1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

1.3.2.4.2. Fourier transforms in L^{1}

1.3.2.4.2.1. Linearity

Both transformations \mathscr{F} and $\tilde{\mathscr{F}}$ are obviously linear maps from L^{1} to L^{∞} when these spaces are viewed as vector spaces over the field \mathbb{C} of complex numbers.
1.3.2.4.2.2. Effect of affine coordinate transformations \mathscr{F} and $\overline{\mathscr{F}}$ turn translations into phase shifts:

$$
\begin{aligned}
\mathscr{\mathscr { H }}\left[\tau_{\mathbf{a}} f\right](\boldsymbol{\xi}) & =\exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{a}) \mathscr{\mathscr { H }}[f](\boldsymbol{\xi}) \\
\overline{\mathscr{H}}\left[\tau_{\mathbf{a}} f\right](\overline{\boldsymbol{\xi}}) & =\exp (+2 \pi i \boldsymbol{\xi} \cdot \mathbf{a}) \overline{\mathscr{F}}[f](\boldsymbol{\xi}) .
\end{aligned}
$$

Under a general linear change of variable $\mathbf{x} \longmapsto \mathbf{A x}$ with nonsingular matrix \mathbf{A}, the transform of $A^{\#} f$ is

$$
\begin{array}{rlr}
\mathscr{F}\left[A^{\#} f\right](\boldsymbol{\xi}) & =\int_{\mathbb{R}^{n}} f\left(\mathbf{A}^{-1} \mathbf{x}\right) \exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{x}) \mathrm{d}^{n} \mathbf{x} & \\
& =\int_{\mathbb{R}^{n}} f(\mathbf{y}) \exp \left(-2 \pi i\left(A^{T} \boldsymbol{\xi}\right) \cdot \mathbf{y}\right)|\operatorname{det} \mathbf{A}| \mathrm{d}^{n} \mathbf{y} \\
& =|\operatorname{det} \mathbf{A}| \mathscr{\mathscr { T }}[f]\left(\mathbf{A}^{T} \boldsymbol{\xi}\right) \quad \text { by } \mathbf{x}=\mathbf{A y}
\end{array}
$$

i.e.

$$
\mathscr{\mathscr { F }}\left[A^{\#} f\right]=|\operatorname{det} \mathbf{A}|\left[\left(\mathbf{A}^{-1}\right)^{T}\right]^{\#} \mathscr{H}[f]
$$

and similarly for $\overline{\mathscr{F}}$. The matrix $\left(\mathbf{A}^{-1}\right)^{T}$ is called the contragredient of matrix \mathbf{A}.

Under an affine change of coordinates $\mathbf{x} \longmapsto S(\mathbf{x})=\mathbf{A x}+\mathbf{b}$ with non-singular matrix \mathbf{A}, the transform of $S^{\#} f$ is given by

$$
\begin{aligned}
\mathscr{F}\left[S^{\#} f\right](\boldsymbol{\xi}) & =\mathscr{F}\left[\tau_{\mathbf{b}}\left(A^{\#} f\right)\right](\boldsymbol{\xi}) \\
& =\exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{b}) \mathscr{\mathscr { T }}\left[A^{\#} f\right](\boldsymbol{\xi}) \\
& =\exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{b})|\operatorname{det} \mathbf{A}| \mathscr{\mathscr { F }}[f]\left(\mathbf{A}^{T} \boldsymbol{\xi}\right)
\end{aligned}
$$

with a similar result for $\overline{\mathscr{T}}$, replacing $-i$ by $+i$.

1.3.2.4.2.3. Conjugate symmetry

The kernels of the Fourier transformations \mathscr{F} and $\overline{\mathscr{F}}$ satisfy the following identities:

$$
\exp (\pm 2 \pi i \boldsymbol{\xi} \cdot \mathbf{x})=\exp \overline{[\pm 2 \pi i \boldsymbol{\xi} \cdot(-\mathbf{x})]}=\exp \overline{[\pm 2 \pi i(-\boldsymbol{\xi}) \cdot \mathbf{x}]}
$$

As a result the transformations \mathscr{F} and $\overline{\mathscr{F}}$ themselves have the following 'conjugate symmetry' properties [where the notation $\breve{f}(\mathbf{x})=f(-\mathbf{x})$ of Section 1.3.2.2.2 will be used]:

$$
\begin{gathered}
\mathscr{F}[f](\boldsymbol{\xi})=\overline{\mathscr{F}[\bar{f}](-\boldsymbol{\xi})}=\overline{\mathscr{\mathscr { F }}[\bar{f}](\boldsymbol{\xi})} \\
\mathscr{H}[f](\boldsymbol{\xi})=\overline{\mathscr{H}[\breve{\bar{f}}](\boldsymbol{\xi})}
\end{gathered}
$$

