International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.2, pp. 210-234   | 1 | 2 |
https://doi.org/10.1107/97809553602060000555

Chapter 2.2. Direct methods

C. Giacovazzoa*

aDipartimento Geomineralogico, Campus Universitario, I-70125 Bari, Italy
Correspondence e-mail: c.giacovazzo@area.ba.cnr.it

References

First citation Allegra, G. (1979). Derivation of three-phase invariants from the Patterson function. Acta Cryst. A35, 213–220.Google Scholar
First citation Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R.(1999). SIR97: a new tool for crystal structure determination and refinement. J. Appl. Cryst. 32, 115–119.Google Scholar
First citation Anzenhofer, K. & Hoppe, W. (1962). Phys. Verh. Mosbach. 13, 119.Google Scholar
First citation Ardito, G., Cascarano, G., Giacovazzo, C. & Luić, M. (1985). 1-Phase seminvariants and Harker sections. Z. Kristallogr. 172, 25–34.Google Scholar
First citation Argos, P. & Rossmann, M. G. (1980). Molecular replacement method. In Theory and practice of direct methods in crystallography, edited by M. F. C. Ladd & R. A. Palmer, pp. 381–389. New York: Plenum.Google Scholar
First citation Avrami, M. (1938). Direct determination of crystal structure from X-ray data. Phys. Rev. 54, 300–303.Google Scholar
First citation Baggio, R., Woolfson, M. M., Declercq, J.-P. & Germain, G. (1978). On the application of phase relationships to complex structures. XVI. A random approach to structure determination. Acta Cryst. A34, 883–892.Google Scholar
First citation Banerjee, K. (1933). Determination of the signs of the Fourier terms in complete crystal structure analysis. Proc. R. Soc. London Ser. A, 141, 188–193.Google Scholar
First citation Bertaut, E. F. (1955a). La méthode statistique en cristallographie. I. Acta Cryst. 8, 537–543.Google Scholar
First citation Bertaut, E. F. (1955b). La méthode statistique en cristallographie. II. Quelques applications. Acta Cryst. 8, 544–548.Google Scholar
First citation Bertaut, E. F. (1960). Ordre logarithmique des densités de répartition. I. Acta Cryst. 13, 546–552.Google Scholar
First citation Beurskens, P. T., Beurskens, G., de Gelder, R., Garcia-Granda, S., Gould, R. O., Israel, R. & Smits, J. M. M.(1999). The DIRDIF-99 program system. Crystallography Laboratory, University of Nijmegen, The Netherlands.Google Scholar
First citation Beurskens, P. T., Gould, R. O., Bruins Slot, H. J. & Bosman, W. P. (1987). Translation functions for the positioning of a well oriented molecular fragment. Z. Kristallogr. 179, 127–159.Google Scholar
First citation Beurskens, P. T., Prick, A. J., Doesburg, H. M. & Gould, R. O. (1979). Statistical properties of normalized difference-structure factors for non-centrosymmetric structures. Acta Cryst. A35, 765–772.Google Scholar
First citation Böhme, R. (1982). Direkte Methoden für Strukturen mit Uberstruktureffekten. Acta Cryst. A38, 318–326.Google Scholar
First citation Bouman, J. (1956). A general theory of inequalities. Acta Cryst. 9, 777–780.Google Scholar
First citation Bricogne, G. (1984). Maximum entropy and the foundation of direct methods. Acta Cryst. A40, 410–415.Google Scholar
First citation Britten, P. L. & Collins, D. M. (1982). Information theory as a basis for the maximum determinant. Acta Cryst. A38, 129–132.Google Scholar
First citation Buerger, M. J. (1959). Vector space and its applications in crystal structure investigation. New York: John Wiley.Google Scholar
First citation Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (1999). SIR99, a program for the automatic solution of small and large crystal structures. Acta Cryst. A55, 991–999.Google Scholar
First citation Burla, M. C., Cascarano, G., Giacovazzo, C., Nunzi, A. & Polidori, G. (1987). A weighting scheme for tangent formula development. III. The weighting scheme of the SIR program. Acta Cryst. A43, 370–374.Google Scholar
First citation Busetta, B. (1976). An example of the use of quartet and triplet structure invariants when enantiomorph discrimination is difficult. Acta Cryst. A32, 139–143.Google Scholar
First citation Busetta, B., Giacovazzo, C., Burla, M. C., Nunzi, A., Polidori, G. & Viterbo, D. (1980). The SIR program. I. Use of negative quartets. Acta Cryst. A36, 68–74.Google Scholar
First citation Camalli, M., Giacovazzo, C. & Spagna, R. (1985). From a partial to the complete crystal structure. II. The procedure and its applications. Acta Cryst. A41, 605–613.Google Scholar
First citation Cascarano, G. & Giacovazzo, C. (1983). One-phase seminvariants of first rank. I. Algebraic considerations. Z. Kristallogr. 165, 169–174.Google Scholar
First citation Cascarano, G. & Giacovazzo, C. (1985). One-wavelength technique: some probabilistic formulas using the anomalous dispersion effect. Acta Cryst. A41, 408–413.Google Scholar
