International
Tables for
Crystallography
Volume A
Space-group symmetry
Edited by Th. Hahn

International Tables for Crystallography (2006). Vol. A. ch. 9.3, p. 758

Table 9.3.4.1 

B. Grubera

a Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, CZ-11800 Prague 1, Czech Republic

Table 9.3.4.1 | top | pdf |
Conventional cells

Bravais type Centring mode of the cell (a, b, c) Conditions
cP P [\matrix{a = b = c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
cI I [\matrix{a = b = c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
cF F [\matrix{a = b = c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
tP P [\matrix{a = b \neq c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
tI I [\matrix{c/\sqrt{2} \neq a = b \neq c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
oP P [\matrix{a \lt b \lt c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
oI I [\matrix{a \lt b \lt c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
oF F [\matrix{a \lt b \lt c,\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}]
oC C [\matrix{a \lt b \neq a\sqrt{3},\hfill\cr \alpha = \beta = \gamma = 90^{\circ}\hfill\cr}] §
hP P [\matrix{a = b,\hfill\cr \alpha = \beta = 90^{\circ},\ \gamma = 120^{\circ}\hfill\cr}]
hR P [\matrix{a = b = c,\hfill\cr \alpha = \beta = \gamma,\hfill\cr \alpha \neq 60^{\circ},\ \alpha \neq 90^{\circ},\ \alpha \neq \omega\hfill\cr}]
mP P [\matrix{-2c \cos\beta \lt a \lt c,\hfill\cr \alpha = \gamma = 90^{\circ} \lt \beta\hfill\cr}] ††
mI I [\matrix{-c \cos \beta \lt a \lt c,\hfill\cr\alpha = \gamma = 90^{\circ} \lt \beta,{\hbox to 5.pc{}}(9.3.4.2)\cr}\hfill] ‡‡
[\matrix{{\hbox{but not}}&a^{2} + b^{2} = c^{2},\hfill\cr& a^{2} + ac \cos \beta = b^{2},&{\hbox to -.15pc{}}(9.3.4.3)\hfill\cr}] §§
[\matrix{\hbox{nor}&a^{2} + b^{2} = c^{2},\hfill\cr&b^{2} + ac \cos \beta = a^{2},&{\hbox to 1.15pc{}}(9.3.4.4)\hfill\cr}\hfill] ¶¶
[\matrix{{\hbox{nor}}&c^{2} + 3b^{2} = 9a^{2},\hfill\cr&c = -3a \cos \beta,&{\hbox to 2.6pc{}}(9.3.4.5)\cr}\hfill] †††
[\matrix{{\hbox{nor}}&a^{2} + 3b^{2} = 9c^{2},\hfill\cr&a = -3c \cos \beta&{\hbox to 2.7pc{}}(9.3.4.6)\hfill\cr}\hfill]

Note: All remaining cases are covered by Bravais type aP.
For [a = c/\sqrt{2}], the lattice is cF with conventional basis vectors [{\bf c}, {\bf a}+{\bf b}, {\bf a}-{\bf b}].
The labelling of the basis vectors according to their length is the reason for unconventional Hermann–Mauguin symbols: for example, the Hermann–Mauguin symbol Pmna may be changed to Pncm, Pbmn, Pman, Pcnm or Pnmb. Analogous facts apply to the oI, oC, oF, mP and mI Bravais types.
§For [b = a\sqrt{3}], the lattice is hP with conventional vectors [{\bf a}, ({\bf b}-{\bf a})/2, {\bf c}].
[\omega = \arccos(-1/3) = 109^{\circ}28'16'']. For [\alpha = 60^{\circ}], the lattice is cF with conventional vectors [-{\bf a}+{\bf b}+{\bf c}], [{\bf a}-{\bf b}+{\bf c}], [{\bf a}+{\bf b}-{\bf c}]; for [\alpha = \omega], the lattice is cI with conventional vectors [{\bf a}+{\bf b}], [{\bf a}+{\bf c}], [{\bf b}+{\bf c}].
††This means that a, c are shortest non-coplanar lattice vectors in their plane.
‡‡This means that a, c are shortest non-coplanar lattice vectors in their plane on condition that the cell (a, b, c) is body-centred.
§§If (9.3.4.2)[link] and (9.3.4.3)[link] hold, the lattice is hR with conventional vectors [{\bf a}, ({\bf a}+{\bf b}-{\bf c})/2, ({\bf a}-{\bf b}-{\bf c})/2], making the rhombohedral angle smaller than 60°.
¶¶If (9.3.4.2)[link] and (9.3.4.4)[link] hold, the lattice is hR with conventional vectors [{\bf a}, ({\bf a}+{\bf b}+{\bf c})/2, ({\bf a}-{\bf b}+{\bf c})/2], making the rhombohedral angle between 60 and 90°.
†††If (9.3.4.2)[link] and (9.3.4.5)[link] hold, the lattice is hR with conventional vectors [-{\bf a}, ({\bf a}+{\bf b}+{\bf c})/2, ({\bf a}-{\bf b}+{\bf c})/2], making the rhombohedral angle between 90° and ω.
‡‡‡If (9.3.4.2)[link] and (9.3.4.6)[link] hold, the lattice is hR with conventional vectors [-{\bf c}, ({\bf a}+{\bf b}+{\bf c})/2, ({\bf a}-{\bf b}+{\bf c})/2], making the rhombohedral angle greater than ω.