Therefore,
(i) f real $\Leftrightarrow f=\bar{f} \Leftrightarrow \mathscr{\mathscr { H }}[f]=\overline{\mathscr{T}[f]} \Leftrightarrow \mathscr{\mathscr { H }}[f](\boldsymbol{\xi})=\overline{\mathscr{H}[f](-\boldsymbol{\xi})}$: $\mathscr{F}[f]$ is said to possess Hermitian symmetry;
(ii) f centrosymmetric $\Leftrightarrow f=\breve{f} \Leftrightarrow \mathscr{\mathscr { F }}[f]=\overline{\mathscr{T}[\bar{f}]}$;
(iii) f real centrosymmetric $\Leftrightarrow f=\bar{f}=\breve{f} \Leftrightarrow \mathscr{\mathscr { F }}[f]=\overline{\mathscr{F}[f]}=$ $\breve{\mathscr{\mathscr { F }}[f]} \Leftrightarrow \mathscr{\mathscr { F }}[f]$ real centrosymmetric.

Conjugate symmetry is the basis of Friedel's law (Section 1.3.4.2.1.4) in crystallography.

1.3.2.4.2.4. Tensor product property

Another elementary property of $\mathscr{\mathscr { H }}$ is its naturality with respect to tensor products. Let $u \in L^{1}\left(\mathbb{R}^{m}\right)$ and $v \in L^{1}\left(\mathbb{R}^{n}\right)$, and let $\mathscr{F}_{\mathbf{x}}, \mathscr{F}_{\mathbf{y}}, \mathscr{F}_{\mathbf{x}, \mathbf{y}}$ denote the Fourier transformations in $L^{1}\left(\mathbb{R}^{m}\right), L^{1}\left(\mathbb{R}^{n}\right)$ and $L^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, respectively. Then

$$
\mathscr{F}_{\mathbf{x}, \mathbf{y}}[u \otimes v]=\mathscr{\mathscr { F }}_{\mathbf{x}}[u] \otimes \mathscr{F}_{\mathbf{y}}[v] .
$$

Furthermore, if $f \in L^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, then $\mathscr{T}_{y}[f] \in L^{1}\left(\mathbb{R}^{m}\right)$ as a function of \mathbf{x} and $\mathscr{F}_{\mathbf{x}}[f] \in L^{1}\left(\mathbb{R}^{n}\right)$ as a function of \mathbf{y}, and

$$
\mathscr{F}_{\mathbf{x}, \mathbf{y}}[f]=\mathscr{\mathscr { F }}_{\mathbf{x}}\left[\mathscr{\mathscr { F }}_{\mathbf{y}}[f]\right]=\mathscr{F}_{\mathbf{y}}\left[\mathscr{\mathscr { F }}_{\mathbf{x}}[f]\right] .
$$

This is easily proved by using Fubini's theorem and the fact that $(\boldsymbol{\xi}, \boldsymbol{\eta}) \cdot(\mathbf{x}, \mathbf{y})=\boldsymbol{\xi} \cdot \mathbf{x}+\boldsymbol{\eta} \cdot \mathbf{y}$, where $\mathbf{x}, \boldsymbol{\xi} \in \mathbb{R}^{m}, \mathbf{y}, \boldsymbol{\eta} \in \mathbb{R}^{n}$. This property may be written:

$$
\mathscr{F}_{\mathrm{x}, \mathrm{y}}=\mathscr{F}_{\mathrm{x}} \otimes \mathscr{\mathscr { T }}_{\mathrm{y}}
$$

1.3.2.4.2.5. Convolution property

If f and g are summable, their convolution $f * g$ exists and is summable, and

$$
\mathscr{F}[f * g](\boldsymbol{\xi})=\int_{\mathbb{R}^{n}}\left[\int_{\mathbb{R}^{n}} f(\mathbf{y}) g(\mathbf{x}-\mathbf{y}) \mathrm{d}^{n} \mathbf{y}\right] \exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{x}) \mathrm{d}^{n} \mathbf{x}
$$

With $\mathbf{x}=\mathbf{y}+\mathbf{z}$, so that

$$
\exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{x})=\exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{y}) \exp (-2 \pi i \boldsymbol{\xi} \cdot \mathbf{z})
$$

and with Fubini's theorem, rearrangement of the double integral gives:

$$
\mathscr{F}[f * g]=\mathscr{F}[f] \times \mathscr{F}[g]
$$

and similarly

$$
\overline{\mathscr{T}}[f * g]=\overline{\mathscr{F}}[f] \times \overline{\mathscr{F}}[g]
$$

Thus the Fourier transform and cotransform turn convolution into multiplication.

