International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 1.3, pp. 38-40   | 1 | 2 |

Section 1.3.2.5. Fourier transforms of tempered distributions

G. Bricognea

a MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, and LURE, Bâtiment 209D, Université Paris-Sud, 91405 Orsay, France

1.3.2.5. Fourier transforms of tempered distributions

| top | pdf |

1.3.2.5.1. Introduction

| top | pdf |

It was found in Section 1.3.2.4.2[link] that the usual space of test functions [{\scr D}] is not invariant under [{\scr F}] and [\bar{\scr F}]. By contrast, the space [{\scr S}] of infinitely differentiable rapidly decreasing functions is invariant under [{\scr F}] and [\bar{\scr F}], and furthermore transposition formulae such as [\langle {\scr F}[\;f], g\rangle = \langle \;f, {\scr F}[g]\rangle] hold for all [f, g \in {\scr S}]. It is precisely this type of transposition which was used successfully in Sections 1.3.2.3.9.1[link] and 1.3.2.3.9.3[link] to define the derivatives of distributions and their products with smooth functions.

This suggests using [{\scr S}] instead of [{\scr D}] as a space of test functions φ, and defining the Fourier transform [{\scr F}[T]] of a distribution T by [\langle {\scr F}[T], \varphi \rangle = \langle T, {\scr F}[\varphi] \rangle] whenever T is capable of being extended from [{\scr D}] to [{\scr S}] while remaining continuous. It is this latter proviso which will be subsumed under the adjective `tempered'. As was the case with the construction of [{\scr D}\,'], it is the definition of a sufficiently strong topology (i.e. notion of convergence) in [{\scr S}] which will play a key role in transferring to the elements of its topological dual [{\scr S}\,'] (called tempered distributions) all the properties of the Fourier transformation.

Besides the general references to distribution theory mentioned in Section 1.3.2.3.1[link] the reader may consult the books by Zemanian (1965[link], 1968[link]). Lavoine (1963)[link] contains tables of Fourier transforms of distributions.

1.3.2.5.2. [{\scr S}] as a test-function space

| top | pdf |

A notion of convergence has to be introduced in [{\scr S}({\bb R}^{n})] in order to be able to define and test the continuity of linear functionals on it.

A sequence [(\varphi_{j})] of functions in [{\scr S}] will be said to converge to 0 if, for any given multi-indices k and p, the sequence [({\bf x}^{{\bf k}}D^{{\bf p}} \varphi_{j})] tends to 0 uniformly on [{\bb R}^{n}].

It can be shown that [{\scr D}({\bb R}^{n})] is dense in [{\scr S}({\bb R}^{n})]. Translation is continuous for this topology. For any linear differential operator [P(D) = {\textstyle\sum_{\bf p}} a_{\bf p} D^{{\bf p}}] and any polynomial [Q({\bf x})] over [{\bb R}^{n}], [(\varphi_{j}) \rightarrow 0] implies [[Q({\bf x}) \times P(D)\varphi_{j}] \rightarrow 0] in the topology of [{\scr S}]. Therefore, differentiation and multiplication by polynomials are continuous for the topology on [{\scr S}].

The Fourier transformations [{\scr F}] and [\bar{\scr F}] are also continuous for the topology of [{\scr S}]. Indeed, let [(\varphi_{j})] converge to 0 for the topology on [{\scr S}]. Then, by Section 1.3.2.4.2[link], [\|(2\pi \boldxi)^{{\bf m}} D^{{\bf p}} ({\scr F}[\varphi_{j}])\|_{\infty} \leq \| D^{{\bf m}} [(2\pi {\bf x})^{{\bf p}} \varphi_{j}]\|_{1}.] The right-hand side tends to 0 as [j \rightarrow \infty] by definition of convergence in [{\scr S}], hence [\|\boldxi\|^{{\bf m}} D^{{\bf p}} ({\scr F}[\varphi_{j}]) \rightarrow 0] uniformly, so that [({\scr F}[\varphi_{j}]) \rightarrow 0] in [{\scr S}] as [j \rightarrow \infty]. The same proof applies to [\bar{\scr F}].

1.3.2.5.3. Definition and examples of tempered distributions

| top | pdf |

A distribution [T \in {\scr D}\,'({\bb R}^{n})] is said to be tempered if it can be extended into a continuous linear functional on [{\scr S}].

