The space groups of the five
trigonal crystal classes 3, �3, 32, 3m and �3m belong to either
the hexagonal or the rhombohedral Bravais flock, and both Bravais
flocks are represented in each of these crystal classes. The space

groups of the seven hexagonal crystal classes 6, �6, 6�m, 622,
6mm, �62m and 6�mmm, however, belong only to the hexagonal
Bravais flock.

These observations will be used to define crystal systems by the
concept of intersection. A geometric crystal class and a Bravais
flock of space groups are said to intersect if there is at least one
space group common to both. Accordingly, the rhombohedral
Bravais flock intersects all trigonal crystal classes but none of the
hexagonal crystal classes. The hexagonal Bravais flock, on the other
hand, intersects all trigonal and hexagonal crystal classes, see Table
8.2.8.1.

Using the concept of intersection, one obtains the definition:

Definition: A crystal-class system or a crystal system contains
complete geometric crystal classes of space groups. All those
geometric crystal classes belong to the same crystal system which
intersect exactly the same set of Bravais flocks.

There are four crystal systems in E2 and seven in E3. The
classification into crystal systems applies to space groups, space-
group types, arithmetic crystal classes and geometric crystal classes,
see Fig. 8.2.1.1. Moreover, via their geometric crystal classes, the
crystallographic point groups are classified by ‘crystal systems of
point groups’. Historically, point groups were the first to be
classified by crystal systems. Bravais flocks of space groups and
Bravais types of lattices are not classified, as members of both can
occur in more than one crystal system. For example, P3 and P61
belong to the same hexagonal Bravais flock but to different crystal
systems, P3 to the trigonal, P61 to the hexagonal crystal system.
Thus, a crystal system of space groups does not necessarily contain
complete Bravais flocks (it does so, however, in E2 and in all crystal
systems of E3, except for the trigonal and hexagonal systems).

The use of crystal systems has some practical advantages.
(i) Classical crystal physics considers physical properties of

anisotropic continua. The symmetry of these properties as well as
the symmetry of the external shape of a crystal are determined by
point groups. Thus, crystal systems provide a classification for both
tensor properties and morphology of crystals.

(ii) The 11 ‘Laue classes’ determine both the symmetry of X-ray
photographs (if Friedel’s rule is valid) and the symmetry of the
physical properties that are described by polar tensors of even rank
and axial tensors of odd rank. Crystal systems classify Laue classes.

(iii) The correspondence between trigonal, tetragonal and
hexagonal crystal classes becomes visible, as displayed in Table
10.1.1.2.

Whereas crystal systems classify geometric crystal classes and
point groups, lattice systems classify Bravais flocks and Bravais
types of lattices. Lattice systems may be defined in two ways. The
first definition is analogous to that of crystal systems and uses once
again the concept of intersection, introduced above.

Definition: A lattice system of space groups contains complete
Bravais flocks. All those Bravais flocks which intersect exactly the
same set of geometric crystal classes belong to the same lattice
system, cf. footnote to heading of this section.

There are four lattice systems in E2 and seven lattice systems in
E3. In E2 and E3, the classification into lattice systems is the same as
that into crystal families and crystal systems except for the
hexagonal crystal family of E3. The space groups of the hexagonal
Bravais flock (lattice letter P) belong to the twelve geometric crystal
classes from 3 to 6�mmm, whereas the space groups of the
rhombohedral Bravais flock (lattice letter R) only belong to the
five geometric crystal classes 3, �3, 32, 3m and �3m. Thus, these two
Bravais flocks form the hexagonal and the rhombohedral lattice
systems with 45 and 7 types of space groups, respectively.

The lattice systems provide a classification of space groups, see
Fig. 8.2.1.1. Geometric crystal classes are not classified, as they can

Table 8.2.8.1. Distribution of trigonal and hexagonal space
groups into crystal systems and lattice systems

The hexagonal lattice system is also the hexagonal Bravais flock, the
rhombohedral lattice system is the rhombohedral Bravais flock.

