International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.3, pp. 241-242   | 1 | 2 |

Section 2.3.2.5. Systematic computerized Patterson vector-search procedures. Looking for rigid bodies

M. G. Rossmanna* and E. Arnoldb

aDepartment of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA, and  bCABM & Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854-5638, USA
Correspondence e-mail:  mgr@indiana.bio.purdue.edu

2.3.2.5. Systematic computerized Patterson vector-search procedures. Looking for rigid bodies

| top | pdf |

The power of the modern digital computer has enabled rapid access to the large number of Patterson density values which can serve as a lookup table for systematic vector-search procedures. In the late 1950s, investigators began to use systematic searches for the placement of single atoms, of known chemical groups or fragments and of entire known structures. Methods for locating single atoms were developed and called variously: vector verification (Mighell & Jacobson, 1963[link]), symmetry minimum function (Kraut, 1961[link]; Simpson et al., 1965[link]; Corfield & Rosenstein, 1966[link]) and consistency functions (Hamilton, 1965[link]). Patterson superposition techniques using stored function values were often used to image the structure from the known portion. In such single-site search procedures, single atoms are placed at all possible positions in a crystal, using a search grid of the same fineness as for the stored Patterson function, preferably about one-third of the resolution of the Patterson map. Solutions are gauged to be acceptable if all expected vectors due to symmetry-related atoms are observed above a specified threshold in the Patterson.

Systematic computerized Patterson search procedures for orienting and positioning known molecular fragments were also developed in the early 1960s. These hierarchical procedures rely on first using the `self'-vectors which depend only on the orientation of a molecular fragment. A search for the position of the fragment relative to the crystal symmetry elements then uses the cross-vectors between molecules (see Sections 2.3.6[link] and 2.3.7[link]). Nordman constructed a weighted point representation of the predicted vector set for a fragment (Nordman & Nakatsu, 1963[link]; Nordman, 1966[link]) and successfully solved the structure of a number of complex alkaloids. Huber (1965)[link] used the convolution molecule method of Hoppe (1957a)[link] in three dimensions to solve a number of natural-product structures, including steroids. Various program systems have used Patterson search methods operating in real space to solve complex structures (Braun et al., 1969[link]; Egert, 1983[link]).

Others have used reciprocal-space procedures for locating known fragments. Tollin & Cochran (1964)[link] developed a procedure for determining the orientation of planar groups by searching for origin-containing planes of high density in the Patterson. General procedures using reciprocal-space representations for determining rotation and translation parameters have been developed and will be described in Sections 2.3.6[link] and 2.3.7[link], respectively.

Although as many functions have been used to detect solutions in these Patterson search procedures as there are programs, most rely on some variation of the sum, product and minimum functions (Section 2.3.2.4[link]). The quality of the stored Patterson density representation also varies widely, but it is now common to use 16 or more bits for single density values. Treatment of vector overlap is handled differently by different investigators and the choice will depend on the degree of overlapping (Nordman & Schilling, 1970[link]; Nordman, 1972[link]). General Gaussian multiplicity corrections can be employed to treat coincidental overlap of independent vectors in general positions and overlap which occurs for symmetric peaks in the vicinity of a special position or mirror plane in the Patterson (G. Kamer, S. Ramakumar & P. Argos, unpublished results; Rossmann et al., 1972[link]).

References

First citation Braun, P. B., Hornstra, J. & Leenhouts, J. I. (1969). Automated crystal-structure determination by Patterson search using a known part of the molecule. Philips Res. Rep. 24, 85–118.Google Scholar
First citation Corfield, P. W. R. & Rosenstein, R. D. (1966). Maximum information from the minimum function. Trans. Am. Crystallogr. Assoc. 2, 17–28.Google Scholar
First citation Egert, E. (1983). Patterson search – an alternative to direct methods. Acta Cryst. A39, 936–940.Google Scholar
First citation Hamilton, W. C. (1965). The crystal structure of orthorhombic acetamide. Acta Cryst. 18, 866–870.Google Scholar
First citation Hoppe, W. (1957a). Die Faltmolekülmethode und ihre anwendung in der Röntgenographischen Konstitutionsanalyse von Biflorin (C20H20O4). Z. Elektrochem. 61, 1076–1083.Google Scholar
First citation Huber, R. (1965). Die automatisierte Faltmolekülmethode. Acta Cryst. 19, 353–356.Google Scholar
First citation Kraut, J. (1961). The crystal structure of 2-amino-ethanol phosphate. Acta Cryst. 14, 1146–1152.Google Scholar
First citation Mighell, A. D. & Jacobson, R. A. (1963). Analysis of three-dimensional Patterson maps using vector verification. Acta Cryst. 16, 443–445.Google Scholar
First citation Nordman, C. E. (1966). Vector space search and refinement procedures. Trans. Am. Crystallogr. Assoc. 2, 29–38.Google Scholar
First citation Nordman, C. E. (1972). An application of vector space search methods to the Patterson function of myoglobin. Acta Cryst. A28, 134–143.Google Scholar
First citation Nordman, C. E. & Nakatsu, K. (1963). Interpretation of the Patterson function of crystals containing a known molecular fragment. The structure of an Alstonia alkaloid. J. Am. Chem. Soc. 85, 353–354.Google Scholar
First citation Nordman, C. E. & Schilling, J. W. (1970). Calculation and use of vector overlap weights in Patterson search and refinement. In Crystallographic computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 110–114. Copenhagen: Munksgaard.Google Scholar
First citation Rossmann, M. G., Ford, G. C., Watson, H. C. & Banaszak, L. J. (1972). Molecular symmetry of glyceraldehyde-3-phosphate dehydrogenase. J. Mol. Biol. 64, 237–249.Google Scholar
First citation Simpson, P. G., Dobrott, R. D. & Lipscomb, W. N. (1965). The symmetry minimum function: high order image seeking functions in X-ray crystallography. Acta Cryst. 18, 169–179.Google Scholar
First citation Tollin, P. & Cochran, W. (1964). Patterson function interpretation for molecules containing planar groups. Acta Cryst. 17, 1322–1324.Google Scholar








































to end of page
to top of page