
The ability of a given factoring method to accommodate
crystallographic symmetry will thus be determined by the extent
to which the crystallographic group action respects (or fails to
respect) the partitioning of the index set into the substructures
pertaining to that method. This remark justifies trying to gain an
overall view of the algebraic structures involved, and of the
possibilities of a crystallographic group acting ‘naturally’ on them.

The index sets �m�m � �3�N�3� and �h�h � �3�NT�3� are
finite Abelian groups under component-wise addition. If an iterated
addition is viewed as an action of an integer scalar n � � via

nh � h� h� � � �� h �n times� for n � 0,

� 0 for n � 0,

� 	�h� h� � � �� h� ��n� times� for n � 0,

then an Abelian group becomes a module over the ring � (or, for
short, a �-module), a module being analogous to a vector space but
with scalars drawn from a ring rather than a field. The left actions of
a crystallographic group G by

g � m 
	� Rgm� Ntg mod N�3

and by

g � h 
	� �R	1
g �T h mod NT�3

can be combined with this � action as follows:
�

g�G
ngg � m 
	� �

g�G
ng�Rgm� Ntg� mod N�3,

�

g�G
ngg � h 
	� �

g�G
ng��R	1

g �T h
 mod NT�3�

This provides a left action, on the indexing sets, of the set

�G � �

g�G
ngg

�
�ng � � for each g � G

� �

of symbolic linear combinations of elements of G with integral
coefficients. If addition and multiplication are defined in �G by

�

g1�G
ag1 g1

� �

� �

g2�G
bg2 g2

� �

� �

g�G
�ag � bg�g

and

�

g1�G
ag1 g1

� �

� �

g2�G
bg2 g2

� �

� �

g�G
cgg,

with

cg �
�

g��G
ag�b�g��	1 g,

then �G is a ring, and the action defined above makes the indexing
sets into �G-modules. The ring �G is called the integral group ring
of G (Curtis & Reiner, 1962, p. 44).

From the algebraic standpoint, therefore, the interaction between
symmetry and factorization can be expected to be favourable
whenever the indexing sets of partial transforms are �G-
submodules of the main �G-modules.

1.3.4.3.4.1. Multidimensional Cooley–Tukey factorization
Suppose, as in Section 1.3.3.3.2.1, that the decimation matrix N

may be factored as N1N2. Then any grid point index m � �3�N�3

in real space may be written

m � m1 � N1m2

with m1 � �3�N1�
3 and m2 � �3�N2�

3 determined by

m1 � m mod N1�
3,

m2 � N	1
1 �m 	m1� mod N2�

3�

These relations establish a one-to-one correspondence m �
�m1, m2� between I � �3�N�3 and the Cartesian product I1 � I2
of I1 � �3�N1�

3 and I2 � �3�N2�
3, and hence I � I1 � I2 as a set.

However I �� I1 � I2 as an Abelian group, since in general m �
m� ����m1 �m�

1, m2 �m�
2� because there can be a ‘carry’ from the

addition of the first components into the second components;
therefore, I �� I1 � I2 as a �G-module, which shows that the
incorporation of symmetry into the Cooley–Tukey algorithm is not
a trivial matter.

Let g � G act on I through

g � m 
	� Sg�m� � Rgm� Ntg mod N�3

and suppose that N ‘integerizes’ all the non-primitive translations tg
so that we may write

Ntg � t�1�g � N1t�2�g ,

with t�1�g � I1 and t�2�g � I2 determined as above. Suppose further
that N, N1 and N2 commute with Rg for all g � G, i.e. (by Schur’s
lemma, Section 1.3.4.2.2.4) that these matrices are integer multiples
of the identity in each G-invariant subspace. The action of g on
m � Nx mod N�3 leads to