Crystal
system

Crystal
class

Hexagonal lattice system
Rhombohedral
lattice system

Hexagonal Bravais flock
Rhombohedral
Bravais flock

Hexagonal 6�mmm P6�mmm, P6�mcc, P63�mcm,
P63�mmc

�62m P�6m2, P�6c2, P�62m, P�62c

6mm P6mm, P6cc, P63cm, P63mc

622 P622, P6122, � � �, P6322

6�m P6�m, P63�m
�6 P�6

6 P6, P61, P65, P62, P64, P63

Trigonal �3m P�31m, P�31c, P�3m1, P�3c1 R�3m, R�3c

3m P3m1, P31m, P3c1, P31c R3m, R3c

32 P312, P321, P3112, P3121,
P3212, P3221

R32

�3 P�3 R�3

3 P3, P31, P32 R3

� ‘Lattice systems’ were called ‘Bravais systems’ in editions 1 to 4 of this volume.
The name has been changed because in practice ‘Bravais systems’ may be confused
with ‘Bravais types’ or ‘Bravais lattices’.
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occur in more than one lattice system. For example, space groups
P31 and R3, both of crystal class 3, belong to the hexagonal and
rhombohedral lattice systems, respectively.

The above definition of lattice systems corresponds closely to the
definition of crystal systems. There exists, however, another
definition of lattice systems which emphasizes the geometric aspect
more. For this it should be remembered that each Bravais flock is
related to the point symmetry of a lattice type via its Bravais class;
cf. Sections 8.2.5 and 8.2.6. It can be shown that Bravais flocks
intersect the same set of crystal classes if their Bravais classes
belong to the same (holohedral) geometric crystal class. Therefore,
one can use the definition:

Definition: A lattice system of space groups contains complete
Bravais flocks. All those Bravais flocks belong to the same lattice
system for which the Bravais classes belong to the same
(holohedral) geometric crystal class.

According to this second definition, it is sufficient to compare
only the Bravais classes instead of all space groups of different
Bravais flocks. The comparison of Bravais classes can be replaced
by the comparison of their holohedries; cf. Section 8.2.5. This gives
rise to a special advantage of lattice systems, the possibility of
classifying lattices and lattice types. (Such a classification is not
possible using crystal systems.) All those lattices belong to the same
lattice system of lattices for which the lattice point groups belong to
the same holohedry. As lattices of the same lattice type always
belong to the same holohedry, lattice systems also classify lattice
types.

The adherence of a space group of the hexagonal crystal family
to the trigonal or hexagonal crystal system and the rhombohedral or

hexagonal lattice system is easily recognized by means of its
Hermann–Mauguin symbol. The Hermann–Mauguin symbols
of the trigonal crystal system display a ‘3’ or ‘�3’, those of the
hexagonal crystal system a ‘6’ or ‘�6’. On the other hand, the
rhombohedral lattice system displays lattice letter ‘R’ and the
hexagonal one ‘P’ in the Hermann–Mauguin symbols of their space
groups.

It should be mentioned that the lattice system of the lattice of a
space group may be different from the lattice system of the space
group itself. This always happens if the lattice symmetry is
accidentally higher than is required by the space group, e.g. for a
monoclinic space group with an orthorhombic lattice, i.e. � � 90�,
or a tetragonal space group with cubic metrics, i.e. c�a � 1. These
accidental lattice symmetries are special cases of metrical pseudo-
symmetries. Owing to the anisotropy of the thermal expansion or the
contraction under pressure, for special values of temperature and
pressure singular lattice parameters may represent higher lattice
symmetries than correspond to the symmetry of the crystal
structure. The same may happen, and be much more pronounced,
in continuous series of solid solutions owing to the change of cell
dimensions with composition. Note that this phenomenon does not
represent a new phase and a phase transition is not involved.
Therefore, accidental lattice symmetries cannot be the basis for a
classification in practice, e.g. for crystal structures or phase
transitions. In contrast, structural pseudo-symmetries of crystals
often lead to (displacive) phase transitions resulting in a new phase
with higher structural and lattice symmetry.

In spite of its name, the classification of space groups into ‘lattice
systems of space groups’ does not depend on the accidental
symmetry of the translation lattice of a space group.
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