First citation Cascarano, G., Giacovazzo, C., Burla, M. C., Nunzi, A. & Polidori, G. (1984). The distribution of [\alpha_{\bf h}]. Acta Cryst. A40, 389–394.Google Scholar
First citation Cascarano, G., Giacovazzo, C., Calabrese, G., Burla, M. C., Nunzi, A., Polidori, G. & Viterbo, D. (1984). One-phase seminvariants of first rank. II. Probabilistic considerations. Z. Kristallogr. 167, 37–47.Google Scholar
First citation Cascarano, G., Giacovazzo, C., Camalli, M., Spagna, R., Burla, M. C., Nunzi, A. & Polidori, G. (1984). The method of representations of structure seminvariants. The strengthening of triplet relationships. Acta Cryst. A40, 278–283.Google Scholar
First citation Cascarano, G., Giacovazzo, C. & Luić, M. (1985a). Non-crystallographic translational symmetry: effects on diffraction-intensity statistics. In Structure and statistics in crystallography, edited by A. J. C. Wilson, pp. 67–77. Guilderland, USA: Adenine Press.Google Scholar
First citation Cascarano, G., Giacovazzo, C. & Luić, M. (1985b). Direct methods and superstructures. I. Effects of the pseudotranslation on the reciprocal space. Acta Cryst. A41, 544–551.Google Scholar
First citation Cascarano, G., Giacovazzo, C. & Luić, M. (1987). Direct methods and structures showing superstructure effects. II. A probabilistic theory of triplet invariants. Acta Cryst. A43, 14–22.Google Scholar
First citation Cascarano, G., Giacovazzo, C. & Luić, M. (1988a). Direct methods and structures showing superstructure effects. III. A general mathematical model. Acta Cryst. A44, 176–183.Google Scholar
First citation Cascarano, G., Giacovazzo, C. & Luić, M. (1988b). Direct methods and structures showing superstructure effects. IV. A new approach for phase solution. Acta Cryst. A44, 183–188.Google Scholar
First citation Cascarano, G., Giacovazzo, C., Luić, M., Pifferi, A. & Spagna, R. (1987). 1-Phase seminvariants and Harker sections. II. A new procedure. Z. Kristallogr. 179, 113–125.Google Scholar
First citation Cascarano, G., Giacovazzo, C. & Viterbo, D. (1987). Figures of merit in direct methods: a new point of view. Acta Cryst. A43, 22–29.Google Scholar
First citation Castellano, E. E., Podjarny, A. D. & Navaza, J. (1973). A multivariate joint probability distribution of phase determination. Acta Cryst. A29, 609–615.Google Scholar
First citation Cochran, W. (1955). Relations between the phases of structure factors. Acta Cryst. 8, 473–478.Google Scholar
First citation Cochran, W. & Douglas, A. S. (1957). The use of a high-speed digital computer for the direct determination of crystal structure. II. Proc. R. Soc. London Ser. A, 243, 281–288.Google Scholar
First citation Cochran, W. & Woolfson, M. M. (1955). The theory of sign relations between structure factors. Acta Cryst. 8, 1–12.Google Scholar
First citation Coulter, C. L. & Dewar, R. B. K. (1971). Tangent formula applications in protein crystallography: an evaluation. Acta Cryst. B27, 1730–1740.Google Scholar
First citation Crowther, R. A. & Blow, D. M. (1967). A method of positioning of a known molecule in an unknown crystal structure. Acta Cryst. 23, 544–548.Google Scholar
First citation Cutfield, J. F., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., Isaacs, N. W., Sakabe, K. & Sakabe, N. (1975). The high resolution structure of insulin: a comparison of results obtained from least-squares phase refinement and difference Fourier refinement. Acta Cryst. A31, S21.Google Scholar
First citation Debaerdemaeker, T., Tate, C. & Woolfson, M. M. (1985). On the application of phase relationships to complex structures. XXIV. The Sayre tangent formula. Acta Cryst. A41, 286–290.Google Scholar
First citation Debaerdemaeker, T. & Woolfson, M. M. (1972). On the application of phase relationships to complex structures. IV. The coincidence method applied to general phases. Acta Cryst. A28, 477–481.Google Scholar
First citation Debaerdemaeker, T. & Woolfson, M. M. (1983). On the application of phase relationships to complex structures. XXII. Techniques for random refinement. Acta Cryst. A39, 193–196.Google Scholar
First citation Declercq, J.-P., Germain, G., Main, P. & Woolfson, M. M. (1973). On the application of phase relationships to complex structures. V. Finding the solution. Acta Cryst. A29, 231–234.Google Scholar
First citation Declercq, J.-P., Germain, G. & Woolfson, M. M. (1975). On the application of phase relationships to complex structures. VIII. Extension of the magic-integer approach. Acta Cryst. A31, 367–372.Google Scholar
First citation De Titta, G. T., Edmonds, J. W., Langs, D. A. & Hauptman, H. (1975). Use of the negative quartet cosine invariants as a phasing figure of merit: NQEST. Acta Cryst. A31, 472–479.Google Scholar
