
tables are 17 plane-group types for E2 and 230 space-group types
for E3. Obviously, the equivalence definition of the space-group
tables differs somewhat from the one used above. In practical
crystallography, one wants to distinguish between right- and left-
handed screws and does not want to change from a right-handed to a
left-handed coordinate system. In order to avoid such transforma-
tions, the matrix P of equation (8.2.2.1) is restricted by the
additional condition det �P� � �1. Using matrices � with det �P� �
�1 only, 11 space-group types of E3 split into pairs, which are the
so-called pairs of enantiomorphic space-group types. The Her-
mann–Mauguin and Schoenflies symbols (in parentheses) of the
pairs of enantiomorphic space-group types are P41---P43 �C2

4---C4
4�,

P4122---P4322 �D3
4---D7

4�, P41212---P43212 �D4
4---D8

4�, P31---P32

�C2
3---C3

3�, P3121---P3221 �D4
3---D6

3�, P3112---P3212 �D3
3---D5

3�,
P61---P65 �C2

6---C3
6�, P62---P64 �C4

6---C5
6�, P6122---P6522 �D2

6---D3
6�,

P6222---P6422 �D4
6---D5

6� and P4132---P4332 �O7---O6�. In order to
distinguish between the two definitions of space-group types, the
first is called the classification into the 219 affine space-group types
and the second the classification into the 230 crystallographic or
positive affine or proper affine space-group types, see Fig. 8.2.1.1.
Both classifications are useful.

In Section 8.1.6, symmorphic space groups were defined. It can
be shown (with either definition of space-group type) that all space
groups of a space-group type are symmorphic if one of these space
groups is symmorphic. Therefore, it is also possible to speak of
types of symmorphic and non-symmorphic space groups. In E3,
symmorphic space groups do not occur in enantiomorphic pairs.
This does happen, however, in E4.

The so-called space-group symbols are really symbols of
‘crystallographic space-group types’. There are several different
kinds of symbols (for details see Part 12). The numbers denoting the
crystallographic space-group types and the Schoenflies symbols are
unambiguous but contain little information. The Hermann–
Mauguin symbols depend on the choice of the coordinate system
but they are much more informative than the other notations.

8.2.3. Arithmetic crystal classes

As space groups not only of the same type but also of different types
have symmetry properties in common, coarser classifications can be
devised which are classifications of both space-group types and
individual space groups. The following classifications are of this
kind. Again each space group is referred to a primitive basis and an
origin.

Definition: All those space groups belong to the same arithmetic
crystal class for which the matrix parts are identical if suitable
primitive bases are chosen, irrespective of their column parts.

Algebraically, this definition may be expressed as follows.
Equation (8.2.2.1) of Section 8.2.2 relating space groups of the
same type may be written more explicitly as follows:

��W �, w��� � ��P	1WP, P	1�w � �W 	 I�p�
�, �8�2�3�1�
the matrix part of which is

�W �� � �P	1WP�� �8�2�3�2�
Space groups of different types belong to the same arithmetic
crystal class if equation (8.2.3.2), but not equation (8.2.2.1) or
equation (8.2.3.1), is fulfilled, e.g. space groups of types P2 and
P21. This gives rise to the following definition:

Definition: Two space groups belong to the same arithmetic
crystal class of space groups if there is an integral matrix P with
det �P� � �1 such that

�W �� � �P	1WP� �8�2�3�2�
holds.

By definition, both space groups and space-group types may be
classified into arithmetic crystal classes. It is apparent from
equation (8.2.3.2) that ‘arithmetic equivalence’ refers only to the
matrix parts and not to the column parts of the symmetry operations.
Among the space-group types of each arithmetic crystal class there
is exactly one for which the column parts vanish for a suitable
choice of the origin. This is the symmorphic space-group type, cf.
Sections 8.1.6 and 8.2.2. The nomenclature for arithmetic crystal
classes makes use of this relation: The lattice letter and the point-
group part of the Hermann–Mauguin symbol for the symmorphic
space-group type are interchanged to designate the arithmetic
crystal class, cf. de Wolff et al. (1985). This symbolism enables one
to recognize easily the arithmetic crystal class to which a space
group belongs: One replaces in the Hermann–Mauguin symbol of
the space group all screw rotations and glide reflections by the
corresponding rotations and reflections and interchanges then the
lattice letter and the point-group part.

