International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 1.3, p. 28   | 1 | 2 |

Section 1.3.2.2.6.1. General topology

G. Bricognea

a MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

1.3.2.2.6.1. General topology

| top | pdf |

Most topological notions are first encountered in the setting of metric spaces. A metric space E is a set equipped with a distance function d from [E \times E] to the non-negative reals which satisfies: [\matrix{(\hbox{i})\hfill & d(x, y) = d(y, x)\hfill &\forall x, y \in E\hfill &\hbox{(symmetry);}\hfill\cr\cr (\hbox{ii})\hfill &d(x, y) = 0 \hfill &\hbox{iff } x = y\hfill &\hbox{(separation);}\hfill\cr\cr (\hbox{iii})\hfill & d(x, z) \leq d(x, y) + d(y, z)\hfill &\forall x, y, z \in E\hfill &\hbox{(triangular}\hfill\cr& & &\hbox{inequality).}\hfill}] By means of d, the following notions can be defined: open balls, neighbourhoods; open and closed sets, interior and closure; convergence of sequences, continuity of mappings; Cauchy sequences and completeness; compactness; connectedness. They suffice for the investigation of a great number of questions in analysis and geometry (see e.g. Dieudonné, 1969[link]).

Many of these notions turn out to depend only on the properties of the collection [{\scr O}(E)] of open subsets of E: two distance functions leading to the same [{\scr O}(E)] lead to identical topological properties. An axiomatic reformulation of topological notions is thus possible: a topology in E is a collection [{\scr O}(E)] of subsets of E which satisfy suitable axioms and are deemed open irrespective of the way they are obtained. From the practical standpoint, however, a topology which can be obtained from a distance function (called a metrizable topology) has the very useful property that the notions of closure, limit and continuity may be defined by means of sequences. For non-metrizable topologies, these notions are much more difficult to handle, requiring the use of `filters' instead of sequences.

In some spaces E, a topology may be most naturally defined by a family of pseudo-distances [(d_{\alpha})_{\alpha \in A}], where each [d_{\alpha}] satisfies (i) and (iii) but not (ii). Such spaces are called uniformizable. If for every pair [(x, y) \in E \times E] there exists [\alpha \in A] such that [d_{\alpha} (x, y) \neq 0], then the separation property can be recovered. If furthermore a countable subfamily of the [d_{\alpha}] suffices to define the topology of E, the latter can be shown to be metrizable, so that limiting processes in E may be studied by means of sequences.

References

First citation Dieudonné, J. (1969). Foundations of modern analysis. New York and London: Academic Press.Google Scholar








































to end of page
to top of page