First citation DeTitta, G. T., Weeks, C. M., Thuman, P., Miller, R. & Hauptman, H. A. (1994). Structure solution by minimal-function phase refinement and Fourier filtering. I. Theoretical basis. Acta Cryst. A50, 203–210.Google Scholar
First citation Egert, E. (1983). Patterson search – an alternative to direct methods. Acta Cryst. A39, 936–940.Google Scholar
First citation Egert, E. & Sheldrick, G. M. (1985). Search for a fragment of known geometry by integrated Patterson and direct methods. Acta Cryst. A41, 262–268.Google Scholar
First citation Eller, G. von (1973). Génération de formules statistiques entre facteurs de structure: la méthode du polynome. Acta Cryst. A29, 63–67.Google Scholar
First citation Fan, H.-F. (1999). Crystallographic software: teXsan for Windows. http://www.msc.com/brochures/teXsan/wintex.html.Google Scholar
First citation Fan, H.-F. & Gu, Y.-X. (1985). Combining direct methods with isomorphous replacement or anomalous scattering data. III. The incorporation of partial structure information. Acta Cryst. A41, 280–284.Google Scholar
First citation Fan, H. F., Hao, Q. & Woolfson, M. M. (1991). Proteins and direct methods. Z. Kristallogr. 197, 197–208.Google Scholar
First citation Fan, H.-F., Yao, J.-X., Main, P. & Woolfson, M. M. (1983). On the application of phase relationships to complex structures. XXIII. Automatic determination of crystal structures having pseudo-translational symmetry by a modified MULTAN procedure. Acta Cryst. A39, 566–569.Google Scholar
First citation Fortier, S. & Hauptman, H. (1977). Quintets in [P\bar{1}]: probabilistic theory of the five-phase structure invariant in the space group [P\bar{1}]. Acta Cryst. A33, 829–833.Google Scholar
First citation Fortier, S., Weeks, C. M. & Hauptman, H. (1984). On integrating the techniques of direct methods and isomorphous replacement. III. The three-phase invariant for the native and two-derivative case. Acta Cryst. A40, 646–651.Google Scholar
First citation Freer, A. A. & Gilmore, C. J. (1980). The use of higher invariants in MULTAN. Acta Cryst. A36, 470–475.Google Scholar
First citation French, S. & Wilson, K. (1978). On the treatment of negative intensity observations. Acta Cryst. A34, 517–525.Google Scholar
First citation Gelder, R. de (1992). Thesis. University of Leiden, The Netherlands.Google Scholar
First citation Gelder, R. de, de Graaff, R. A. G. & Schenk, H. (1990). On the construction of Karle–Hauptman matrices. Acta Cryst. A46, 688–692.Google Scholar
First citation Gelder, R. de, de Graaff, R. A. G. & Schenk, H. (1993). Automatic determination of crystal structures using Karle–Hauptman matrices. Acta Cryst. A49, 287–293.Google Scholar
First citation Germain, G., Main, P. & Woolfson, M. M. (1970). On the application of phase relationships to complex structures. II. Getting a good start. Acta Cryst. B26, 274–285.Google Scholar
First citation Germain, G., Main, P. & Woolfson, M. M. (1971). The application of phase relationships to complex structures. III. The optimum use of phase relationships. Acta Cryst. A27, 368–376.Google Scholar
First citation Giacovazzo, C. (1974). A new scheme for seminvariant tables in all space groups. Acta Cryst. A30, 390–395.Google Scholar
First citation Giacovazzo, C. (1975). A probabilistic theory in [P\bar{1}] of the invariant [E_{\bf h} E_{\bf k} E_{\bf l} E_{{\bf h}+{\bf k}+{\bf l}}]. Acta Cryst. A31, 252–259.Google Scholar
First citation Giacovazzo, C. (1976). A probabilistic theory of the cosine invariant [\cos (\varphi_{\bf h} + \varphi_{\bf k} + \varphi_{\bf l} - \varphi_{{\bf h}+{\bf k}+{\bf l}})]. Acta Cryst. A32, 91–99.Google Scholar
First citation Giacovazzo, C. (1977a). A general approach to phase relationships: the method of representations. Acta Cryst. A33, 933–944.Google Scholar
First citation Giacovazzo, C. (1977b). Strengthening of the triplet relationships. II. A new probabilistic approach in [P\bar{1}]. Acta Cryst. A33, 527–531.Google Scholar
First citation Giacovazzo, C. (1977c). On different probabilistic approaches to quartet theory. Acta Cryst. A33, 50–54.Google Scholar
First citation Giacovazzo, C. (1977d). Quintets in [P\bar{1}] and related phase relationships: a probabilistic approach. Acta Cryst. A33, 944–948.Google Scholar
First citation Giacovazzo, C. (1977e). A probabilistic theory of the coincidence method. I. Centrosymmetric space groups. Acta Cryst. A33, 531–538.Google Scholar
First citation Giacovazzo, C. (1977f). A probabilistic theory of the coincidence method. II. Non-centrosymmetric space groups. Acta Cryst. A33, 539–547.Google Scholar
First citation Giacovazzo, C. (1978). The estimation of the one-phase structure seminvariants of first rank by means of their first and second representation. Acta Cryst. A34, 562–574.Google Scholar
First citation Giacovazzo, C. (1979a). A probabilistic theory of two-phase seminvariants of first rank via the method of representations. III. Acta Cryst. A35, 296–305.Google Scholar
