International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 1.3, p. 35   | 1 | 2 |

Section 1.3.2.4.2.4. Tensor product property

G. Bricognea

a MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

1.3.2.4.2.4. Tensor product property

| top | pdf |

Another elementary property of [{\scr F}] is its naturality with respect to tensor products. Let [u \in L^{1} ({\bb R}^{m})] and [v \in L^{1} ({\bb R}^{n})], and let [{\scr F}_{\bf x},{\scr F}_{\bf y},{\scr F}_{{\bf x}, \,{\bf y}}] denote the Fourier transformations in [L^{1} ({\bb R}^{m}),L^{1} ({\bb R}^{n})] and [L^{1} ({\bb R}^{m} \times {\bb R}^{n})], respectively. Then [{\scr F}_{{\bf x}, \, {\bf y}} [u \otimes v] = {\scr F}_{\bf x} [u] \otimes {\scr F}_{\bf y} [v].] Furthermore, if [f \in L^{1} ({\bb R}^{m} \times {\bb R}^{n})], then [{\scr F}_{\bf y} [\;f] \in L^{1} ({\bb R}^{m})] as a function of x and [{\scr F}_{\bf x} [\;f] \in L^{1} ({\bb R}^{n})] as a function of y, and [{\scr F}_{{\bf x}, \,{\bf y}} [\;f] = {\scr F}_{\bf x} [{\scr F}_{\bf y} [\;f]] = {\scr F}_{\bf y} [{\scr F}_{\bf x} [\;f]].] This is easily proved by using Fubini's theorem and the fact that [({\boldxi}, {\boldeta}) \cdot ({\bf x},{ \bf y}) = {\boldxi} \cdot {\bf x} + {\boldeta} \cdot {\bf y}], where [{\bf x}, {\boldxi} \in {\bb R}^{m},{\bf y}, {\boldeta} \in {\bb R}^{n}]. This property may be written: [{\scr F}_{{\bf x}, \, {\bf y}} = {\scr F}_{\bf x} \otimes {\scr F}_{\bf y}.]








































to end of page
to top of page