If [{\scr S}\,'({\bb R}^{n})] is the topological dual of [{\scr S}({\bb R}^{n})], and if [S \in {\scr S}^{\prime}({\bb R}^{n})], then its restriction to [{\scr D}] is a tempered distribution; conversely, if [T \in {\scr D}\,'] is tempered, then its extension to [{\scr S}] is unique (because [{\scr D}] is dense in [{\scr S}]), hence it defines an element S of [{\scr S}\,']. We may therefore identify [{\scr S}\,'] and the space of tempered distributions.

A distribution with compact support is tempered, i.e. [{\scr S}\,' \supset {\scr E}\,']. By transposition of the corresponding properties of [{\scr S}], it is readily established that the derivative, translate or product by a polynomial of a tempered distribution is still a tempered distribution.

These inclusion relations may be summarized as follows: since [{\scr S}] contains [{\scr D}] but is contained in [{\scr E}], the reverse inclusions hold for the topological duals, and hence [{\scr S}\,'] contains [{\scr E}\,'] but is contained in [{\scr D}\,'].

A locally summable function f on [{\bb R}^{n}] will be said to be of polynomial growth if [|\;f({\bf x})|] can be majorized by a polynomial in [\|{\bf x}\|] as [\|{\bf x}\| \rightarrow \infty]. It is easily shown that such a function f defines a tempered distribution [T_{f}] via [\langle T_{f}, \varphi \rangle = {\textstyle\int\limits_{{\bb R}^{n}}} f({\bf x}) \varphi ({\bf x}) \;\hbox{d}^{n} {\bf x}.] In particular, polynomials over [{\bb R}^{n}] define tempered distributions, and so do functions in [{\scr S}]. The latter remark, together with the transposition identity (Section 1.3.2.4.4[link]), invites the extension of [{\scr F}] and [\bar{\scr F}] from [{\scr S}] to [{\scr S}\,'].

1.3.2.5.4. Fourier transforms of tempered distributions

| top | pdf |

The Fourier transform [{\scr F}[T]] and cotransform [\bar{\scr F}[T]] of a tempered distribution T are defined by [\eqalign{\langle {\scr F}[T], \varphi \rangle &= \langle T, {\scr F}[\varphi]\rangle \cr \langle \bar{\scr F}[T], \varphi \rangle &= \langle T, \bar{\scr F}[\varphi]\rangle}] for all test functions [\varphi \in {\scr S}]. Both [{\scr F}[T]] and [\bar{\scr F}[T]] are themselves tempered distributions, since the maps [\varphi \;\longmapsto\; {\scr F}[\varphi]] and [\varphi \;\longmapsto\; \bar{\scr F}[\varphi]] are both linear and continuous for the topology of [{\scr S}]. In the same way that x and ξ have been used consistently as arguments for φ and [{\scr F}[\varphi]], respectively, the notation [T_{\bf x}] and [{\scr F}[T]_{\boldxi}] will be used to indicate which variables are involved.

When T is a distribution with compact support, its Fourier transform may be written [{\scr F}[T_{\bf x}]_{\boldxi} = \langle T_{\bf x}, \exp (- 2\pi i \boldxi \cdot {\bf x})\rangle] since the function [{\bf x} \;\longmapsto\; \exp (- 2\pi i {\boldxi} \cdot {\bf x})] is in [{\scr E}] while [T_{\bf x} \in {\scr E}\,']. It can be shown, as in Section 1.3.2.4.2[link], to be analytically continuable into an entire function over [{\bb C}^{n}].

1.3.2.5.5. Transposition of basic properties

| top | pdf |

The duality between differentiation and multiplication by a monomial extends from [{\scr S}] to [{\scr S}\,'] by transposition: [\eqalign{{\scr F}[D_{\bf x}^{{\bf p}} T_{\bf x}]_{\boldxi} &= (2\pi i \boldxi)^{{\bf p}} {\scr F}[T_{\bf x}]_{\boldxi} \cr D_{\boldxi}^{{\bf p}} ({\scr F}[T_{\bf x}]_{\boldxi}) &= {\scr F}[(- 2\pi i {\bf x})^{{\bf p}} T_{\bf x}]_{\boldxi}.}] Analogous formulae hold for [\bar{\scr F}], with i replaced by −i.

