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1.3. A general introduction to space groups

B. Souvignier

1.3.1. Introduction

We recall from Chapter 1.2 that an isometry is a mapping of the

point space E
n which preserves distances and angles. From the

mathematical viewpoint, En is an affine space in which two points

differ by a unique vector in the underlying vector space V
n. The

crucial difference between these two types of spaces is that in an

affine space no point is distinguished, whereas in a vector space

the zero vector plays a special role, namely as the identity

element for the addition of vectors. After choosing an origin O,

the points of the affine space E
n are in one-to-one correspon-

dence with the vectors of Vn by identifying a point P with the

difference vector OP
�!

.

A crystallographic space-group operation is an isometry that

maps a crystal pattern onto itself. Since isometries are invertible

and the composition of two isometries leaves a crystal pattern

invariant as a whole if the two single isometries do so, the space-

group operations form a group G, called a crystallographic space

group.

As a mapping of points in an affine space, a space-group

operation is an affine mapping and is thus composed of a linear

mapping of the underlying vector space and a translation. Once a

coordinate system has been chosen, space-group operations are

conveniently represented as matrix–column pairs ðW ;wÞ, where
W is the linear part and w the translation part and a point with

coordinates x is mapped to Wx þ w (cf. Section 1.2.2).

A translation is a matrix–column pair of the form ðI;wÞ, where
I is the unit matrix and all translations taken together form the

translation subgroup T of G. The translation subgroup is an

infinite group that forms an abelian normal subgroup of G. The

factor group G=T is a finite group that can be identified with

the group of linear parts of G via the mapping ðW ;wÞ 7!W ,

which simply forgets about the translation part. The group

P ¼ fW j ðW ;wÞ 2 Gg of linear parts occurring in G is called the

point group P of G.

The representation of space-group operations as matrix–

column pairs is clearly adapted to the fact that space groups

can be built from these two parts, the translation subgroup

and the point group. This viewpoint will be discussed in

detail in Section 1.3.3. It allows one to treat space groups in

many aspects analogously to finite groups, although, due to

the infinite translation subgroup, they are of course infinite

groups.

1.3.2. Lattices

A crystal pattern is defined to be periodic in three linearly

independent directions, which means that it is invariant under

translations in three linearly independent directions. This peri-

odicity implies that the crystal pattern extends infinitely in all

directions. Since the atoms of a crystal form a discrete pattern in

which two different points have a certain minimal distance, the

translations that fix the crystal pattern as a whole cannot have

arbitrarily small lengths. If v is a vector such that the crystal

pattern is invariant under a translation by v, the periodicity

implies that the pattern is invariant under a translation by mv for

every integer m. Furthermore, if a crystal pattern is invariant

under translations by v and w, it is also invariant by the

composition of these two translations, which is the translation by

v þ w. This shows that the set of vectors by which the translations

in a space group move the crystal pattern is closed under taking

integral linear combinations. This property is formalized by the

mathematical concept of a lattice and the translation subgroups

of space groups are best understood by studying their

corresponding lattices. These lattices capture the periodic nature

of the underlying crystal patterns and reflect their geometric

properties.

1.3.2.1. Basic properties of lattices

The two-dimensional vector space V
2 is the space of columns

x

y

� �

with two real components x; y 2 R and the three-

dimensional vector space V
3 is the space of columns

x

y

z

0

@

1

A with

three real components x; y; z 2 R. Analogously, the n-dimen-

sional vector space Vn is the space of columns v ¼

v1

..

.

vn

0

B

@

1

C

A

with n

real components.

For the sake of clarity we will restrict our discussions to three-

dimensional (and occasionally two-dimensional) space. The

generalization to n-dimensional space is straightforward and only

requires dealing with columns of n instead of three components

and with bases consisting of n instead of three basis vectors.

Definition

For vectors a; b; c forming a basis of the three-dimensional

vector space V
3, the set

L :¼ fla þ mb þ nc j l;m; n 2 Zg

of all integral linear combinations of a; b; c is called a lattice in

V
3 and the vectors a; b; c are called a lattice basis of L.

It is inherent in the definition of a crystal pattern that the

translation vectors of the translations leaving the pattern

invariant are closed under taking integral linear combinations.

Since the crystal pattern is assumed to be discrete, it follows

that all translation vectors can be written as integral linear

combinations of a finite generating set. The fundamental theorem

on finitely generated abelian groups (see e.g. Chapter 21 in

Armstrong, 1997) asserts that in this situation a set of three

translation vectors a; b; c can be found such that all translation

vectors are integral linear combinations of these three vectors.