Examples
The space groups with Hermann–Mauguin symbols P2�m,
P21�m, P2�c and P21�c belong to the arithmetic crystal class
2�mP, whereas C2�m and C2�c belong to the different
arithmetic crystal class 2�mC. The space groups with symbols
P31m and P31c form the arithmetic crystal class 31mP; those
with symbols P3m1 and P3c1 form the different arithmetic
crystal class 3m1P. A further arithmetic crystal class, 3mR, is
composed of the space groups R3m and R3c.

Remark: In order to belong to the same arithmetic crystal class,
space groups must belong to the same geometric crystal class, cf.
Section 8.2.4 and to the same Bravais flock; cf. Section 8.2.6. These
two conditions, however, are only necessary but not sufficient.

There are 13 arithmetic crystal classes of plane groups in E2 and
73 arithmetic crystal classes of space groups in E3, see Fig. 8.2.1.1.
Arithmetic crystal classes are rarely used in practical crystal-
lography, even though they play some role in structural crystal-
lography because the ‘permissible origins’ (see Giacovazzo, 2002)
are the same for all space groups of one arithmetic crystal class. The
classification of space-group types into arithmetic crystal classes,
however, is of great algebraic consequence. In fact, the arithmetic
crystal classes are the basis for the further classifications of space
groups.

In E3, enantiomorphic pairs of space groups always belong to the
same arithmetic crystal class. Enantiomorphism of arithmetic
crystal classes can be defined analogously to enantiomorphism of
space groups. It does not occur in E2 and E3, but appears in spaces
of higher dimensions, e.g. in E4; cf. Brown et al. (1978).

In addition to space groups, equation (8.2.3.2) also classifies the
set of all finite integral-matrix groups. Thus, one can speak of
arithmetic crystal classes of finite integral-matrix groups. It is
remarkable, however, that this classification of the matrix groups
does not imply a classification of the corresponding point groups.
Although every finite integral-matrix group represents the point
group of some space group, referred to a primitive coordinate basis,
there are no arithmetic crystal classes of point groups. For example,
space-group types P2 and C2 both have point groups of the same
type, 2, but referred to primitive bases their �3 � 3� matrix groups
are not arithmetically equivalent, i.e. there is no integral matrix P
with det �P� � �1, such that equation (8.2.3.2) holds.

The arithmetic crystal classes of finite integral-matrix groups are
the basis for the classification of lattices into Bravais types of
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lattices: see Section 8.2.5. Even though the consideration of finite
integral-matrix groups in connection with space groups is not
common in practical crystallography, these matrix groups play a
very important role in the classifications discussed in subsequent
sections. Finite integral-matrix groups have the advantage of being
particularly suitable for computer calculations.

8.2.4. Geometric crystal classes

The widely used term ‘crystal class’ corresponds to the ‘geometric
crystal class’ described in this section, and must be distinguished
from the ‘arithmetic’ crystal class, introduced in Section 8.2.3.
Geometric crystal classes classify the space groups and their point
groups, i.e. the symmetry groups of the external shape of
macroscopic crystals. Classification by morphological symmetry
was done long before space groups were known. In Section 8.1.6,
the reasons are stated why the two seemingly different classifica-
tions agree, namely that of space groups according to their matrix
groups �W�, and that of macroscopic crystals according to the
‘point groups’ of their sets of face normals.

To define geometric crystal classes, we again compare the matrix
parts of the space groups.

Definition: All space groups belong to the same geometric crystal
class for which the matrix parts are identical if suitable bases are
chosen, irrespective of their column parts.

In contrast to the definition of arithmetic crystal classes,
nonprimitive bases are admitted. To express this definition in
matrix terms, we refer to equation (8.2.3.2) of the previous section.

Definition: Two space groups belong to the same geometric
crystal class or crystal class if there is a real matrix P such that

�W �� � �P	1WP� �8�2�4�1�
holds.

In contrast to arithmetic crystal classes where P is a unimodular
integral matrix, for geometric crystal classes only a real matrix P is
required. Thus, the restriction det �P� � �1 is no longer necessary,
det(P) may have any value except zero.

