International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.3, p. 243   | 1 | 2 |

Section 2.3.3.3. Finding heavy atoms with three-dimensional methods

M. G. Rossmanna* and E. Arnoldb

aDepartment of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA, and  bCABM & Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854-5638, USA
Correspondence e-mail:  mgr@indiana.bio.purdue.edu

2.3.3.3. Finding heavy atoms with three-dimensional methods

| top | pdf |

A Patterson of a native bio-macromolecular structure (coefficients [F_{N}^{2}]) can be considered as being, at least approximately, a vector map of all the light atoms (carbons, nitrogens, oxygens, some sulfurs, and also phosphorus for nucleic acids) other than hydrogen atoms. These interactions will be designated as LL. Similarly, a Patterson of the heavy-atom derivative will contain [HH + HL + LL] interactions, where H represents the heavy atoms. Thus, a true difference Patterson, with coefficients [F_{NH}^{2} - F_{N}^{2}], will contain only the interactions [HH + HL]. In general, the carpet of HL vectors completely dominates the HH vectors except for very small proteins such as insulin (Adams et al., 1969[link]). Therefore, it would be preferable to compute a Patterson containing only HH interactions in order to interpret the map in terms of specific heavy-atom sites.

Blow (1958)[link] and Rossmann (1960)[link] showed that a Patterson with [(|{\bf F}_{NH}| - |{\bf F}_{N}|)^{2}] coefficients approximated to a Patterson containing only HH vectors. If the phase angle between [{\bf F}_{N}] and [{\bf F}_{NH}] is φ (Fig. 2.3.3.2)[link], then [|{\bf F}_{H}|^{2} = |{\bf F}_{N}|^{2} + |{\bf F}_{NH}|^{2} - 2|{\bf F}_{N}\|{\bf F}_{NH}| \cos \varphi.] In general, however, [|{\bf F}_{H}| \ll |{\bf F}_{N}|]. Hence, φ is small and [|{\bf F}_{H}|^{2} \simeq (|{\bf F}_{NH}| - |{\bf F}_{N}|)^{2},] which is the same relation as (2.3.3.1)[link] for centrosymmetric approximations. Since the direction of [{\bf F}_{H}] is random compared to [{\bf F}_{N}], the root-mean-square projected length of [{\bf F}_{H}] onto [{\bf F}_{N}] will be [{\bf F}_{H} / \sqrt{2}]. Thus it follows that a better approximation is [|{\bf F}_{H}|^{2} \simeq \sqrt{2} (|{\bf F}_{NH}| - |{\bf F}_{N}|)^{2}, \eqno(2.3.3.2)] which accounts for the assumption (Section 2.3.3.2[link]) that [\varepsilon_{3} = \sqrt{2} \varepsilon_{2}]. The almost universal method for the initial determination of major heavy-atom sites in an isomorphous derivative utilizes a Patterson with [(|{\bf F}_{NH}| - |{\bf F}_{N}|)^{2}] coefficients. Approximation (2.3.3.2)[link] is also the basis for the refinement of heavy-atom parameters in a single isomorphous replacement pair (Rossmann, 1960[link]; Cullis et al., 1962[link]; Terwilliger & Eisenberg, 1983[link]).

[Figure 2.3.3.2]

Figure 2.3.3.2 | top | pdf |

Vector triangle showing the relationship between [{\bf F}_{N}], [{\bf F}_{NH}] and [{\bf F}_{H}], where [{\bf F}_{NH} = {\bf F}_{N} + {\bf F}_{H}].

References

First citation Adams, M. J., Blundell, T. L., Dodson, E. J., Dodson, G. G., Vijayan, M., Baker, E. N., Harding, M. M., Hodgkin, D. C., Rimmer, B. & Sheat, S. (1969). Structure of rhombohedral 2 zinc insulin crystals. Nature (London), 224, 491–495.Google Scholar
First citation Blow, D. M. (1958). The structure of haemoglobin. VII. Determination of phase angles in the noncentrosymmetric [100] zone. Proc. R. Soc. London Ser. A, 247, 302–336.Google Scholar
First citation Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1962). The structure of haemoglobin. IX. A three-dimensional Fourier synthesis at 5.5 Å resolution: description of the structure. Proc. R. Soc. London Ser. A, 265, 161–187.Google Scholar
First citation Rossmann, M. G. (1960). The accurate determination of the position and shape of heavy-atom replacement groups in proteins. Acta Cryst. 13, 221–226.Google Scholar
First citation Terwilliger, T. C. & Eisenberg, D. (1983). Unbiased three-dimensional refinement of heavy-atom parameters by correlation of origin-removed Patterson functions. Acta Cryst. A39, 813–817.Google Scholar








































to end of page
to top of page