International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.2, p. 231   | 1 | 2 |

Section 2.2.10.1. Introduction

C. Giacovazzoa*

aDipartimento Geomineralogico, Campus Universitario, I-70125 Bari, Italy
Correspondence e-mail: c.giacovazzo@area.ba.cnr.it

2.2.10.1. Introduction

| top | pdf |

Protein structures cannot be solved ab initio by traditional direct methods (i.e., by application of the tangent formula alone). Accordingly, the first applications were focused on two tasks:

  • (a) improvement of the accuracy of the available phases (refinement process);

  • (b) extension of phases from lower to higher resolution (phase-extension process).

The application of standard tangent techniques to (a)[link] and (b)[link] has not been found to be very satisfactory (Coulter & Dewar, 1971[link]; Hendrickson et al., 1973[link]; Weinzierl et al., 1969[link]). Tangent methods, in fact, require atomicity and non-negativity of the electron density. Both these properties are not satisfied if data do not extend to atomic resolution [(d\gt 2\;\hbox{\AA})]. Because of series termination and other errors the electron-density map at [d\gt 2\;\hbox{\AA}] presents large negative regions which will appear as false peaks in the squared structure. However, tangent methods use only a part of the information given by the Sayre equation (2.2.6.5)[link]. In fact, (2.2.6.5)[link] express two equations relating the radial and angular parts of the two sides, so obtaining a large degree of overdetermination of the phases. To achieve this Sayre (1972[link]) [see also Sayre & Toupin (1975[link])] suggested minimizing (2.2.10.1)[link] by least squares as a function of the phases: [\textstyle\sum\limits_{\bf h} \left|a_{\bf h} F_{\bf h} - \textstyle\sum\limits_{\bf k} F_{\bf k} F_{{\bf h}-{\bf k}}\right|^{2}. \eqno(2.2.10.1)] Even if tests on rubredoxin (extensions of phases from 2.5 to 1.5 Å resolution) and insulin (Cutfield et al., 1975[link]) (from 1.9 to 1.5 Å resolution) were successful, the limitations of the method are its high cost and, especially, the higher efficiency of the least-squares method. Equivalent considerations hold for the application of determinantal methods to proteins [see Podjarny et al. (1981[link]); de Rango et al. (1985[link]) and literature cited therein].

A question now arises: why is the tangent formula unable to solve protein structures? Fan et al. (1991[link]) considered the question from a first-principle approach and concluded that:

  • (1) the triplet phase probability distribution is very flat for proteins (N is very large) and close to the uniform distribution;

  • (2) low-resolution data create additional problems for direct methods since the number of available phase relationships per reflection is small.

Sheldrick (1990[link]) suggested that direct methods are not expected to succeed if fewer than half of the reflections in the range 1.1–1.2 Å are observed with [|F|\gt 4\sigma(|F|)] (a condition seldom satisfied by protein data).

The most complete analysis of the problem has been made by Giacovazzo, Guagliardi et al. (1994[link]). They observed that the expected value of α (see Section 2.2.7[link]) suggested by the tangent formula for proteins is comparable with the variance of the α parameter. In other words, for proteins the signal determining the phase is comparable with the noise, and therefore the phase indication is expected to be unreliable.

References

First citation Coulter, C. L. & Dewar, R. B. K. (1971). Tangent formula applications in protein crystallography: an evaluation. Acta Cryst. B27, 1730–1740.Google Scholar
First citation Cutfield, J. F., Dodson, E. J., Dodson, G. G., Hodgkin, D. C., Isaacs, N. W., Sakabe, K. & Sakabe, N. (1975). The high resolution structure of insulin: a comparison of results obtained from least-squares phase refinement and difference Fourier refinement. Acta Cryst. A31, S21.Google Scholar
First citation Fan, H. F., Hao, Q. & Woolfson, M. M. (1991). Proteins and direct methods. Z. Kristallogr. 197, 197–208.Google Scholar
First citation Giacovazzo, C., Guagliardi, A., Ravelli, R. & Siliqi, D. (1994). Ab initio direct phasing of proteins: the limits. Z. Kristallogr. 209, 136–142.Google Scholar
First citation Hendrickson, W. A., Love, W. E. & Karle, J. (1973). Crystal structure analysis of sea lamprey hemoglobin at 2 Å resolution. J. Mol. Biol. 74, 331–361.Google Scholar
First citation Podjarny, A. D., Schevitz, R. W. & Sigler, P. B. (1981). Phasing low-resolution macromolecular structure factors by matricial direct methods. Acta Cryst. A37, 662–668.Google Scholar
First citation Rango, C. de, Mauguen, Y., Tsoucaris, G., Dodson, E. J., Dodson, G. G. & Taylor, D. J. (1985). The extension and refinement of the 1.9 Å spacing isomorphous phases to 1.5 Å spacing in 2Zn insulin by determinantal methods. Acta Cryst. A41, 3–17.Google Scholar
First citation Sayre, D. (1972). On least-squares refinement of the phases of crystallographic structure factors. Acta Cryst. A28, 210–212.Google Scholar
First citation Sayre, D. & Toupin, R. (1975). Major increase in speed of least-squares phase refinement. Acta Cryst. A31, S20.Google Scholar
First citation Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473.Google Scholar
First citation Weinzierl, J. E., Eisenberg, D. & Dickerson, R. E. (1969). Refinement of protein phases with the Karle–Hauptman tangent fomula. Acta Cryst. B25, 380–387.Google Scholar








































to end of page
to top of page