Sg�m� � N�Rg�N	1m� � Ntg
 mod N�3

� NRgN	1�m1 � N1m2� � t�1�g � N1t�2�g mod N�3

� Rgm1 � t�1�g � N1�Rgm2 � t�2�g � mod N�3,

which we may decompose as

Sg�m� � �Sg�m�
1 � N1�Sg�m�
2
with

�Sg�m�
1 � Sg�m� mod N1�
3

and

�Sg�m�
2 � N	1
1 �Sg�m� 	 �Sg�m�
1� mod N2�

3�

Introducing the notation

S�1�g �m1� � Rgm1 � t�1�g mod N1�
3,

S�2�g �m2� � Rgm2 � t�2�g mod N2�
3,

the two components of Sg�m� may be written

�Sg�m�
1 � S�1�g �m1�,
�Sg�m�
2 � S�2�g �m2� � �2�g, m1� mod N2�

3,

with

�2�g, m1� � N	1
1 ��Rgm1 � t�1�g � 	 �Sg�m1�
1� mod N2�

3�

The term �2 is the geometric equivalent of a carry or borrow: it
arises because Rgm1 � t�1�g , calculated as a vector in �3�N�3, may
be outside the unit cell N1�0, 1
3, and may need to be brought back
into it by a ‘large’ translation with a non-zero component in the m2
space; equivalently, the action of g may need to be applied around
different permissible origins for different values of m1, so as to map
the unit cell into itself without any recourse to lattice translations.
[Readers familiar with the cohomology of groups (see e.g. Hall,
1959; MacLane, 1963) will recognize �2 as the cocycle of the
extension of �G-modules described by the exact sequence
0 � I2 � I � I1 � 0.]
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Thus G acts on I in a rather complicated fashion: although
g 
	� S�1�g does define a left action in I1 alone, no action can be
defined in I2 alone because �2 depends on m1. However, because
Sg, S�1�g and S�2�g are left actions, it follows that �2 satisfies the
identity

�2�gg�, m1� � S�2�g ��2�g�, m1�
 � �2�g, S�1�g �m1�
 mod N2�
3

for all g, g� in G and all m1 in I1. In particular, �2�e, m1� � 0 for all
m1, and

�2�g	1, m1� � 	S�2�g	1��2�g, S�1�g	1�m1�
� mod N2�
3�

This action will now be used to achieve optimal use of symmetry
in the multidimensional Cooley–Tukey algorithm of Section
1.3.3.3.2.1. Let us form an array Y according to

Y�m1, m2� � ��m1 � N1m2�
for all m2 � I2 but only for the unique m1 under the action S�1�g of G
in I1. Except in special cases which will be examined later, these
vectors contain essentially an asymmetric unit of electron-density
data, up to some redundancies on boundaries. We may then
compute the partial transform on m2:

Y ��m1, h2� � 1
�det N2�

�

m2�I2

Y�m1, m2�e�h2 � �N	1
2 m2�
�

Using the symmetry of �	 in the form �	� S�
g �	 yields by the

procedure of Section 1.3.3.3.2 the transposition formula

Y ��S�1�g �m1�, h2� � e�h2 � �N	1
2 �t�2�g � �2�g, m1��
�

� Y ��m1, �R�2�
g 
T h2��

By means of this identity we can transpose intermediate results
Y � initially indexed by

�unique m1� � �all h2�,
so as to have them indexed by

�all m1� � �unique h2��
We may then apply twiddle factors to get

Z�m1, h2� � e�h2 � �N	1m1�
Y ��m1, h2�
and carry out the second transform

Z��h1, h2� � 1
�det N1�

�

m1�I1

Z�m1, h2�e�h1 � �N	1
1 m1�
�

The final results are indexed by

�all h1� � �unique h2�,
which yield essentially an asymmetric unit of structure factors after
unscrambling by:

F�h2 � NT
2 h1� � Z��h1, h2��

The transposition formula above applies to intermediate results
when going backwards from F to �	, provided these results are
considered after the twiddle-factor stage. A transposition formula
applicable before that stage can be obtained by characterizing the
action of G on h (including the effects of periodization by NT�3) in
a manner similar to that used for m.