1.3.2.4.2.6. Reciprocity property

In general, $\mathscr{\mathscr { F }}[f]$ and $\mathscr{\mathscr { F }}[f]$ are not summable, and hence cannot be further transformed; however, as they are essentially bounded, their products with the Gaussians $G_{t}(\xi)=\exp \left(-2 \pi^{2}\|\xi\|^{2} t\right)$ are summable for all $t>0$, and it can be shown that

$$
f=\lim _{t \rightarrow 0} \overline{\mathscr{F}}\left[G_{t} \mathscr{\mathscr { F }}[f]\right]=\lim _{t \rightarrow 0} \mathscr{\mathscr { F }}\left[G_{t} \overline{\mathscr{F}}[f]\right],
$$

where the limit is taken in the topology of the L^{1} norm $\|\cdot\|_{1}$. Thus \mathscr{F} and $\mathscr{\mathscr { F }}$ are (in a sense) mutually inverse, which justifies the common practice of calling $\mathscr{\mathscr { F }}$ the 'inverse Fourier transformation'.

1.3.2.4.2.7. Riemann-Lebesgue lemma

If $f \in L^{1}\left(\mathbb{R}^{n}\right)$, i.e. is summable, then $\mathscr{\mathscr { F }}[f]$ and $\overline{\mathscr{F}}[f]$ exist and are continuous and essentially bounded:

$$
\|\mathscr{F}[f]\|_{\infty}=\|\overline{\mathscr{F}}[f]\|_{\infty} \leq\|f\|_{1}
$$

In fact one has the much stronger property, whose statement constitutes the Riemann-Lebesgue lemma, that $\mathscr{F}[f](\boldsymbol{\xi})$ and $\overline{\mathscr{F}}[f](\boldsymbol{\xi})$ both tend to zero as $\|\boldsymbol{\xi}\| \rightarrow \infty$.

1.3.2.4.2.8. Differentiation

Let us now suppose that $n=1$ and that $f \in L^{1}(\mathbb{R})$ is differentiable with $f^{\prime} \in L^{1}(\mathbb{R})$. Integration by parts yields

$$
\begin{aligned}
\mathscr{\mathscr { H }}\left[f^{\prime}\right](\xi)= & \int_{-\infty}^{+\infty} f^{\prime}(x) \exp (-2 \pi i \xi \cdot x) \mathrm{d} x \\
= & {[f(x) \exp (-2 \pi i \xi \cdot x)]_{-\infty}^{+\infty} } \\
& +2 \pi i \xi \int_{-\infty}^{+\infty} f(x) \exp (-2 \pi i \xi \cdot x) \mathrm{d} x .
\end{aligned}
$$

Since f^{\prime} is summable, f has a limit when $x \rightarrow \pm \infty$, and this limit must be 0 since f is summable. Therefore

1. GENERAL RELATIONSHIPS AND TECHNIQUES

$$
\mathscr{F}\left[f^{\prime}\right](\xi)=(2 \pi i \xi) \mathscr{F}[f](\xi)
$$

with the bound

$$
\|2 \pi \xi \mathscr{\mathscr { T }}[f]\|_{\infty} \leq\left\|f^{\prime}\right\|_{1}
$$

so that $|\mathscr{T}[f](\xi)|$ decreases faster than $1 /|\xi| \rightarrow \infty$.
This result can be easily extended to several dimensions and to any multi-index \mathbf{m} : if f is summable and has continuous summable partial derivatives up to order $|\mathbf{m}|$, then

$$
\mathscr{F}\left[D^{\mathbf{m}} f\right](\boldsymbol{\xi})=(2 \pi i \boldsymbol{\xi})^{\mathbf{m}} \mathscr{\mathscr { F }}[f](\boldsymbol{\xi})
$$

and

$$
\left\|(2 \pi \boldsymbol{\xi})^{\mathbf{m}} \mathscr{\mathscr { F }}[f]\right\|_{\infty} \leq\left\|D^{\mathbf{m}} f\right\|_{1} .
$$

Similar results hold for $\overline{\mathscr{T}}$, with $2 \pi i \boldsymbol{\xi}$ replaced by $-2 \pi i \boldsymbol{\xi}$. Thus, the more differentiable f is, with summable derivatives, the faster $\mathscr{F}[f]$ and $\overline{\mathscr{F}}[f]$ decrease at infinity.