The formulae expressing the duality between translation and phase shift, e.g. [\eqalign{{\scr F}[\tau_{\bf a} T_{\bf x}]_{\boldxi} &= \exp (-2\pi i{\bf a} \cdot {\boldxi}) {\scr F}[T_{\bf x}]_{\boldxi} \cr \tau_{\boldalpha} ({\scr F}[T_{\bf x}]_{\boldxi}) &= {\scr F}[\exp (2\pi i{\boldalpha} \cdot {\bf x}) T_{\bf x}]_{\boldxi}\hbox{;}}] between a linear change of variable and its contragredient, e.g. [{\scr F}[A^{\#} T] = |\hbox{det } {\bf A}| [({\bf A}^{-1})^{T}]^{\#} {\scr F}[T]\hbox{;}] are obtained similarly by transposition from the corresponding identities in [{\scr S}]. They give a transposition formula for an affine change of variables [{\bf x} \;\longmapsto\; S({\bf x}) = {\bf Ax} + {\bf b}] with non-singular matrix A: [\eqalign{{\scr F}[S^{\#} T] &= \exp (-2\pi i{\boldxi} \cdot {\bf b}) {\scr F}[A^{\#} T] \cr &= \exp (-2\pi i{\boldxi} \cdot {\bf b}) |\hbox{det } {\bf A}| [({\bf A}^{-1})^{T}]^{\#} {\scr F}[T],}] with a similar result for [\bar{\scr F}], replacing −i by +i.

Conjugate symmetry is obtained similarly: [{\scr F}[\bar{T}] = \breve{\overline{{\scr F}[T]}}, {\scr F}[\breve{\bar{T}}] = \overline{{\scr F}[T]},] with the same identities for [\bar{\scr F}].

The tensor product property also transposes to tempered distributions: if [U \in {\scr S}\,'({\bb R}^{m}), V \in {\scr S}\,'({\bb R}^{n})], [\eqalign{{\scr F}[U_{\bf x} \otimes V_{\bf y}] &= {\scr F}[U]_{\boldxi} \otimes {\scr F}[V]_{\boldeta} \cr \bar{\scr F}[U_{\bf x} \otimes V_{\bf y}] &= \bar{\scr F}[U]_{\boldxi} \otimes \bar{\scr F}[V]_{\boldeta}.}]

1.3.2.5.6. Transforms of δ-functions

| top | pdf |

Since δ has compact support, [{\scr F}[\delta_{\bf x}]_{\boldxi} = \langle \delta_{\bf x}, \exp (-2\pi i{\boldxi} \cdot {\bf x})\rangle = 1_{\boldxi},\quad i.e.\ {\scr F}[\delta] = 1.] It is instructive to show that conversely [{\scr F}[1] = \delta] without invoking the reciprocity theorem. Since [\partial_{j} 1 = 0] for all [j = 1, \ldots, n], it follows from Section 1.3.2.3.9.4[link] that [{\scr F}[1] = c\delta]; the constant c can be determined by using the invariance of the standard Gaussian G established in Section 1.3.2.4.3[link]: [\langle {\scr F}[1]_{\bf x}, G_{\bf x}\rangle = \langle 1_{\boldxi}, G_{\boldxi}\rangle = 1\hbox{;}] hence [c = 1]. Thus, [{\scr F}[1] = \delta].

The basic properties above then read (using multi-indices to denote differentiation): [\eqalign{{\scr F}[\delta_{\bf x}^{({\bf m})}]_{\boldxi} = (2\pi i{\boldxi})^{{\bf m}}, \quad &{\scr F}[{\bf x}^{{\bf m}}]_{\boldxi} = (-2\pi i)^{-|{\bf m}|} \delta_{\boldxi}^{({\bf m})}\hbox{;} \cr {\scr F}[\delta_{\bf a}]_{\boldxi} = \exp (-2\pi i{\bf a} \cdot {\boldxi}), \quad &{\scr F}[\exp (2\pi i{\boldalpha} \cdot {\bf x})]_{\boldxi} = \delta_{\boldalpha},}] with analogous relations for [\bar{\scr F}], i becoming −i. Thus derivatives of δ are mapped to monomials (and vice versa), while translates of δ are mapped to `phase factors' (and vice versa).