First citation Giacovazzo, C. (1979b). A theoretical weighting scheme for tangent-formula development and refinement and Fourier synthesis. Acta Cryst. A35, 757–764.Google Scholar
First citation Giacovazzo, C. (1980a). Direct methods in crystallography. London: Academic Press.Google Scholar
First citation Giacovazzo, C. (1980b). The method of representations of structure seminvariants. II. New theoretical and practical aspects. Acta Cryst. A36, 362–372.Google Scholar
First citation Giacovazzo, C. (1980c). Triplet and quartet relations: their use in direct procedures. Acta Cryst. A36, 74–82.Google Scholar
First citation Giacovazzo, C. (1983a). From a partial to the complete crystal structure. Acta Cryst. A39, 685–692.Google Scholar
First citation Giacovazzo, C. (1983b). The estimation of two-phase invariants in [P\bar{1}] when anomalous scatterers are present. Acta Cryst. A39, 585–592.Google Scholar
First citation Giacovazzo, C. (1987). One wavelength technique: estimation of centrosymmetrical two-phase invariants in dispersive structures. Acta Cryst. A43, 73–75.Google Scholar
First citation Giacovazzo, C. (1988a). New probabilistic formulas for finding the positions of correctly oriented atomic groups. Acta Cryst. A44, 294–300.Google Scholar
First citation Giacovazzo, C. (1988b). Direct phasing in crystallography. New York: IUCr, Oxford University Press.Google Scholar
First citation Giacovazzo, C., Cascarano, G. & Zheng, C.-D. (1988). On integrating the techniques of direct methods and isomorphous replacement. A new probabilistic formula for triplet invariants. Acta Cryst. A44, 45–51.Google Scholar
First citation Giacovazzo, C., Guagliardi, A., Ravelli, R. & Siliqi, D. (1994). Ab initio direct phasing of proteins: the limits. Z. Kristallogr. 209, 136–142.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Platas, J. G. (1995). The ab initio crystal structure solution of proteins by direct methods. V. A new normalizing procedure. Acta Cryst. A51, 811–820.Google Scholar
First citation Giacovazzo, C., Siliqi, D., Platas, J. G., Hecht, H.-J., Zanotti, G. & York, B. (1996). The ab initio crystal structure solution of proteins by direct methods. VI. Complete phasing up to derivative resolution. Acta Cryst. D52, 813–825.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Ralph, A. (1994). The ab initio crystal structure solution of proteins by direct methods. I. Feasibility. Acta Cryst. A50, 503–510.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Spagna, R. (1994). The ab initio crystal structure solution of proteins by direct methods. II. The procedure and its first applications. Acta Cryst. A50, 609–621.Google Scholar
First citation Giacovazzo, C., Siliqi, D. & Zanotti, G. (1995). The ab initio crystal structure solution of proteins by direct methods. III. The phase extension process. Acta Cryst. A51, 177–188.Google Scholar
First citation Gillis, J. (1948). Structure factor relations and phase determination. Acta Cryst. 1, 76–80.Google Scholar
First citation Gilmore, C. J. (1984). MITHRIL. An integrated direct-methods computer program. J. Appl. Cryst. 17, 42–46.Google Scholar
First citation Goedkoop, J. A. (1950). Remarks on the theory of phase limiting inequalities and equalities. Acta Cryst. 3, 374–378.Google Scholar
First citation Gramlich, V. (1984). The influence of rational dependence on the probability distribution of structure factors. Acta Cryst. A40, 610–616.Google Scholar
First citation Grant, D. F., Howells, R. G. & Rogers, D. (1957). A method for the systematic application of sign relations. Acta Cryst. 10, 489–497.Google Scholar
First citation Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Xtal3.6 crystallographic software. http://www.crystal.uwa.edu.au/Crystal/xtal .Google Scholar
First citation Hao, Q. & Woolfson, M. M. (1989). Application of the Ps-function method to macromolecular structure determination. Acta Cryst. A45, 794–797.Google Scholar
First citation Harker, D. & Kasper, J. S. (1948). Phases of Fourier coefficients directly from crystal diffraction data. Acta Cryst. 1, 70–75.Google Scholar
First citation Hauptman, H. (1964). The role of molecular structure in the direct determination of phase. Acta Cryst. 17, 1421–1433.Google Scholar
First citation Hauptman, H. (1965). The average value of [\exp \{2 \pi i ({\bf h} \cdot {\bf r} + {\bf h}' \cdot {\bf r}')\}]. Z. Kristallogr. 121, 1–8.Google Scholar
First citation Hauptman, H. (1970). Communication at New Orleans Meeting of Am. Crystallogr. Assoc.Google Scholar
First citation Hauptman, H. (1974). On the identity and estimation of those cosine invariants, [\cos (\varphi_{\bf m} + \varphi_{\bf n} + \varphi_{\bf p} + \varphi_{\bf q})], which are probably negative. Acta Cryst. A30, 472–476.Google Scholar
