1.3. FOURIER TRANSFORMS IN CRYSTALLOGRAPHY

The Poisson kernel

$$P_r(x) = 1 + 2\sum_{m=1}^{\infty} r^m \cos 2\pi mx$$
$$= \frac{1 - r^2}{1 - 2r \cos 2\pi mx + r^2}$$

with $0 \le r < 1$ gives rise to an Abel summation procedure [Tolstov (1962, p. 162); Whittaker & Watson (1927, p. 57)] since

$$(P_r * f)(x) = \sum_{m \in \mathbb{Z}} c_m(f) r^{|m|} \exp(2\pi i m x).$$

Compared with the other kernels, P_r has the disadvantage of not being a trigonometric polynomial; however, P_r is the real part of the Cauchy kernel (Cartan, 1961; Ahlfors, 1966):

$$P_r(x) = \Re\left[\frac{1 + r \exp(2\pi i x)}{1 - r \exp(2\pi i x)}\right]$$

and hence provides a link between trigonometric series and analytic functions of a complex variable.

Other methods of summation involve forming a moving average of f by convolution with other sequences of functions $\alpha_p(\mathbf{x})$ besides D_p of F_p which 'tend towards δ ' as $p \to \infty$. The convolution is performed by multiplying the Fourier coefficients of f by those of α_p , so that one forms the quantities

$$S_p'(f)(x) = \sum_{|m| \le p} c_m(\alpha_p) c_m(f) \exp(2\pi i m x).$$

For instance the 'sigma factors' of Lanczos (Lanczos, 1966, p. 65), defined by

$$\sigma_m = \frac{\sin[m\pi/p]}{m\pi/p},$$

lead to a summation procedure whose behaviour is intermediate between those using the Dirichlet and the Fejér kernels; it corresponds to forming a moving average of f by convolution with

$$\alpha_p = p\chi_{[-1/(2p), 1/(2p)]} * D_p,$$

which is itself the convolution of a 'rectangular pulse' of width 1/p and of the Dirichlet kernel of order p.

A review of the summation problem in crystallography is given in Section 1.3.4.2.1.3.

1.3.2.6.10.2. Classical L^2 theory

The space $L^2(\mathbb{R}/\mathbb{Z})$ of (equivalence classes of) square-integrable complex-valued functions f on the circle is contained in $L^1(\mathbb{R}/\mathbb{Z})$, since by the Cauchy–Schwarz inequality

$$||f||_1^2 = \left(\int_0^1 |f(x)| \times 1 \, dx\right)^2$$

$$\leq \left(\int_0^1 |f(x)|^2 \, dx\right) \left(\int_0^1 1^2 \, dx\right) = ||f||_2^2 \leq \infty.$$

Thus all the results derived for L^1 hold for L^2 , a great simplification over the situation in \mathbb{R} or \mathbb{R}^n where neither L^1 nor L^2 was contained in the other.

However, more can be proved in L^2 , because L^2 is a Hilbert space (Section 1.3.2.2.4) for the inner product

$$(f,g) = \int_{0}^{1} \overline{f(x)}g(x) dx,$$

and because the family of functions $\{\exp(2\pi i m x)\}_{m\in\mathbb{Z}}$ constitutes an orthonormal Hilbert basis for L^2 .

The sequence of Fourier coefficients $c_m(f)$ of $f \in L^2$ belongs to the space $\ell^2(\mathbb{Z})$ of square-summable sequences:

$$\sum_{m\in\mathbb{Z}} |c_m(f)|^2 < \infty.$$

Conversely, every element $c = (c_m)$ of ℓ^2 is the sequence of Fourier coefficients of a unique function in L^2 . The inner product

$$(c,d) = \sum_{m \in \mathbb{Z}} \overline{c_m} d_m$$

makes ℓ^2 into a Hilbert space, and the map from L^2 to ℓ^2 established by the Fourier transformation is an isometry (Parseval/Plancherel):

$$||f||_{I^2} = ||c(f)||_{\ell^2}$$

or equivalently:

$$(f,g) = (c(f), c(g)).$$

This is a useful property in applications, since (f, g) may be calculated either from f and g themselves, or from their Fourier coefficients c(f) and c(g) (see Section 1.3.4.4.6) for crystallographic applications).

By virtue of the orthogonality of the basis $\{\exp(2\pi i m x)\}_{m \in \mathbb{Z}}$, the partial sum $S_p(f)$ is the best mean-square fit to f in the linear subspace of L^2 spanned by $\{\exp(2\pi i m x)\}_{|m| \le p}$, and hence (Bessel's inequality)

$$\sum_{|m| \le p} |c_m(f)|^2 = ||f||_2^2 - \sum_{|M| \ge p} |c_M(f)|^2 \le ||f||_2^2.$$

1.3.2.6.10.3. The viewpoint of distribution theory

The use of distributions enlarges considerably the range of behaviour which can be accommodated in a Fourier series, even in the case of general dimension n where classical theories meet with even more difficulties than in dimension 1.

Let $\{w_m\}_{m\in\mathbb{Z}}$ be a sequence of complex numbers with $|w_m|$ growing at most polynomially as $|m|\to\infty$, say $|w_m|\le C|m|^K$. Then the sequence $\{w_m/(2\pi im)^{K+2}\}_{m\in\mathbb{Z}}$ is in ℓ^2 and even defines a continuous function $f\in L^2(\mathbb{R}/\mathbb{Z})$ and an associated tempered distribution $T_f\in \mathscr{Q}'(\mathbb{R}/\mathbb{Z})$. Differentiation of T_f (K+2) times then yields a tempered distribution whose Fourier transform leads to the original sequence of coefficients. Conversely, by the structure theorem for distributions with compact support (Section 1.3.2.3.9.7), the motif T^0 of a \mathbb{Z} -periodic distribution is a derivative of finite order of a continuous function; hence its Fourier coefficients will grow at most polynomially with |m| as $|m|\to\infty$.

Thus distribution theory allows the manipulation of Fourier series whose coefficients exhibit polynomial growth as their order goes to infinity, while those derived from functions had to tend to 0 by virtue of the Riemann–Lebesgue lemma. The distribution-theoretic approach to Fourier series holds even in the case of general dimension n, where classical theories meet with even more difficulties (see Ash, 1976) than in dimension 1.

1.3.2.7. The discrete Fourier transformation

1.3.2.7.1. Shannon's sampling theorem and interpolation formula

Let $\varphi \in \mathscr{E}(\mathbb{R}^n)$ be such that $\Phi = \mathscr{F}[\varphi]$ has compact support K. Let φ be sampled at the nodes of a lattice Λ^* , yielding the lattice distribution $R^* \times \varphi$. The Fourier transform of this sampled version of φ is

$$\mathscr{F}[R^* \times \varphi] = |\det \mathbf{A}|(R * \Phi),$$