### 1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

The Poisson kernel

$$
\begin{aligned}
P_{r}(x) & =1+2 \sum_{m=1}^{\infty} r^{m} \cos 2 \pi m x \\
& =\frac{1-r^{2}}{1-2 r \cos 2 \pi m x+r^{2}}
\end{aligned}
$$

with $0 \leq r<1$ gives rise to an Abel summation procedure [Tolstov (1962, p. 162); Whittaker \& Watson (1927, p. 57)] since

$$
\left(P_{r} * f\right)(x)=\sum_{m \in \mathbb{Z}} c_{m}(f) r^{|m|} \exp (2 \pi i m x)
$$

Compared with the other kernels, $P_{r}$ has the disadvantage of not being a trigonometric polynomial; however, $P_{r}$ is the real part of the Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

$$
P_{r}(x)=\mathscr{R} e\left[\frac{1+r \exp (2 \pi i x)}{1-r \exp (2 \pi i x)}\right]
$$

and hence provides a link between trigonometric series and analytic functions of a complex variable.

Other methods of summation involve forming a moving average of $f$ by convolution with other sequences of functions $\alpha_{p}(\mathbf{x})$ besides $D_{p}$ of $F_{p}$ which 'tend towards $\delta$ ' as $p \rightarrow \infty$. The convolution is performed by multiplying the Fourier coefficients of $f$ by those of $\alpha_{p}$, so that one forms the quantities

$$
S_{p}^{\prime}(f)(x)=\sum_{|m| \leq p} c_{m}\left(\alpha_{p}\right) c_{m}(f) \exp (2 \pi i m x)
$$

For instance the 'sigma factors' of Lanczos (Lanczos, 1966, p. 65), defined by

$$
\sigma_{m}=\frac{\sin [m \pi / p]}{m \pi / p},
$$

lead to a summation procedure whose behaviour is intermediate between those using the Dirichlet and the Fejér kernels; it corresponds to forming a moving average of $f$ by convolution with

$$
\alpha_{p}=p \chi_{[-1 /(2 p), 1 /(2 p)]} * D_{p}
$$

which is itself the convolution of a 'rectangular pulse' of width $1 / p$ and of the Dirichlet kernel of order $p$.

A review of the summation problem in crystallography is given in Section 1.3.4.2.1.3.

### 1.3.2.6.10.2. Classical $L^{2}$ theory

The space $L^{2}(\mathbb{R} / \mathbb{Z})$ of (equivalence classes of) square-integrable complex-valued functions $f$ on the circle is contained in $L^{1}(\mathbb{R} / \mathbb{Z})$, since by the Cauchy-Schwarz inequality

$$
\begin{aligned}
\|f\|_{1}^{2} & =\left(\int_{0}^{1}|f(x)| \times 1 \mathrm{~d} x\right)^{2} \\
& \leq\left(\int_{0}^{1}|f(x)|^{2} \mathrm{~d} x\right)\left(\int_{0}^{1} 1^{2} \mathrm{~d} x\right)=\|f\|_{2}^{2} \leq \infty
\end{aligned}
$$

Thus all the results derived for $L^{1}$ hold for $L^{2}$, a great simplification over the situation in $\mathbb{R}$ or $\mathbb{R}^{n}$ where neither $L^{1}$ nor $L^{2}$ was contained in the other.

However, more can be proved in $L^{2}$, because $L^{2}$ is a Hilbert space (Section 1.3.2.2.4) for the inner product

$$
(f, g)=\int_{0}^{1} \overline{f(x)} g(x) \mathrm{d} x
$$

and because the family of functions $\{\exp (2 \pi i m x)\}_{m \in \mathbb{Z}}$ constitutes an orthonormal Hilbert basis for $L^{2}$.