Let

h � h2 � NT
2 h1,

with

h2 � h mod NT
2�

3,

h1 � �N	1
2 �T�h	 h2� mod NT

1�
3�

We may then write

RT
g h � �RT

g h
2 � NT
2 �RT

g h
1,

with

�RT
g h
2 � �R�2�

g 
T h2 mod NT
2�

3,

�RT
g h
1 � �R�1�

g 
T h1 � �1�g, h2� mod NT
1�

3�

Here �R�2�
g 
T , �R�1�

g 
T and �1 are defined by

�R�2�
g 
T h2 � RT

g h mod NT
2�

3,

�R�1�
g 
T h1 � RT

g h mod NT
1�

3

and

�1�g, h2� � �N	1
2 �T �RT

g h2 	 �R�2�
g 
T h2� mod NT

1�
3�

Let us then form an array Z� according to

Z��h�1, h�2� � F�h�2 � NT
2 h�1�

for all h�1 but only for the unique h�2 under the action of G in
�3�NT

2�
3, and transform on h�1 to obtain

Z�m1, h2� �
�

h�1��3�NT
1 �

3

Z��h�1, h�2�e�	h�1 � �N	1
1 m1�
�

Putting h� � RT
g h and using the symmetry of F in the form

F�h�� � F�h� exp�	2�ih � tg�,
where

h � tg � �hT
2 � hT

1 N2��N	1
2 N	1

1 ��t�1�g � N1t�2�g �
� h2 � tg � h2 � �N	1

1 t�1�g � mod 1

yields by a straightforward rearrangement

Z�m1, �R�2�
g 
T h2� � e�	�h2 � tg � �1�g, h2� � �N	1

1 m1��

� Z�S�1�g �m1�, h2��

This formula allows the transposition of intermediate results Z
from an indexing by

�all m1� � �unique h2�
to an indexing by

�unique m1� � �all h2��
We may then apply the twiddle factors to obtain

Y ��m1, h2� � e�	h2 � �N	1m1�
Z�m1, h2�
and carry out the second transform on h2

Y�m1, m2� �
�

h2��3�NT
2 �

3

Y ��m1, h2�e�	h2 � �N	1
2 m2�
�

The results, indexed by

�unique m1� � �all m2�
yield essentially an asymmetric unit of electron densities by the
rearrangement

�	�m1 � N1m2� � Y�m1, m2��
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The equivalence of the two transposition formulae up to the
intervening twiddle factors is readily established, using the relation

h2 � �N	1
2 �2�g, m1�
 � �1�g, h2� � �N	1

1 m1� mod 1

which is itself a straightforward consequence of the identity

h � �N	1Sg�m�
 � h � tg � �RT
g h� � �N	1m��

To complete the characterization of the effect of symmetry on the
Cooley–Tukey factorization, and of the economy of computation it
allows, it remains to consider the possibility that some values of m1
may be invariant under some transformations g � G under the
action m1 
	� S�1�g �m1�.

Suppose that m1 has a non-trivial isotropy subgroup Gm1 , and let
g � Gm1 . Then each subarray Ym1 defined by

Ym1�m2� � Y�m1, m2� � ��m1 � N1m2�
satisfies the identity

Ym1�m2� � Y
S�1�g �m1��S

�2�
g �m2� � �2�g, m1�


� Ym1 �S�2�g �m2� � �2�g, m1�

so that the data for the transform on m2 have residual symmetry
properties. In this case the identity satisfied by �2 simplifies to

�2�gg�, m1� � S�2�g ��2�g�, m1�
 � �2�g, m1� mod N2�
3,

which shows that the mapping g 
	� �2�g, m1� satisfies the
Frobenius congruences (Section 1.3.4.2.2.3). Thus the internal
symmetry of subarray Ym1 with respect to the action of G on m2 is
given by Gm1 acting on �3�N2�

3 via

m2 
	� S�2�g �m2� � �2�g, m1� mod N2�
3�

The transform on m2 needs only be performed for one out of
�G � Gm1 
 distinct arrays Ym1 (results for the others being obtainable
by the transposition formula), and this transforms is Gm1 -
symmetric. In other words, the following cases occur:

�i� Gm1 � �e� maximum saving in computation
�by �G��;
m2-transform has no symmetry�

�ii� Gm1 � G� � G saving in computation by a factor
of �G � G�
;
m2-transform is G�-symmetric�

�iii� Gm1 � G no saving in computation;
m2-transform is G-symmetric�

The symmetry properties of the m2-transform may themselves be
exploited in a similar way if N2 can be factored as a product of
smaller decimation matrices; otherwise, an appropriate symme-
trized DFT routine may be provided, using for instance the idea of
‘multiplexing/demultiplexing’ (Section 1.3.4.3.5). We thus have a
recursive descent procedure, in which the deeper stages of the
recursion deal with transforms on fewer points, or of lower
symmetry (usually both).