The property of turning differentiation into multiplication by a monomial has many important applications in crystallography, for instance differential syntheses (Sections 1.3.4.2.1.9, 1.3.4.4.7.2, 1.3.4.4.7.5) and moment-generating functions [Section 1.3.4.5.2.1(c)].

1.3.2.4.2.9. Decrease at infinity

Conversely, assume that f is summable on \mathbb{R}^{n} and that f decreases fast enough at infinity for $\mathbf{x}^{\mathbf{m}} f$ also to be summable, for some multiindex \mathbf{m}. Then the integral defining $\mathscr{\mathscr { T }}[f]$ may be subjected to the differential operator D^{m}, still yielding a convergent integral: therefore $D^{\mathbf{m}} \mathscr{\mathscr { F }}[f]$ exists, and

$$
D^{\mathbf{m}}(\mathscr{F}[f])(\boldsymbol{\xi})=\mathscr{F}\left[(-2 \pi i \mathbf{x})^{\mathbf{m}} f\right](\boldsymbol{\xi})
$$

with the bound

$$
\left\|D^{\mathbf{m}}(\mathscr{\mathscr { H }}[f])\right\|_{\infty}=\left\|(2 \pi \mathbf{x})^{\mathbf{m}} f\right\|_{1} .
$$

Similar results hold for $\overline{\mathscr{T}}$, with $-2 \pi i \mathbf{x}$ replaced by $2 \pi i \mathbf{x}$. Thus, the faster f decreases at infinity, the more $\mathscr{\mathscr { F }}[f]$ and $\overline{\mathscr{F}}[f]$ are differentiable, with bounded derivatives. This property is the converse of that described in Section 1.3.2.4.2.8, and their combination is fundamental in the definition of the function space \mathscr{S} in Section 1.3.2.4.4.1, of tempered distributions in Section 1.3.2.5, and in the extension of the Fourier transformation to them.

1.3.2.4.2.10. The Paley-Wiener theorem

An extreme case of the last instance occurs when f has compact support: then $\mathscr{F}[f]$ and $\overline{\mathscr{F}}[f]$ are so regular that they may be analytically continued from \mathbb{R}^{n} to \mathbb{C}^{n} where they are entire functions, i.e. have no singularities at finite distance (Paley \& Wiener, 1934). This is easily seen for $\mathscr{\mathscr { F }}[f]$: giving vector $\boldsymbol{\xi} \in \mathbb{R}^{n}$ a vector $\boldsymbol{\eta} \in \mathbb{R}^{n}$ of imaginary parts leads to

$$
\begin{aligned}
\mathscr{F}[f](\boldsymbol{\xi}+i \boldsymbol{\eta}) & =\int_{\mathbb{R}^{n}} f(\mathbf{x}) \exp [-2 \pi i(\boldsymbol{\xi}+i \boldsymbol{\eta}) \cdot \mathbf{x}] \mathrm{d}^{n} \mathbf{x} \\
& =\mathscr{\mathscr { F }}[\exp (2 \pi \boldsymbol{\eta} \cdot \mathbf{x}) f](\boldsymbol{\xi}),
\end{aligned}
$$

where the latter transform always exists since $\exp (2 \pi \boldsymbol{\eta} \cdot \mathbf{x}) f$ is summable with respect to \mathbf{x} for all values of $\boldsymbol{\eta}$. This analytic continuation forms the basis of the saddlepoint method in probability theory [Section 1.3.4.5.2.1 (f)] and leads to the use of maximum-entropy distributions in the statistical theory of direct phase determination [Section 1.3.4.5.2.2(e)].

By Liouville's theorem, an entire function in \mathbb{C}^{n} cannot vanish identically on the complement of a compact subset of \mathbb{R}^{n} without vanishing everywhere: therefore $\mathscr{\mathscr { F }}[f]$ cannot have compact support if f has, and hence $\mathscr{D}\left(\mathbb{R}^{n}\right)$ is not stable by Fourier transformation.