This shows that the translation vectors of a crystal pattern

form a lattice with lattice basis a; b; c in the sense of the definition

above.

By definition, a lattice is determined by a lattice basis. Note,

however, that every two- or three-dimensional lattice has infi-

nitely many bases.
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1.3. GENERAL INTRODUCTION TO SPACE GROUPS

Example

The square lattice

L ¼ Z
2
¼

m

n

� �

j m; n 2 Z

� �

in V
2 has the vectors

a ¼
1

0

� �

; b ¼
0

1

� �

as its standard lattice basis. But

a0 ¼
1

�2

� �

; b0 ¼
�2

3

� �

is also a lattice basis of L: on the one hand a0 and b0 are integral

linear combinations of a; b and are thus contained in L. On the

other hand

�3a0 � 2b0 ¼
�3

6

� �

þ
4

�6

� �

¼
1

0

� �

¼ a

and

�2a0 � b0 ¼
�2

4

� �

þ
2

�3

� �

¼
0

1

� �

¼ b;

hence a and b are also integral linear combinations of a0; b0 and

thus the two bases a; b and a0; b0 both span the same lattice (see

Fig. 1.3.2.1).

The example indicates how the different lattice bases of a

lattice L can be described. Recall that for a vector v =

xa þ yb þ zc the coefficients x; y; z are called the coordinates and

the vector

x

y

z

0

@

1

A is called the coordinate column of v with respect

to the basis a; b; c. The coordinate columns of the vectors in L

with respect to a lattice basis are therefore simply columns with

three integral components. In particular, if we take a second

lattice basis a0; b0; c0 of L, then the coordinate columns of a0, b0,

c0with respect to the first basis are columns of integers and thus

the basis transformation P such that ða0; b0; c0Þ ¼ ða; b; cÞP is an

integral 3 � 3 matrix. But if we interchange the roles of the two

bases, they are related by the inverse transformation P�1, i.e.

ða; b; cÞ ¼ ða0; b0; c0ÞP�1, and the argument given above asserts

that P�1 is also an integral matrix. Now, on the one hand detP

and detP�1 are both integers (being determinants of integral

matrices), on the other hand detP�1 ¼ 1= detP. This is only

possible if detP ¼ �1.

Summarizing, the different lattice bases of a lattice L are

obtained by transforming a single lattice basis a; b; c with integral

transformation matrices P such that detP ¼ �1.

1.3.2.2. Metric properties

In the three-dimensional vector spaceV3, the norm or length of

a vector v ¼

vx

vy

vz

0

@

1

A is (due to Pythagoras’ theorem) given by

jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
x þ v2

y þ v2z

q

:

From this, the scalar product

v � w ¼ vxwx þ vywy þ vzwz for v ¼

vx

vy

vz

0

@

1

A;w ¼

wx

wy

wz

0

@

1

A

is derived, which allows one to express angles by

cos ffðv;wÞ ¼
v � w

jvj jwj
:

The definition of a norm function for the vectors turns V3 into

a Euclidean space. A lattice L that is contained in V
3 inherits the

metric properties of this space. But for the lattice, these proper-

ties are most conveniently expressed with respect to a lattice

basis. It is customary to choose basis vectors a, b, c which define a

right-handed coordinate system, i.e. such that the matrix with

columns a, b, c has a positive determinant.

Definition

For a lattice L � V
3 with lattice basis a; b; c the metric tensor of

L is the 3 � 3 matrix

G ¼

a � a a � b a � c

b � a b � b b � c

c � a c � b c � c

0

@

1

A:

If A is the 3 � 3 matrix with the vectors a; b; c as its columns,

then the metric tensor is obtained as the matrix product

G ¼ AT � A. It follows immediately that the metric tensor is a

symmetric matrix, i.e. GT ¼ G.

Example

Let

a ¼

1

1

1

0

@

1

A; b ¼

1

1

0

0

@

1

A; c ¼

1

�1

0

0

@

1

A

be the basis of a lattice L. Then the metric tensor of L (with

respect to the given basis) is

G ¼

3 2 0

2 2 0

0 0 2

0

@

1

A:

With the help of the metric tensor the scalar products of

arbitrary vectors, given as linear combinations of the lattice basis,

can be computed from their coordinate columns as follows: If

v ¼ x1a þ y1b þ z1c and w ¼ x2a þ y2b þ z2c, then

Figure 1.3.2.1
Conventional basis a; b and a non-conventional basis a0; b0 for the square
lattice.
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