Example
Referred to appropriate primitive bases, the matrix parts of
mirror and glide reflections in space groups Pm and Cm are

W 1 �
1 0 0
0 �1 0
0 0 1

�
�

�
� and W 2 �

0 1 0
1 0 0
0 0 1

�
�

�
�,

respectively. There is no integral matrix P with det �P� � �1 for
which equation (8.2.3.2) holds because det �P� �
2�P11P22P33 	 P31P22P13�.

Thus, Pm and Cm are members of different arithmetic crystal
classes. The matrix

P �
1 1 0
�1 1 0
0 0 1

�
�

�
� with det �P� � 2,

however, does solve equation (8.2.4.1) and, therefore, Pm and
Cm are members of the same geometric crystal class, as are Pc
and Cc.

Clearly, space groups of the same arithmetic crystal class always
obey condition (8.2.4.1). Thus, the geometric crystal classes form a
classification not only of space groups and space-group types but
also of arithmetic crystal classes. There are ten geometric crystal

classes in E2 and 32 geometric crystal classes in E3; see Fig. 8.2.1.1.
As ��W�� is a matrix representation of the point group of a space
group, the definition may be restated as follows:

Definition: Two space groups  and � belong to the same
geometric crystal class if the matrix representations �W� and �W ��
of their point groups are equivalent, i.e. if there is a real matrix P
such that equation (8.2.4.1) holds.

This definition may also be used to classify point groups, via their
matrix groups, into geometric crystal classes of point groups.
Moreover, the geometric crystal classes provide a classification of
the finite groups of integral matrices. Again, matrix groups of the
same arithmetic crystal class always belong to the same geometric
crystal class.

Enantiomorphism of geometric crystal classes may occur in
dimensions greater than three, as it does for arithmetic crystal
classes.

8.2.5. Bravais classes of matrices and Bravais types of
lattices (lattice types)

Every space group  has a vector lattice L of translation vectors.
The elements of the point group � of  are symmetry operations of
L. The lattice L of , however, may have additional symmetry in
comparison with �.

The symmetry of a vector lattice L is its point group according to
the following definition:

Definition: The group � of all linear mappings which map a
vector lattice L onto itself is called the point group or the point
symmetry of the lattice L. Those geometric crystal classes to which
point symmetries of lattices belong are called holohedries.

The inversion x � 	x is always a symmetry operation of L,
even if  does not contain inversions. If, for instance,  belongs to
space-group type P63mc, its point group � is 6mm but the point
symmetry � of L is 6�mmm. Thus, the point group� of the lattice L
is of higher order than the point group � of .

Other symmetry operations of L may also have no counterpart in
. Space groups of type P63�m, for instance, have inversions but no
reflections across ‘vertical’ mirror planes. The point symmetry of
their lattices again is 6�mmm, i.e. in this case too there are more
elements in the point group � of L than in the point group � of .

For purposes of classification, lattices L will now be considered
independently of their space groups . Associated with each vector
lattice L is a finite group � of �n � n� integral matrices which
describes the point group � of L with respect to some primitive
basis of L. This matrix group � is a member of an arithmetic crystal
class; cf. Section 8.2.3. Thus, there are some arithmetic crystal
classes with matrix groups � of lattices, e.g. the arithmetic crystal
class 6�mmmP. Other arithmetic crystal classes, however, are not
associated with lattices, like 6�mP or 6mmP. One can distinguish
these two cases with the following definition:

Definition: An arithmetic crystal class with matrix groups � of
lattices is called a Bravais arithmetic crystal class or a Bravais class.

By this definition, each lattice is associated with a Bravais class.
On the other hand, each matrix group of a Bravais class represents
the point group of a lattice referred to an appropriate primitive basis.
Closer inspection shows that there are five Bravais classes of E2 and
14 of E3. With the use of Bravais classes, lattices may be classified
using the following definition:

Definition: All those vector lattices belong to the same Bravais
type or lattice type of vector lattices, for which the matrix groups
belong to the same Bravais class.

728

8. INTRODUCTION TO SPACE-GROUP SYMMETRY

references

http://it.iucr.org/Ab/ch8o2v0001/references/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [641.000 859.000]
>> setpagedevice