The same analysis applies to the h1-transforms on the subarrays
Z�h2

, and leads to a similar descent procedure.
In conclusion, crystallographic symmetry can be fully exploited

to reduce the amount of computation to the minimum required to
obtain the unique results from the unique data. No such analysis was
so far available in cases where the asymmetric units in real and
reciprocal space are not parallelepipeds. An example of this
procedure will be given in Section 1.3.4.3.6.5.

1.3.4.3.4.2. Multidimensional Good factorization
This procedure was described in Section 1.3.3.3.2.2. The main

difference with the Cooley–Tukey factorization is that if
N � N1N2 � � �Nd	1Nd , where the different factors are pairwise
coprime, then the Chinese remainder theorem reindexing makes
�3�N�3 isomorphic to a direct sum.

�3�N�3 � ��3�N1�
3� � � � �� ��3�Nd�

3�,
where each p-primary piece is endowed with an induced �G-
module structure by letting G operate in the usual way but with the
corresponding modular arithmetic. The situation is thus more
favourable than with the Cooley–Tukey method, since there is no
interference between the factors (no ‘carry’). In the terminology of
Section 1.3.4.2.2.2, G acts diagonally on this direct sum, and results
of a partial transform may be transposed by orbit exchange as in
Section 1.3.4.3.4.1 but without the extra terms � or �. The analysis
of the symmetry properties of partial transforms also carries over,
again without the extra terms. Further simplification occurs for all
p-primary pieces with p other than 2 or 3, since all non-primitive
translations (including those associated to lattice centring)
disappear modulo p.

Thus the cost of the CRT reindexing is compensated by the
computational savings due to the absence of twiddle factors and of
other phase shifts associated with non-primitive translations and
with geometric ‘carries’.

Within each p-primary piece, however, higher powers of p may
need to be split up by a Cooley–Tukey factorization, or carried out
directly by a suitably adapted Winograd algorithm.

1.3.4.3.4.3. Crystallographic extension of the Rader/
Winograd factorization

As was the case in the absence of symmetry, the two previous
classes of algorithms can only factor the global transform into
partial transforms on prime numbers of points, but cannot break the
latter down any further. Rader’s idea of using the action of the group
of units U�p� to obtain further factorization of a p-primary
transform has been used in ‘scalar’ form by Auslander & Shenefelt
(1987), Shenefelt (1988), and Auslander et al. (1988). It will be
shown here that it can be adapted to the crystallographic case so as
to take advantage also of the possible existence of n-fold cyclic
symmetry elements �n � 3, 4, 6� in a two-dimensional transform
(Bricogne & Tolimieri, 1990). This adaptation entails the use of
certain rings of algebraic integers rather than ordinary integers,
whose connection with the handling of cyclic symmetry will now be
examined.

Let G be the group associated with a threefold axis of symmetry:
G � �e, g, g2� with g3 � e. In a standard trigonal basis, G has
matrix representation

Re � 1 0
0 1

� 	

� I, Rg � 0 	1
1 	1

� 	

, Rg2 � 	1 1
	1 0

� 	

in real space,

R�
e �

1 0
0 1

� 	

� I, R�
g �

	1 	1
1 0

� 	

, R�
g2 � 0 1

	1 	1

� 	

in reciprocal space. Note that

R�
g2 � �R	1

g2 
T � RT
g ,

and that

RT
g � J	1RgJ, where J � 1 0

0 	1

� 	

so that Rg and RT
g are conjugate in the group of 2� 2 unimodular
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