
8.2. Classifications of space groups, point groups and lattices

BY H. WONDRATSCHEK

8.2.1. Introduction

One of the main tasks of theoretical crystallography is to sort the
infinite number of conceivable crystal patterns into a finite number
of classes, where the members of each class have certain properties
in common. In such a classification, each crystal pattern is assigned
only to one class. The elements of a class are called equivalent, the
classes being equivalence classes in the mathematical sense of the
word. Sometimes the word ‘type’ is used instead of ‘class’.

An important principle in the classification of crystals and crystal
patterns is symmetry, in particular the space group of a crystal
pattern. The different classifications of space groups discussed here
are displayed in Fig. 8.2.1.1.

Classification of crystals according to symmetry implies three
steps. First, criteria for the symmetry classes have to be defined. The
second step consists of the derivation and complete listing of the
possible symmetry classes. The third step is the actual assignment
of the existing crystals to these symmetry classes. In this chapter,
only the first step is dealt with. The space-group tables of this
volume are the result of the second step. The third step is beyond the
scope of this volume.

8.2.2. Space-group types

The finest commonly used classification of three-dimensional space
groups, i.e. the one resulting in the highest number of classes, is the
classification into the 230 (crystallographic) space-group types.*
The word ‘type’ is preferred here to the word ‘class’, since in
crystallography ‘class’ is already used in the sense of ‘crystal class’,
cf. Sections 8.2.3 and 8.2.4. The classification of space groups into
space-group types reveals the common symmetry properties of all
space groups belonging to one type. Such common properties of the
space groups can be considered as ‘properties of the space-group
types’.

The practising crystallographer usually assumes the 230 space-
group types to be known and to be described in this volume by
representative data such as figures and tables. To the experimentally
determined space group of a particular crystal structure, e.g. of
pyrite FeS2, the corresponding space-group type No. 205 �Pa�3 �
T6

h � of International Tables is assigned. Two space groups, e.g.
those of FeS2 and CO2, belong to the same space-group type if their
symmetries correspond to the same entry in International Tables.

The rigorous definition of the classification of space groups into
space-group types can be given in a more geometric or a more
algebraic way. Here matrix algebra will be followed, by which
primarily the classification into the 219 so-called affine space-group
types is obtained.† For this classification, each space group is
referred to a primitive basis and an origin. In this case, the matrices
W j of the symmetry operations consist of integral coefficients and

det �W j� � �1 holds. Two space groups � and �� are then
represented by their �n � 1� 	 �n � 1� matrix groups 
�� and

���. These two matrix groups are now compared.

Definition: The space groups � and �� belong to the same space-
group type if, for each primitive basis and each origin of �, a
primitive basis and an origin of �� can be found so that the matrix
groups 
�� and 
��� are identical. In terms of matrices, this can be
expressed by the following definition:

Definition: The space groups � and �� belong to the same space-
group type if an �n � 1� 	 �n � 1� matrix � exists, for which the
matrix part P is an integral matrix with det �P� � �1 and the
column part p consists of real numbers, such that


��� � ��1
��� �8�2�2�1�
holds. The matrix part P of � describes the transition from the
primitive basis of � to the primitive basis of ��. The column part p
of � expresses the (possibly) different origin choices for the
descriptions of � and ��.

Equation (8.2.2.1) is an equivalence relation for space groups.
The corresponding classes are called affine space-group types. By
this definition, one obtains 17 plane-group types for E2 and 219
space-group types for E3, see Fig. 8.2.1.1. Listed in the space-group

Fig. 8.2.1.1. Classifications of space groups. In each box, the number of
classes, e.g. 32, and the section in which the corresponding term is
defined, e.g. 8.2.4, are stated.

� These space-group types are often denoted by the word ‘space group’ when
speaking of the 17 ‘plane groups’ or of the 219 or 230 ‘space groups’. In a number of
cases, the use of the same word ‘space group’ with two different meanings (‘space
group’ and ‘space-group type’ which is an infinite set of space groups) is of no
further consequence. In some cases, however, it obscures important relations. For
example, it is impossible to appreciate the concept of isomorphic subgroups of a
space group if one does not strictly distinguish between space groups and space-
group types: cf. Section 8.3.3 and Part 13.
� According to the ‘Theorem of Bieberbach’, in all dimensions the classification
into affine space-group types results in the same types as the classification into
isomorphism types of space groups. Thus, the affine equivalence of different space
groups can also be recognized by purely group-theoretical means: cf. Ascher &
Janner (1965, 1968/69).

726

International Tables for Crystallography (2006). Vol. A, Section 8.2.2, pp. 726–727.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ab/ch8o2v0001/sec8o2o2/


tables are 17 plane-group types for E2 and 230 space-group types
for E3. Obviously, the equivalence definition of the space-group
tables differs somewhat from the one used above. In practical
crystallography, one wants to distinguish between right- and left-
handed screws and does not want to change from a right-handed to a
left-handed coordinate system. In order to avoid such transforma-
tions, the matrix P of equation (8.2.2.1) is restricted by the
additional condition det �P� � �1. Using matrices � with det �P� �
�1 only, 11 space-group types of E3 split into pairs, which are the
so-called pairs of enantiomorphic space-group types. The Her-
mann–Mauguin and Schoenflies symbols (in parentheses) of the
pairs of enantiomorphic space-group types are P41---P43 �C2

4---C4
4�,

P4122---P4322 �D3
4---D7

4�, P41212---P43212 �D4
4---D8

4�, P31---P32

�C2
3---C3

3�, P3121---P3221 �D4
3---D6

3�, P3112---P3212 �D3
3---D5

3�,
P61---P65 �C2

6---C3
6�, P62---P64 �C4

6---C5
6�, P6122---P6522 �D2

6---D3
6�,

P6222---P6422 �D4
6---D5

6� and P4132---P4332 �O7---O6�. In order to
distinguish between the two definitions of space-group types, the
first is called the classification into the 219 affine space-group types
and the second the classification into the 230 crystallographic or
positive affine or proper affine space-group types, see Fig. 8.2.1.1.
Both classifications are useful.