First citation Hauptman, H. (1975). A new method in the probabilistic theory of the structure invariants. Acta Cryst. A31, 680–687.Google Scholar
First citation Hauptman, H. (1982a). On integrating the techniques of direct methods and isomorphous replacement. I. The theoretical basis. Acta Cryst. A38, 289–294.Google Scholar
First citation Hauptman, H. (1982b). On integrating the techniques of direct methods with anomalous dispersion. I. The theoretical basis. Acta Cryst. A38, 632–641.Google Scholar
First citation Hauptman, H. (1995). Looking ahead. Acta Cryst. B51, 416–422.Google Scholar
First citation Hauptman, H., Fisher, J., Hancock, H. & Norton, D. A. (1969). Phase determination for the estriol structure. Acta Cryst. B25, 811–814.Google Scholar
First citation Hauptman, H. & Green, E. A. (1976). Conditional probability distributions of the four-phase structure invariant [\varphi_{\bf h} + \varphi_{\bf k} +] [\varphi_{\bf l} + \varphi_{\bf m}] in [P\bar{1}]. Acta Cryst. A32, 45–49.Google Scholar
First citation Hauptman, H. & Green, E. A. (1978). Pairs in [P2_1]: probability distributions which lead to estimates of the two-phase structure seminvariants in the vicinity of π/2. Acta Cryst. A34, 224–229.Google Scholar
First citation Hauptman, H. & Karle, J. (1953). Solution of the phase problem. I. The centrosymmetric crystal. Am. Crystallogr. Assoc. Monograph No. 3. Dayton, Ohio: Polycrystal Book Service.Google Scholar
First citation Hauptman, H. & Karle, J. (1956). Structure invariants and seminvariants for non-centrosymmetric space groups. Acta Cryst. 9, 45–55.Google Scholar
First citation Hauptman, H. & Karle, J. (1958). Phase determination from new joint probability distributions: space group [P\bar{1}]. Acta Cryst. 11, 149–157.Google Scholar
First citation Hauptman, H. & Karle, J. (1959). Table 2. Equivalence classes, seminvariant vectors and seminvariant moduli for the centered centrosymmetric space groups, referred to a primitive unit cell. Acta Cryst. 12, 93–97.Google Scholar
First citation Heinermann, J. J. L. (1977a). The use of structural information in the phase probability of a triple product. Acta Cryst. A33, 100–106.Google Scholar
First citation Heinermann, J. J. L. (1977b). Thesis. University of Utrecht.Google Scholar
First citation Heinermann, J. J. L., Krabbendam, H. & Kroon, J. (1979). The joint probability distribution of the structure factors in a Karle–Hauptman matrix. Acta Cryst. A35, 101–105.Google Scholar
First citation Heinermann, J. J. L., Krabbendam, H., Kroon, J. & Spek, A. L. (1978). Direct phase determination of triple products from Bijvoet inequalities. II. A probabilistic approach. Acta Cryst. A34, 447–450.Google Scholar
First citation Hendrickson, W. A., Love, W. E. & Karle, J. (1973). Crystal structure analysis of sea lamprey hemoglobin at 2 Å resolution. J. Mol. Biol. 74, 331–361.Google Scholar
First citation Hendrickson, W. A. & Ogata, C. M. (1997). Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523.Google Scholar
First citation Hoppe, W. (1963). Phase determination and zero points in the Patterson function. Acta Cryst. 16, 1056–1057.Google Scholar
First citation Hughes, E. W. (1953). The signs of products of structure factors. Acta Cryst. 6, 871.Google Scholar
First citation Hull, S. E. & Irwin, M. J. (1978). On the application of phase relationships to complex structures. XIV. The additional use of statistical information in tangent-formula refinement. Acta Cryst. A34, 863–870.Google Scholar
First citation Hull, S. E., Viterbo, D., Woolfson, M. M. & Shao-Hui, Z. (1981). On the application of phase relationships to complex structures. XIX. Magic-integer representation of a large set of phases: the MAGEX procedure. Acta Cryst. A37, 566–572.Google Scholar
First citation International Tables for Crystallography (2001). Vol. F. Macromolecular crystallography, edited by M. G. Rossmann & E. Arnold. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev. 106, 620–630.Google Scholar
First citation Karle, J. (1970a). An alternative form for [B_{3.0}], a phase determining formula. Acta Cryst. B26, 1614–1617.Google Scholar
First citation Karle, J. (1970b). Partial structures and use of the tangent formula and translation functions. In Crystallographic computing, pp. 155–164. Copenhagen: Munksgaard.Google Scholar
First citation Karle, J. (1972). Translation functions and direct methods. Acta Cryst. B28, 820–824.Google Scholar
First citation Karle, J. (1979). Triple phase invariants: formula for centric case from fourth-order determinantal joint probability distributions. Proc. Natl Acad. Sci. USA, 76, 2089–2093.Google Scholar
First citation Karle, J. (1980). Triplet phase invariants: formula for acentric case from fourth-order determinantal joint probability distributions. Proc. Natl Acad. Sci. USA, 77, 5–9.Google Scholar
