International Tables for Crystallography (2006). Vol. A, ch. 9.1, pp. 742-749
doi: 10.1107/97809553602060000517

Chapter 9.1. Bases, lattices, Bravais lattices and other classifications

Contents

  • 9.1. Bases, lattices, Bravais lattices and other classifications  (pp. 742-749) | html | pdf | chapter contents |
    • 9.1.1. Description and transformation of bases  (p. 742) | html | pdf |
    • 9.1.2. Lattices  (p. 742) | html | pdf |
    • 9.1.3. Topological properties of lattices  (p. 742) | html | pdf |
    • 9.1.4. Special bases for lattices  (pp. 742-743) | html | pdf |
    • 9.1.5. Remarks  (p. 743) | html | pdf |
    • 9.1.6. Classifications  (pp. 743-745) | html | pdf |
    • 9.1.7. Description of Bravais lattices  (p. 745) | html | pdf |
    • 9.1.8. Delaunay reduction  (pp. 745-749) | html | pdf |
    • 9.1.9. Example  (p. 749) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 9.1.7.1. Conventional cells of the three-dimensional Bravais lattices  (p. 744) | html | pdf |
    • Tables
      • Table 9.1.4.1. Lattice point-group symmetries  (p. 742) | html | pdf |
      • Table 9.1.6.1. Representations of the five types of Voronoi polyhedra  (p. 744) | html | pdf |
      • Table 9.1.7.1. Two-dimensional Bravais lattices  (p. 745) | html | pdf |
      • Table 9.1.7.2. Three-dimensional Bravais lattices  (pp. 746-747) | html | pdf |
      • Table 9.1.8.1. The 24 ` Symmetrische Sorten '  (p. 748) | html | pdf |
      • Table 9.1.9.1. Example  (p. 749) | html | pdf |