1.3.2.4.3. Fourier transforms in L^{2}

Let f belong to $L^{2}\left(\mathbb{R}^{n}\right)$, i.e. be such that

$$
\|f\|_{2}=\left(\int_{\mathbb{R}^{n}}|f(\mathbf{x})|^{2} \mathrm{~d}^{n} \mathbf{x}\right)^{1 / 2}<\infty
$$

1.3.2.4.3.1. Invariance of L^{2}
$\mathscr{F}[f]$ and $\overline{\mathscr{H}}[f]$ exist and are functions in L^{2}, i.e. $\mathscr{F} L^{2}=L^{2}$, $\overline{\mathscr{F}} L^{2}=L^{2}$.

1.3.2.4.3.2. Reciprocity

$\mathscr{\mathscr { F }}[\overline{\mathscr{F}}[f]]=f$ and $\overline{\mathscr{F}}[\mathscr{\mathscr { F }}[f]]=f$, equality being taken as 'almost everywhere' equality. This again leads to calling $\overline{\mathscr{T}}$ the 'inverse Fourier transformation' rather than the Fourier cotransformation.

1.3.2.4.3.3. Isometry

\mathscr{T} and $\overline{\mathscr{F}}$ preserve the L^{2} norm:
$\|\mathscr{\mathscr { F }}[f]\|_{2}=\|\overline{\mathscr{T}}[f]\|_{2}=\|f\|_{2}$ (Parseval's/Plancherel's theorem).
This property, which may be written in terms of the inner product (,) in $L^{2}\left(\mathbb{R}^{n}\right)$ as

$$
(\mathscr{\mathscr { F }}[f], \mathscr{\mathscr { F }}[g])=(\overline{\mathscr{F}}[f], \overline{\mathscr{F}}[g])=(f, g),
$$

implies that \mathscr{F} and $\overline{\mathscr{F}}$ are unitary transformations of $L^{2}\left(\mathbb{R}^{n}\right)$ into itself, i.e. infinite-dimensional 'rotations'.

1.3.2.4.3.4. Eigenspace decomposition of L^{2}

Some light can be shed on the geometric structure of these rotations by the following simple considerations. Note that

$$
\begin{aligned}
\mathscr{\mathscr { F }}^{2}[f](\mathbf{x}) & =\int_{\mathbb{R}^{n}} \mathscr{\mathscr { F }}[f](\boldsymbol{\xi}) \exp (-2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}) \mathrm{d}^{n} \boldsymbol{\xi} \\
& =\tilde{\mathscr{F}}[\mathscr{F}[f]](-\mathbf{x})=f(-\mathbf{x})
\end{aligned}
$$

so that $\mathscr{\mathscr { F }}^{4}$ (and similarly $\overline{\mathscr{F}}^{4}$) is the identity map. Any eigenvalue of \mathscr{F} or $\mathscr{\mathscr { T }}$ is therefore a fourth root of unity, i.e. ± 1 or $\pm i$, and $L^{2}\left(\mathbb{R}^{n}\right)$ splits into an orthogonal direct sum

$$
\mathbf{H}_{0} \otimes \mathbf{H}_{1} \otimes \mathbf{H}_{2} \otimes \mathbf{H}_{3},
$$

where $\mathscr{\mathscr { T }}$ (respectively $\overline{\mathscr{T}}$) acts in each subspace $\mathbf{H}_{k}(k=0,1,2,3)$ by multiplication by $(-i)^{k}$. Orthonormal bases for these subspaces can be constructed from Hermite functions (cf. Section 1.3.2.4.4.2) This method was used by Wiener (1933, pp. 51-71).
1.3.2.4.3.5. The convolution theorem and the isometry property

In L^{2}, the convolution theorem (when applicable) and the Parseval/Plancherel theorem are not independent. Suppose that f, $g, f \times g$ and $f * g$ are all in L^{2} (without questioning whether these properties are independent). Then $f * g$ may be written in terms of the inner product in L^{2} as follows:

$$
(f * g)(\mathbf{x})=\int_{\mathbb{R}^{n}} f(\mathbf{x}-\mathbf{y}) g(\mathbf{y}) \mathrm{d}^{n} \mathbf{y}=\int_{\mathbb{R}^{n}}^{\overline{\bar{f}}(\mathbf{y}-\mathbf{x})} g(\mathbf{y}) \mathrm{d}^{n} \mathbf{y}
$$

i.e.

$$
(f * g)(\mathbf{x})=\left(\tau_{\mathbf{x}} \breve{\bar{f}}, g\right)
$$

Invoking the isometry property, we may rewrite the right-hand side as