First citation Karle, J. (1983). A simple rule for finding and distinguishing triplet phase invariants with values near 0 or π with isomorphous replacement data. Acta Cryst. A39, 800–805.Google Scholar
First citation Karle, J. (1984). Rules for evaluating triplet phase invariants by use of anomalous dispersion data. Acta Cryst. A40, 4–11.Google Scholar
First citation Karle, J. (1985). Many algebraic formulas for the evaluation of triplet phase invariants from isomorphous replacement and anomalous dispersion data. Acta Cryst. A41, 182–189.Google Scholar
First citation Karle, J. & Hauptman, H. (1950). The phases and magnitudes of the structure factors. Acta Cryst. 3, 181–187.Google Scholar
First citation Karle, J. & Hauptman, H. (1956). A theory of phase determination for the four types of non-centrosymmetric space groups [1P 222{\it ,}\, 2P 22{\it ,} \, 3P_{1}2{\it ,} \, 3P_{2}2]. Acta Cryst. 9, 635–651.Google Scholar
First citation Karle, J. & Hauptman, H. (1958). Phase determination from new joint probability distributions: space group [P1]. Acta Cryst. 11, 264–269.Google Scholar
First citation Karle, J. & Hauptman, H. (1961). Seminvariants for non-centrosymmetric space groups with conventional centered cells. Acta Cryst. 14, 217–223.Google Scholar
First citation Karle, J. & Karle, I. L. (1966). The symbolic addition procedure for phase determination for centrosymmetric and non-centrosymmetric crystals. Acta Cryst. 21, 849–859.Google Scholar
First citation Klug, A. (1958). Joint probability distributions of structure factors and the phase problem. Acta Cryst. 11, 515–543.Google Scholar
First citation Koch, M. H. J. (1974). On the application of phase relationships to complex structures. IV. Automatic interpretation of electron-density maps for organic structures. Acta Cryst. A30, 67–70.Google Scholar
First citation Krabbendam, H. & Kroon, J. (1971). A relation between structure factor, triple products and a single Patterson vector, and its application to sign determination. Acta Cryst. A27, 362–367.Google Scholar
First citation Kroon, J., Spek, A. L. & Krabbendam, H. (1977). Direct phase determination of triple products from Bijvoet inequalities. Acta Cryst. A33, 382–385.Google Scholar
First citation Lajzérowicz, J. & Lajzérowicz, J. (1966). Loi de distribution des facteurs de structure pour un répartition non uniforme des atomes. Acta Cryst. 21, 8–12.Google Scholar
First citation Langs, D. A. (1985). Translation functions: the elimination of structure-dependent spurious maxima. Acta Cryst. A41, 305–308.Google Scholar
First citation Lessinger, L. & Wondratschek, H. (1975). Seminvariants for space groups [I\bar{4}2m] and [I\bar{4}d]. Acta Cryst. A31, 521.Google Scholar
First citation Mackay, A. L. (1953). A statistical treatment of superlattice reflexions. Acta Cryst. 6, 214–215.Google Scholar
First citation Main, P. (1976). Recent developments in the MULTAN system. The use of molecular structure. In Crystallographic computing techniques, edited by F. R. Ahmed, pp. 97–105. Copenhagen: Munksgaard.Google Scholar
First citation Main, P. (1977). On the application of phase relationships to complex structures. XI. A theory of magic integers. Acta Cryst. A33, 750–757.Google Scholar
First citation Main, P., Fiske, S. J., Germain, G., Hull, S. E., Declercq, J.-P., Lessinger, L. & Woolfson, M. M. (1999). Crystallographic software: teXsan for Windows. http://www.msc.com/brochures/teXsan/wintex.html.Google Scholar
First citation Main, P. & Hull, S. E. (1978). The recognition of molecular fragments in E maps and electron density maps. Acta Cryst. A34, 353–361.Google Scholar
First citation Moncrief, J. W. & Lipscomb, W. N. (1966). Structure of leurocristine methiodide dihydrate by anomalous scattering methods; relation to leurocristine (vincristine) and vincaleukoblastine (vinblastine). Acta Cryst. A21, 322–331.Google Scholar
First citation Mukherjee, A. K., Helliwell, J. R. & Main, P. (1989). The use of MULTAN to locate the positions of anomalous scatterers. Acta Cryst. A45, 715–718.Google Scholar
First citation Narayan, R. & Nityananda, R. (1982). The maximum determinant method and the maximum entropy method. Acta Cryst. A38, 122–128.Google Scholar
First citation Navaza, J. (1985). On the maximum-entropy estimate of the electron density function. Acta Cryst. A41, 232–244.Google Scholar
First citation Navaza, J., Castellano, E. E. & Tsoucaris, G. (1983). Constrained density modifications by variational techniques. Acta Cryst. A39, 622–631.Google Scholar
First citation Naya, S., Nitta, I. & Oda, T. (1964). A study on the statistical method for determination of signs of structure factors. Acta Cryst. 17, 421–433.Google Scholar