1.3.2.5.7. Reciprocity theorem

| top | pdf |

The previous results now allow a self-contained and rigorous proof of the reciprocity theorem between [{\scr F}] and [\bar{\scr F}] to be given, whereas in traditional settings (i.e. in [L^{1}] and [L^{2}]) the implicit handling of δ through a limiting process is always the sticking point.

Reciprocity is first established in [{\scr S}] as follows: [\eqalign{\bar{\scr F}[{\scr F}[\varphi]] ({\bf x}) &= {\textstyle\int\limits_{{\bb R}^{n}}} {\scr F}[\varphi] ({\boldxi}) \exp (2\pi i{\boldxi} \cdot {\bf x})\ {\rm d}^{n} {\boldxi} \cr &= {\textstyle\int\limits_{{\bb R}^{n}}} {\scr F}[\tau_{-{\bf x}} \varphi] ({\boldxi})\ {\rm d}^{n} {\boldxi} \cr &= \langle 1, {\scr F}[\tau_{-{\bf x}} \varphi]\rangle \cr &= \langle {\scr F}[1], \tau_{-{\bf x}} \varphi\rangle \cr &= \langle \tau_{\bf x} \delta, \varphi\rangle \cr &= \varphi ({\bf x})}] and similarly [{\scr F}[\bar{\scr F}[\varphi]] ({\bf x}) = \varphi ({\bf x}).]

The reciprocity theorem is then proved in [{\scr S}\,'] by transposition: [\bar{\scr F}[{\scr F}[T]] = {\scr F}[\bar{\scr F}[T]] = T \quad\hbox{for all } T \in {\scr S}\,'.] Thus the Fourier cotransformation [\bar{\scr F}] in [{\scr S}\,'] may legitimately be called the `inverse Fourier transformation'.

The method of Section 1.3.2.4.3[link] may then be used to show that [{\scr F}] and [\bar{\scr F}] both have period 4 in [{\scr S}\,'].

1.3.2.5.8. Multiplication and convolution

| top | pdf |

Multiplier functions [\alpha ({\bf x})] for tempered distributions must be infinitely differentiable, as for ordinary distributions; furthermore, they must grow sufficiently slowly as [\|x\| \rightarrow \infty] to ensure that [\alpha \varphi \in {\scr S}] for all [\varphi \in {\scr S}] and that the map [\varphi \;\longmapsto\; \alpha \varphi] is continuous for the topology of [{\scr S}]. This leads to choosing for multipliers the subspace [{\scr O}_{M}] consisting of functions [\alpha \in {\scr E}] of polynomial growth. It can be shown that if f is in [{\scr O}_{M}], then the associated distribution [T_{f}] is in [{\scr S}\,'] (i.e. is a tempered distribution); and that conversely if T is in [{\scr S}\,', \mu * T] is in [{\scr O}_{M}] for all [\mu \in {\scr D}].

Corresponding restrictions must be imposed to define the space [{\scr O}'_{C}] of those distributions T whose convolution [S * T] with a tempered distribution S is still a tempered distribution: T must be such that, for all [\varphi \in {\scr S}, \theta ({\bf x}) = \langle T_{\bf y}, \varphi ({\bf x} + {\bf y})\rangle] is in [{\scr S}]; and such that the map [\varphi \;\longmapsto\; \theta] be continuous for the topology of [{\scr S}]. This implies that S is `rapidly decreasing'. It can be shown that if f is in [{\scr S}], then the associated distribution [T_{f}] is in [{\scr O}'_{C}]; and that conversely if T is in [{\scr O}'_{C}, \mu * T] is in [{\scr S}] for all [\mu \in {\scr D}].

The two spaces [{\scr O}_{M}] and [{\scr O}'_{C}] are mapped into each other by the Fourier transformation [\eqalign{{\scr F}({\scr O}_{M}) &= \bar{\scr F}({\scr O}_{M}) = {\scr O}'_{C} \cr {\scr F}({\scr O}'_{C}) &= \bar{\scr F}({\scr O}'_{C}) = {\scr O}_{M}}] and the convolution theorem takes the form [\eqalign{{\scr F}[\alpha S] &= {\scr F}[\alpha] * {\scr F}[S] \quad\; S \in {\scr S}\,', \alpha \in {\scr O}_{M},{\scr F}[\alpha] \in {\scr O}'_{C}\hbox{;}\cr {\scr F}[S * T] &= {\scr F}[S] \times {\scr F}[T] \quad S \in {\scr S}\,', T \in {\scr O}'_{C},{\scr F}[T] \in {\scr O}_{M}.}] The same identities hold for [\bar{\scr F}]. Taken together with the reciprocity theorem, these show that [{\scr F}] and [\bar{\scr F}] establish mutually inverse isomorphisms between [{\scr O}_{M}] and [{\scr O}'_{C}], and exchange multiplication for convolution in [{\scr S}\,'].

