
will affect the resolution of atomic peaks in the real cell as well as
peaks in the Patterson cell. If U is the van der Waals volume per
average atom, then the fraction of the cell occupied by atoms will be
f � NU�V . Similarly, the fraction of the cell occupied by Patterson
peaks will be 2UN�N � 1��V or 2f �N � 1�. With the reasonable
assumption that f � 0�1 for a typical organic crystal, then the cell
can contain at most five atoms �N � 5� for there to be no overlap,
other than by coincidence, of the peaks in the Patterson. As N
increases there will occur a background of peaks on which are
superimposed features related to systematic properties of the
structure.

The contrast of selected Patterson peaks relative to the general
background level can be enhanced by a variety of techniques. For
instance, the presence of heavy atoms not only enhances the size of
a relatively small number of peaks but ordinarily ensures a larger
separation of the peaks due to the light-atom skeleton on which the
heavy atoms are hung. That is, the factor f (above) is substantially
reduced. Another example is the effect of systematic atomic
arrangements (e.g. �-helices or aromatic rings) resulting in multiple
peaks which stand out above the background. In the isomorphous
replacement method, isomorphous difference Pattersons are utilized
in which the contrast of the Patterson interactions between the
heavy atoms is enhanced by removal of the predominant
interactions which involve the rest of the structure.

2.3.1.3. Modifications: origin removal, sharpening etc.

A. L. Patterson, in his first in-depth exposition of his newly
discovered F2 series (Patterson, 1935), introduced the major
modifications to the Patterson which are still in use today. He
illustrated, with one-dimensional Fourier series, the techniques of
removing the Patterson origin peak, sharpening the overall function
and also removing peaks due to atoms in special positions. Each one
of these modifications can improve the interpretability of
Pattersons, especially those of simple structures. Whereas the
recommended extent of such modifications is controversial
(Buerger, 1966), most studies which utilize Patterson functions do
incorporate some of these techniques [see, for example, Jacobson et
al. (1961), Braun et al. (1969) and Nordman (1980a)]. Since
Patterson’s original work, other workers have suggested that the
Patterson function itself might be modified; Fourier inversion of the
modified Patterson then provides a new and perhaps more tractable
set of structure factors (McLachlan & Harker, 1951; Simonov,
1965; Raman, 1966; Corfield & Rosenstein, 1966). Karle &
Hauptman (1964) suggested that an improved set of structure
factors could be obtained from an origin-removed Patterson
modified such that it was everywhere non-negative and that
Patterson density values less than a bonding distance from the
origin were set to zero. Nixon (1978) was successful in solving a
structure which had previously resisted solution by using a set of

structure factors which had been obtained from a Patterson in which
the largest peaks had been attenuated.

The N origin peaks [see expression (2.3.1.3)] may be removed
from the Patterson by using coefficients

�Fh� mod�2 � �Fh�2 �
�N

i�1
f 2
i �

A Patterson function using these modified coefficients will retain all
interatomic vectors. However, the observed structure factors Fh
must first be placed on an absolute scale (Wilson, 1942) in order to
match the scattering-factor term.

Analogous to origin removal, the vector interactions due to atoms
in known positions can also be removed from the Patterson
function. Patterson showed that non-origin Patterson peaks arising
from known atoms 1 and 2 may be removed by using the expression

�Fh� mod�2 � �Fh�2 �
�N

i�1
f 2
i t2

i � 2f1f2t1t2 cos 2�h � �x1 � x2�,

where x1 and x2 are the positions of atoms 1 and 2 and t1 and t2 are
their respective thermal correction factors. Using one-dimensional
Fourier series, Patterson illustrated how interactions due to known
atoms can obscure other information.