The sequence of Fourier coefficients $c_{m}(f)$ of $f \in L^{2}$ belongs to the space $\ell^{2}(\mathbb{Z})$ of square-summable sequences:

$$
\sum_{m \in \mathbb{Z}}\left|c_{m}(f)\right|^{2}<\infty
$$

Conversely, every element $c=\left(c_{m}\right)$ of $\ell^{2}$ is the sequence of Fourier coefficients of a unique function in $L^{2}$. The inner product

$$
(c, d)=\sum_{m \in \mathbb{Z}} \overline{c_{m}} d_{m}
$$

makes $\ell^{2}$ into a Hilbert space, and the map from $L^{2}$ to $\ell^{2}$ established by the Fourier transformation is an isometry (Parseval/Plancherel):

$$
\|f\|_{L^{2}}=\|c(f)\|_{\ell^{2}}
$$

or equivalently:

$$
(f, g)=(c(f), c(g))
$$

This is a useful property in applications, since $(f, g)$ may be calculated either from $f$ and $g$ themselves, or from their Fourier coefficients $c(f)$ and $c(g)$ (see Section 1.3.4.4.6) for crystallographic applications).

By virtue of the orthogonality of the basis $\{\exp (2 \pi i m x)\}_{m \in \mathbb{Z}}$, the partial sum $S_{p}(f)$ is the best mean-square fit to $f$ in the linear subspace of $L^{2}$ spanned by $\{\exp (2 \pi i m x)\}_{|m| \leq p}$, and hence (Bessel's inequality)

$$
\sum_{|m| \leq p}\left|c_{m}(f)\right|^{2}=\|f\|_{2}^{2}-\sum_{|M| \geq p}\left|c_{M}(f)\right|^{2} \leq\|f\|_{2}^{2}
$$

### 1.3.2.6.10.3. The viewpoint of distribution theory

The use of distributions enlarges considerably the range of behaviour which can be accommodated in a Fourier series, even in the case of general dimension $n$ where classical theories meet with even more difficulties than in dimension 1 .

Let $\left\{w_{m}\right\}_{m \in \mathbb{Z}}$ be a sequence of complex numbers with $\left|w_{m}\right|$ growing at most polynomially as $|m| \rightarrow \infty$, say $\left|w_{m}\right| \leq C|m|^{K}$. Then the sequence $\left\{w_{m} /(2 \pi i m)^{K+2}\right\}_{m \in \mathbb{Z}}$ is in $\ell^{2}$ and even defines a continuous function $f \in L^{2}(\mathbb{R} / \mathbb{Z})$ and an associated tempered distribution $T_{f} \in \mathscr{D}^{\prime}(\mathbb{R} / \mathbb{Z})$. Differentiation of $T_{f}(K+2)$ times then yields a tempered distribution whose Fourier transform leads to the original sequence of coefficients. Conversely, by the structure theorem for distributions with compact support (Section 1.3.2.3.9.7), the motif $T^{0}$ of a $\mathbb{Z}$-periodic distribution is a derivative of finite order of a continuous function; hence its Fourier coefficients will grow at most polynomially with $|m|$ as $|m| \rightarrow \infty$.

Thus distribution theory allows the manipulation of Fourier series whose coefficients exhibit polynomial growth as their order goes to infinity, while those derived from functions had to tend to 0 by virtue of the Riemann-Lebesgue lemma. The distributiontheoretic approach to Fourier series holds even in the case of general dimension $n$, where classical theories meet with even more difficulties (see Ash, 1976) than in dimension 1.

### 1.3.2.7. The discrete Fourier transformation

### 1.3.2.7.1. Shannon's sampling theorem and interpolation

 formulaLet $\varphi \in \mathscr{E}\left(\mathbb{R}^{n}\right)$ be such that $\Phi=\mathscr{\mathscr { F }}[\varphi]$ has compact support $K$. Let $\varphi$ be sampled at the nodes of a lattice $\Lambda^{*}$, yielding the lattice distribution $R^{*} \times \varphi$. The Fourier transform of this sampled version of $\varphi$ is

$$
\mathscr{H}\left[R^{*} \times \varphi\right]=|\operatorname{det} \mathbf{A}|(R * \Phi),
$$