In Section 8.1.6, symmorphic space groups were defined. It can
be shown (with either definition of space-group type) that all space
groups of a space-group type are symmorphic if one of these space
groups is symmorphic. Therefore, it is also possible to speak of
types of symmorphic and non-symmorphic space groups. In E3,
symmorphic space groups do not occur in enantiomorphic pairs.
This does happen, however, in E4.

The so-called space-group symbols are really symbols of
‘crystallographic space-group types’. There are several different
kinds of symbols (for details see Part 12). The numbers denoting the
crystallographic space-group types and the Schoenflies symbols are
unambiguous but contain little information. The Hermann–
Mauguin symbols depend on the choice of the coordinate system
but they are much more informative than the other notations.

8.2.3. Arithmetic crystal classes

As space groups not only of the same type but also of different types
have symmetry properties in common, coarser classifications can be
devised which are classifications of both space-group types and
individual space groups. The following classifications are of this
kind. Again each space group is referred to a primitive basis and an
origin.

Definition: All those space groups belong to the same arithmetic
crystal class for which the matrix parts are identical if suitable
primitive bases are chosen, irrespective of their column parts.

Algebraically, this definition may be expressed as follows.
Equation (8.2.2.1) of Section 8.2.2 relating space groups of the
same type may be written more explicitly as follows:


�W �, w��� � 
P�1WP, P�1�w � �W � I�p���, �8�2�3�1�
the matrix part of which is


W �� � 
P�1WP�� �8�2�3�2�
Space groups of different types belong to the same arithmetic
crystal class if equation (8.2.3.2), but not equation (8.2.2.1) or
equation (8.2.3.1), is fulfilled, e.g. space groups of types P2 and
P21. This gives rise to the following definition:

Definition: Two space groups belong to the same arithmetic
crystal class of space groups if there is an integral matrix P with
det �P� � �1 such that


W �� � 
P�1WP� �8�2�3�2�
holds.

By definition, both space groups and space-group types may be
classified into arithmetic crystal classes. It is apparent from
equation (8.2.3.2) that ‘arithmetic equivalence’ refers only to the
matrix parts and not to the column parts of the symmetry operations.
Among the space-group types of each arithmetic crystal class there
is exactly one for which the column parts vanish for a suitable
choice of the origin. This is the symmorphic space-group type, cf.
Sections 8.1.6 and 8.2.2. The nomenclature for arithmetic crystal
classes makes use of this relation: The lattice letter and the point-
group part of the Hermann–Mauguin symbol for the symmorphic
space-group type are interchanged to designate the arithmetic
crystal class, cf. de Wolff et al. (1985). This symbolism enables one
to recognize easily the arithmetic crystal class to which a space
group belongs: One replaces in the Hermann–Mauguin symbol of
the space group all screw rotations and glide reflections by the
corresponding rotations and reflections and interchanges then the
lattice letter and the point-group part.

Examples
The space groups with Hermann–Mauguin symbols P2�m,
P21�m, P2�c and P21�c belong to the arithmetic crystal class
2�mP, whereas C2�m and C2�c belong to the different
arithmetic crystal class 2�mC. The space groups with symbols
P31m and P31c form the arithmetic crystal class 31mP; those
with symbols P3m1 and P3c1 form the different arithmetic
crystal class 3m1P. A further arithmetic crystal class, 3mR, is
composed of the space groups R3m and R3c.

Remark: In order to belong to the same arithmetic crystal class,
space groups must belong to the same geometric crystal class, cf.
Section 8.2.4 and to the same Bravais flock; cf. Section 8.2.6. These
two conditions, however, are only necessary but not sufficient.

There are 13 arithmetic crystal classes of plane groups in E2 and
73 arithmetic crystal classes of space groups in E3, see Fig. 8.2.1.1.
Arithmetic crystal classes are rarely used in practical crystal-
lography, even though they play some role in structural crystal-
lography because the ‘permissible origins’ (see Giacovazzo, 2002)
are the same for all space groups of one arithmetic crystal class. The
classification of space-group types into arithmetic crystal classes,
however, is of great algebraic consequence. In fact, the arithmetic
crystal classes are the basis for the further classifications of space
groups.

In E3, enantiomorphic pairs of space groups always belong to the
same arithmetic crystal class. Enantiomorphism of arithmetic
crystal classes can be defined analogously to enantiomorphism of
space groups. It does not occur in E2 and E3, but appears in spaces
of higher dimensions, e.g. in E4; cf. Brown et al. (1978).

In addition to space groups, equation (8.2.3.2) also classifies the
set of all finite integral-matrix groups. Thus, one can speak of
arithmetic crystal classes of finite integral-matrix groups. It is
remarkable, however, that this classification of the matrix groups
does not imply a classification of the corresponding point groups.
Although every finite integral-matrix group represents the point
group of some space group, referred to a primitive coordinate basis,
there are no arithmetic crystal classes of point groups. For example,
space-group types P2 and C2 both have point groups of the same
type, 2, but referred to primitive bases their �3 	 3� matrix groups
are not arithmetically equivalent, i.e. there is no integral matrix P
with det �P� � �1, such that equation (8.2.3.2) holds.

The arithmetic crystal classes of finite integral-matrix groups are
the basis for the classification of lattices into Bravais types of
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