Patterson also introduced a means by which the peaks in a
Patterson function may be artificially sharpened. He considered the
effect of thermal motion on the broadening of electron-density
peaks and consequently their Patterson peaks. He suggested that the
F2 coefficients could be corrected for thermal effects by simulating
the atoms as point scatterers and proposed using a modified set of
coefficients

�Fh� sharp�2 � �Fh�2��f 2,

where �f , the average scattering factor per electron, is given by

�f ��N

i�1
fi

�
�N

i�1
Zi�

A common formulation for this type of sharpening expresses the
atomic scattering factors at a given angle in terms of an overall
isotropic thermal parameter B as

f �s� � f0 exp��Bs2��
The Patterson coefficients then become

Fh� sharp � Ztotal
�N

i�l f �s�Fh�

The normalized structure factors, E (see Chapter 2.2), which are
used in crystallographic direct methods, are also a common source
of sharpened Patterson coefficients �E2 � 1�. Although the centre
positions and total contents of Patterson peaks are unaltered by
sharpening, the resolution of individual peaks may be enhanced.
The degree of sharpening can be controlled by adjusting the size of
the assumed B factor; Lipson & Cochran (1966, pp. 165–170)
analysed the effect of such a choice on Patterson peak shape.

All methods of sharpening Patterson coefficients aim at
producing a point atomic representation of the unit cell. In this
quest, the high-resolution terms are enhanced (Fig. 2.3.1.1).
Unfortunately, this procedure must also produce a serious Fourier
truncation error which will be seen as large ripples about each
Patterson peak (Gibbs, 1898). Consequently, various techniques
have been used (mostly unsuccessfully) in an attempt to balance the
advantages of sharpening with the disadvantages of truncation
errors.

Schomaker and Shoemaker [unpublished; see Lipson & Cochran
(1966, p. 168)] used a function

Table 2.3.1.1. Matrix representation of Patterson peaks

The N 	 N matrix represents the position uij and weights wij of atomic
interactions in a Patterson arising from N atoms at xi and weight wi in the real
cell.

x1, w1 x2, w2 . . . xN , wN

x1, w1 u11 � x1 � x1, u12 � x1 � x2, . . . u1N � x1 � xN ,

w11 � w2
1 w12 � w1w2 w1N � w1wN

x2, w2 x2 � x1, w2w1 0, w2
2 . . . x2 � xN , w2wN

��
� ��

� ��
� � �

� ��
�

xN , wN xN � x1, wN w1 xN � x2, wN w2 . . . 0, w2
N
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�Fh� sharp�2 � �Fh�2
�f 2

s2 exp ��2

p
s2

� �

,

in which s is the length of the scattering vector, to produce a
Patterson synthesis which is less sensitive to errors in the low-order
terms. Jacobson et al. (1961) used a similar function,

�Fh� sharp�2 � �Fh�2
�f 2

�k 
 s2� exp ��

p
s2

� �

,

which they rationalize as the sum of a scaled exponentially
sharpened Patterson and a gradient Patterson function (the value
of k was empirically chosen as 2

3). This approach was subsequently
further developed and generalized by Wunderlich (1965).

2.3.1.4. Homometric structures and the uniqueness of
structure solutions; enantiomorphic solutions

Interpretation of any Patterson requires some assumption, such as
the existence of discrete atoms. A complete interpretation might
also require an assumption of the number of atoms and may require
other external information (e.g. bond lengths, bond angles, van der
Waals separations, hydrogen bonding, positive density etc.). To
what extent is the solution of a Patterson function unique? Clearly
the greater is the supply of external information, the fewer will be
the number of possible solutions. Other constraints on the
significance of a Patterson include the error involved in measuring
the observed coefficients and the resolution limit to which they have
been observed. The larger the error, the larger the number of
solutions. When the error on the amplitudes is infinite, it is only the
other physical constraints, such as packing, which limit the
structural solutions. Alternative solutions of the same Patterson
are known as homometric structures.