First citation Naya, S., Nitta, I. & Oda, T. (1965). Affinement tridimensional du sulfanilamide β. Acta Cryst. 19, 734–747.Google Scholar
First citation Nordman, C. E. (1985). Introduction to Patterson search methods. In Crystallographic computing 3. Data collection, structure determination, proteins and databases, edited by G. M. Sheldrick, G. Kruger & R. Goddard, pp. 232–244. Oxford: Clarendon Press.Google Scholar
First citation Oda, T., Naya, S. & Taguchi, I. (1961). Matrix theoretical derivation of inequalities. II. Acta Cryst. 14, 456–458.Google Scholar
First citation Okaya, J. & Nitta, I. (1952). Linear structure factor inequalities and the application to the structure determination of tetragonal ethylenediamine sulphate. Acta Cryst. 5, 564–570.Google Scholar
First citation Okaya, Y. & Pepinsky, R. (1956). New formulation and solution of the phase problem in X-ray analysis of non-centric crystals containing anomalous scatterers. Phys. Rev. 103, 1645–1647.Google Scholar
First citation Ott, H. (1927). Zur Methodik der Struckturanalyse. Z. Kristallogr. 66, 136–153.Google Scholar
First citation Parthasarathy, S. & Srinivasan, R. (1964). The probability distribution of Bijvoet differences. Acta Cryst. 17, 1400–1407.Google Scholar
First citation Peerdeman, A. F. & Bijvoet, J. M. (1956). The indexing of reflexions in investigations involving the use of the anomalous scattering effect. Acta Cryst. 9, 1012–1015.Google Scholar
First citation Piro, O. E. (1983). Information theory and the phase problem in crystallography. Acta Cryst. A39, 61–68.Google Scholar
First citation Podjarny, A. D., Schevitz, R. W. & Sigler, P. B. (1981). Phasing low-resolution macromolecular structure factors by matricial direct methods. Acta Cryst. A37, 662–668.Google Scholar
First citation Podjarny, A. D., Yonath, A. & Traub, W. (1976). Application of multivariate distribution theory to phase extension for a crystalline protein. Acta Cryst. A32, 281–292.Google Scholar
First citation Rae, A. D. (1977). The use of structure factors to find the origin of an oriented molecular fragment. Acta Cryst. A33, 423–425.Google Scholar
First citation Ralph, A. C. & Woolfson, M. M. (1991). On the application of one-wavelength anomalous scattering. III. The Wilson-distribution and MPS methods. Acta Cryst. A47, 533–537.Google Scholar
First citation Ramachandran, G. N. & Raman, S. (1956). A new method for the structure analysis of non-centrosymmetric crystals. Curr. Sci. (India), 25, 348.Google Scholar
First citation Raman, S. (1959). Syntheses for the deconvolution of the Patterson function. Part II. Detailed theory for non-centrosymmetric crystals. Acta Cryst. 12, 964–975.Google Scholar
First citation Rango, C. de (1969). Thesis. Paris.Google Scholar
First citation Rango, C. de, Mauguen, Y. & Tsoucaris, G. (1975). Use of high-order probability laws in phase refinement and extension of protein structures. Acta Cryst. A31, 227–233.Google Scholar
First citation Rango, C. de, Mauguen, Y., Tsoucaris, G., Dodson, E. J., Dodson, G. G. & Taylor, D. J. (1985). The extension and refinement of the 1.9 Å spacing isomorphous phases to 1.5 Å spacing in 2Zn insulin by determinantal methods. Acta Cryst. A41, 3–17.Google Scholar
First citation Rango, C. de, Tsoucaris, G. & Zelwer, C. (1974). Phase determination from the Karle–Hauptman determinant. II. Connexion between inequalities and probabilities. Acta Cryst. A30, 342–353.Google Scholar
First citation Rogers, D., Stanley, E. & Wilson, A. J. C. (1955). The probability distribution of intensities. VI. The influence of intensity errors on the statistical tests. Acta Cryst. 8, 383–393.Google Scholar
First citation Rogers, D. & Wilson, A. J. C. (1953). The probability distribution of X-ray intensities. V. A note on some hypersymmetric distributions. Acta Cryst. 6, 439–449.Google Scholar
First citation Rossmann, M. G., Blow, D. M., Harding, M. M. & Coller, E. (1964). The relative positions of independent molecules within the same asymmetric unit. Acta Cryst. 17, 338–342.Google Scholar
First citation Sayre, D. (1952). The squaring method: a new method for phase determination. Acta Cryst. 5, 60–65.Google Scholar
First citation Sayre, D. (1953). Double Patterson function. Acta Cryst. 6, 430–431.Google Scholar
First citation Sayre, D. (1972). On least-squares refinement of the phases of crystallographic structure factors. Acta Cryst. A28, 210–212.Google Scholar
First citation Sayre, D. & Toupin, R. (1975). Major increase in speed of least-squares phase refinement. Acta Cryst. A31, S20.Google Scholar
First citation Schenk, H. (1973a). Direct structure determination in [P1] and other non-centrosymmetric symmorphic space groups. Acta Cryst. A29, 480–481.Google Scholar
First citation Schenk, H. (1973b). The use of phase relationships between quartets of reflexions. Acta Cryst. A29, 77–82.Google Scholar