It may be noticed that most of the basic properties of [{\scr F}] and [\bar{\scr F}] may be deduced from this theorem and from the properties of δ. Differentiation operators [D^{\bf m}] and translation operators [\tau_{\bf a}] are convolutions with [D^{\bf m}\delta] and [\tau_{\bf a} \delta]; they are turned, respectively, into multiplication by monomials [(\pm 2\pi i{\boldxi})^{{\bf m}}] (the transforms of [D^{{\bf m}}\delta]) or by phase factors [\exp(\pm 2 \pi i{\boldxi} \cdot {\boldalpha})] (the transforms of [\tau_{\bf a}\delta]).

Another consequence of the convolution theorem is the duality established by the Fourier transformation between sections and projections of a function and its transform. For instance, in [{\bb R}^{3}], the projection of [f(x, y, z)] on the x, y plane along the z axis may be written [(\delta_{x} \otimes \delta_{y} \otimes 1_{z}) * f\hbox{;}] its Fourier transform is then [(1_{\xi} \otimes 1_{\eta} \otimes \delta_{\zeta}) \times {\scr F}[\;f],] which is the section of [{\scr F}[\;f]] by the plane [\zeta = 0], orthogonal to the z axis used for projection. There are numerous applications of this property in crystallography (Section 1.3.4.2.1.8[link]) and in fibre diffraction (Section 1.3.4.5.1.3[link]).

1.3.2.5.9. [L^{2}] aspects, Sobolev spaces

| top | pdf |

The special properties of [{\scr F}] in the space of square-integrable functions [L^{2}({\bb R}^{n})], such as Parseval's identity, can be accommodated within distribution theory: if [u \in L^{2}({\bb R}^{n})], then [T_{u}] is a tempered distribution in [{\scr S}\,'] (the map [u \;\longmapsto\; T_{u}] being continuous) and it can be shown that [S = {\scr F}[T_{u}]] is of the form [S_{v}], where [u = {\scr F}[u]] is the Fourier transform of u in [L^{2}({\bb R}^{n})]. By Plancherel's theorem, [\|u\|_{2} = \|v\|_{2}].

This embedding of [L^{2}] into [{\scr S}\,'] can be used to derive the convolution theorem for [L^{2}]. If u and v are in [L^{2}({\bb R}^{n})], then [u * v] can be shown to be a bounded continuous function; thus [u * v] is not in [L^{2}], but it is in [{\scr S}\,'], so that its Fourier transform is a distribution, and [{\scr F}[u * v] = {\scr F}[u] \times {\scr F}[v].]

Spaces of tempered distributions related to [L^{2}({\bb R}^{n})] can be defined as follows. For any real s, define the Sobolev space [H_{s}({\bb R}^{n})] to consist of all tempered distributions [S \in {\scr S}\,'({\bb R}^{n})] such that [(1 + |\boldxi|^{2})^{s/2} {\scr F}[S]_{\boldxi} \in L^{2}({\bb R}^{n}).]

These spaces play a fundamental role in the theory of partial differential equations, and in the mathematical theory of tomographic reconstruction – a subject not unrelated to the crystallographic phase problem (Natterer, 1986[link]).

References

First citation Lavoine, J. (1963). Transformation de Fourier des pseudo-fonctions, avec tables de nouvelles transformées. Paris: Editions du CNRS.Google Scholar
First citation Natterer, F. (1986). The mathematics of computerized tomography. New York: John Wiley.Google Scholar
First citation Zemanian, A. H. (1965). Distribution theory and transform analysis. New York: McGraw-Hill.Google Scholar
First citation Zemanian, A. H. (1968). Generalised integral transformations. New York: Interscience.Google Scholar








































to end of page
to top of page