During their investigation of the mineral bixbyite, Pauling &
Shappell (1930) made the disturbing observation that there were
two solutions to the structure, with different arrangements of atoms,
which yielded the same set of calculated intensities. Specifically,
atoms occupying equipoint set 24d in space group I�21�a��3 can be
placed at either x, 0, 1

4 or �x, 0, 1
4 without changing the calculated

intensities. Yet the two structures were not chemically equivalent.
These authors resolved the ambiguity by placing the oxygen atoms
in question at positions which gave the most acceptable bonding
distances with the rest of the structure.

Patterson interpreted the above ambiguity in terms of the F2

series: the distance vector sets or Patterson functions of the two
structures were the same since each yielded the same calculated
intensities (Patterson, 1939). He defined such a pair of structures a
homometric pair and called the degenerate vector set which they
produced a homometric set. Patterson went on to investigate the
likelihood of occurrence of homometric structures and, indeed,
devoted a great deal of his time to this matter. He also developed
algebraic formalisms for examining the occurrence of homometric
pairs and multiplets in selected one-dimensional sets of points, such
as cyclotomic sets, and also sets of points along a line (Patterson,
1944). Some simple homometric pairs are illustrated in Fig. 2.3.1.2.

Drawing heavily from Patterson’s inquiries into the structural
uniqueness allowed by the diffraction data, Hosemann, Bagchi and
others have given formal definitions of the different types of
homometric structures (Hosemann & Bagchi, 1954). They
suggested a classification divided into pseudohomometric structures
and homomorphs, and used an integral equation representing a
convolution operation to express their examples of finite homo-
metric structures. Other workers have chosen various means for
describing homometric structures [Buerger (1959, pp. 41–50),
Menzer (1949), Bullough (1961, 1964), Hoppe (1962)].

Since a Patterson function is centrosymmetric, the Pattersons of a
crystal structure and of its mirror image are identical. Thus the
enantiomeric ambiguity present in noncentrosymmetric crystal
structures cannot be overcome by using the Patterson alone and
represents a special case of homometric structures. Assignment of
the correct enantiomorph in a crystal structure analysis is generally
not possible unless a recognizable fragment of known chirality
emerges (e.g. L-amino acids in proteins, D-riboses in nucleic acids,
the known framework of steroids and other natural products, the
right-handed twist of �-helices, the left-handed twist of successive
strands in a �-sheet, the fold of a known protein subunit etc.) or
anomalous-scattering information is available and can be used to
resolve the ambiguity (Bijvoet et al., 1951).

It is frequently necessary to select arbitrarily one enantiomorph
over another in the early stages of a structure solution. Structure-
factor phases calculated from a single heavy atom in space group
P1, P2 or P21 (for instance) will be centrosymmetric and both
enantiomorphs will be present in Fourier calculations based on
these phases. In other space groups (e.g. P212121), the selected
heavy atom is likely to be near one of the planes containing the 21
axes and thus produce a weaker ‘ghost’ image of the opposite
enantiomorph. The mixture of the two overlapped enantiomorphic
solutions can cause interpretive difficulties. As the structure
solution progresses, the ‘ghosts’ are exorcized owing to the
dominance of the chosen enantiomorph in the phases.

Fig. 2.3.1.1. Effect of ‘sharpening’ Patterson coefficients. (1) shows a mean
distribution of �F�2 values with resolution, �sin ����. The normal decline
of this curve is due to increasing destructive interference between
different portions within diffuse atoms at larger Bragg angles. (2) shows
the distribution of ‘sharpened’ coefficients. (3) shows the theoretical
distribution of �F�2 produced by a point-atom structure. To represent
such a structure with a Fourier series would require an infinite series in
order to avoid large errors caused by truncation.

Fig. 2.3.1.2. (c) The point Patterson of the two homometric structures in (a)
and (b). The latter are constructed by taking points at a and 1

2 M�, where
M� is a cell diagonal, and adding a third point which is (a) at 3

4 M� 
 a or
(b) at 1

4 M� 
 a. [Reprinted with permission from Patterson (1944).]
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