First citation Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473.Google Scholar
First citation Sheldrick, G. M. (1997). In Direct methods for solving macromolecular structures. NATO Advanced Study Institute, Erice, Italy.Google Scholar
First citation Sheldrick, G. M. (2000a). The SHELX home page. http://shelx.uni-ac.gwdg.de/SHELX/ .Google Scholar
First citation Sheldrick, G. M. (2000b). SHELX. http://www.ucg.ie/cryst/shelx.htm .Google Scholar
First citation Sheldrick, G. M. & Gould, R. O. (1995). Structure solution by iterative peaklist optimization and tangent expansion in space group [P1]. Acta Cryst. B51, 423–431.Google Scholar
First citation Sim, G. A. (1959). The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy-atoms method for non-centrosymmetrical structures. Acta Cryst. 12, 813–815.Google Scholar
First citation Simerska, M. (1956). Czech. J. Phys. 6, 1.Google Scholar
First citation Simonov, V. I. & Weissberg, A. M. (1970). Calculation of the signs of structure amplitudes by a binary function section of interatomic vectors. Sov. Phys. Dokl. 15, 321–323. [Translated from Dokl. Akad. Nauk SSSR, 191, 1050–1052.]Google Scholar
First citation Sint, L. & Schenk, H. (1975). Phase extension and refinement in non-centrosymmetric structures containing large molecules. Acta Cryst. A31, S22.Google Scholar
First citation Smith, J. L. (1998). Multiwavelength anomalous diffraction in macromolecular crystallography. In Direct methods for solving macromolecular structures, edited by S. Fortier, pp. 221–225. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Srinivasan, R. & Parthasarathy, S. (1976). Some statistical applications in X-ray crystallography. Oxford: Pergamon Press.Google Scholar
First citation Taylor, D. J., Woolfson, M. M. & Main, P. (1978). On the application of phase relationships to complex structures. XV. Magic determinants. Acta Cryst. A34, 870–883.Google Scholar
First citation Tsoucaris, G. (1970). A new method for phase determination. The maximum determinant rule. Acta Cryst. A26, 492–499.Google Scholar
First citation Van der Putten, N. & Schenk, H. (1977). On the conditional probability of quintets. Acta Cryst. A33, 856–858.Google Scholar
First citation Vaughan, P. A. (1958). A phase-determining procedure related to the vector-coincidence method. Acta Cryst. 11, 111–115.Google Scholar
First citation Vermin, W. J. & de Graaff, R. A. G. (1978). The use of Karle–Hauptman determinants in small-structure determinations. Acta Cryst. A34, 892–894.Google Scholar
First citation Vicković, I. & Viterbo, D. (1979). A simple statistical treatment of unobserved reflexions. Application to two organic substances. Acta Cryst. A35, 500–501.Google Scholar
First citation Weeks, C. M., DeTitta, G. T., Hauptman, H. A., Thuman, P. & Miller, R. (1994). Structure solution by minimal-function phase refinement and Fourier filtering. II. Implementation and applications. Acta Cryst. A50, 210–220.Google Scholar
First citation Weeks, C. M. & Miller, R. (1999). The design and implementation of SnB version 2.0. J. Appl. Cryst. 32, 120–124.Google Scholar
First citation Weinzierl, J. E., Eisenberg, D. & Dickerson, R. E. (1969). Refinement of protein phases with the Karle–Hauptman tangent fomula. Acta Cryst. B25, 380–387.Google Scholar
First citation White, P. & Woolfson, M. M. (1975). The application of phase relationships to complex structures. VII. Magic integers. Acta Cryst. A31, 53–56.Google Scholar
First citation Wilkins, S. W., Varghese, J. N. & Lehmann, M. S. (1983). Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory. Acta Cryst. A39, 47–60.Google Scholar
First citation Wilson, A. J. C. (1942). Determination of absolute from relative X-ray intensity data. Nature (London), 150, 151–152.Google Scholar
First citation Wilson, K. S. (1978). The application of MULTAN to the analysis of isomorphous derivatives in protein crystallography. Acta Cryst. B34, 1599–1608.Google Scholar
First citation Wolff, P. M. de & Bouman, J. (1954). A fundamental set of structure factor inequalities. Acta Cryst. 7, 328–333.Google Scholar
First citation Woolfson, M. M. (1958). Crystal and molecular structure of p,p′-dimethoxybenzophenone by the direct probability method. Acta Cryst. 11, 277–283.Google Scholar
First citation Woolfson, M. M. (1977). On the application of phase relationships to complex structures. X. MAGLIN – a successor to MULTAN. Acta Cryst. A33, 219–225.Google Scholar
First citation Woolfson, M. & Fan, H.-F. (1995). Physical and non-physical methods of solving crystal structures. Cambridge University Press.Google Scholar
First citation Yao, J.-X. (1981). On the application of phase relationships to complex structures. XVIII. RANTAN – random MULTAN. Acta Cryst. A37, 642–664.Google Scholar