
2.4. Isomorphous replacement and anomalous scattering

BY M. VIJAYAN AND S. RAMASESHAN

2.4.1. Introduction

Isomorphous replacement is among the earliest methods to be
employed for crystal structure determination (Cork, 1927). The
power of this method was amply demonstrated in the classical X-ray
work of J. M. Robertson on phthalocyanine in the 1930s using
centric data (Robertson, 1936; Robertson & Woodward, 1937). The
structure determination of strychnine sulfate pentahydrate by
Bijvoet and others provides an early example of the application
of this method to acentric reflections (Bokhoven et al., 1951). The
usefulness of isomorphous replacement in the analysis of complex
protein structures was demonstrated by Perutz and colleagues
(Green et al., 1954). This was closely followed by developments in
the methodology for the application of isomorphous replacement to
protein work (Harker, 1956; Blow & Crick, 1959) and rapidly led to
the first ever structure solution of two related protein crystals,
namely, those of myoglobin and haemoglobin (Kendrew et al.,
1960; Cullis et al., 1961b). Since then isomorphous replacement has
been the method of choice in macromolecular crystallography and
most of the subsequent developments in and applications of this
method have been concerned with biological macromolecules,
mainly proteins (Blundell & Johnson, 1976; McPherson, 1982).

The application of anomalous-scattering effects has often
developed in parallel with that of isomorphous replacement. Indeed,
the two methods are complementary to a substantial extent and they
are often treated together, as in this article. Although the most
important effect of anomalous scattering, namely, the violation of
Friedel’s law, was experimentally observed as early as 1930 (Coster
et al., 1930), two decades elapsed before this effect was made use of
for the first time by Bijvoet and his associates for the determination
of the absolute configuration of asymmetric molecules as well as for
phase evaluation (Bijvoet, 1949, 1954; Bijvoet et al., 1951). Since
then there has been a phenomenal spurt in the application of
anomalous-scattering effects (Srinivasan, 1972; Ramaseshan &
Abrahams, 1975; Vijayan, 1987). A quantitative formulation for the
determination of phase angles using intensity differences between
Friedel equivalents was derived by Ramachandran & Raman
(1956), while Okaya & Pepinsky (1956) successfully developed a
Patterson approach involving anomalous effects. The anomalous-
scattering method of phase determination has since been used in the
structure analysis of several structures, including those of a complex
derivative of vitamin B12 (Dale et al., 1963) and a small protein
(Hendrickson & Teeter, 1981). In the meantime, the effect of
changes in the real component of the dispersion correction as a
function of the wavelength of the radiation used, first demonstrated
by Mark & Szillard (1925), also received considerable attention.
This effect, which is formally equivalent to that of isomorphous
replacement, was demonstrated to be useful in structure determina-
tion (Ramaseshan et al., 1957; Ramaseshan, 1963). Protein
crystallographers have been quick to exploit anomalous-scattering
effects (Rossmann, 1961; Kartha & Parthasarathy, 1965; North,
1965; Matthews, 1966; Hendrickson, 1979) and, as in the case of the
isomorphous replacement method, the most useful applications of
anomalous scattering during the last two decades have been perhaps
in the field of macromolecular crystallography (Kartha, 1975;
Watenpaugh et al., 1975; Vijayan, 1981). In addition to anomalous
scattering of X-rays, that of neutrons was also found to have
interesting applications (Koetzle & Hamilton, 1975; Sikka &
Rajagopal, 1975). More recently there has been a further revival
in the development of anomalous-scattering methods with the
advent of synchrotron radiation, particularly in view of the
possibility of choosing any desired wavelength from a synchro-
tron-radiation source (Helliwell, 1984).

It is clear from the foregoing that the isomorphous replacement
and the anomalous-scattering methods have a long and distin-
guished history. It is therefore impossible to do full justice to them
in a comparatively short presentation like the present one. Several
procedures for the application of these methods have been
developed at different times. Many, although of considerable
historical importance, are not extensively used at present for a
variety of reasons. No attempt has been made to discuss them in
detail here; the emphasis is primarily on the state of the art as it
exists now. The available literature on isomorphous replacement
and anomalous scattering is extensive. The reference list given at
the end of this part is representative rather than exhaustive.

During the past few years, rapid developments have taken place
in the isomorphous replacement and anomalous-scattering methods,
particularly in the latter, as applied to macromolecular crystal-
lography. These developments will be described in detail in
International Tables for Crystallography, Volume F (2001).
Therefore, they have not been dealt with in this chapter. Significant
developments in applications of direct methods to macromolecular
crystallography have also occurred in recent years. A summary of
these developments as well as the traditional direct methods on
which the recent progress is based are presented in Chapter 2.2.

2.4.2. Isomorphous replacement method

2.4.2.1. Isomorphous replacement and isomorphous addition

Two crystals are said to be isomorphous if (a) both have the same
space group and unit-cell dimensions and (b) the types and the
positions of atoms in both are the same except for a replacement of
one or more atoms in one structure with different types of atoms in
the other (isomorphous replacement) or the presence of one or more
additional atoms in one of them (isomorphous addition). Consider
two crystal structures with identical space groups and unit-cell
dimensions, one containing N atoms and the other M atoms. The N
atoms in the first structure contain subsets P and Q whereas the M
atoms in the second structure contain subsets P, Q� and R. The
subset P is common to both structures in terms of atomic positions
and atom types. The atomic positions are identical in subsets Q and
Q�, but at any given atomic position the atom type is different in Q
and Q�. The subset R exists only in the second structure. If FN and
FM denote the structure factors of the two structures for a given
reflection,

FN � FP � FQ �2�4�2�1�
and

FM � FP � FQ� � FR , �2�4�2�2�
where the quantities on the right-hand side represent contributions
from different subsets. From (2.4.2.1) and (2.4.2.2) we have

FM � FN � FH � FQ� � FQ � FR� �2�4�2�3�
The above equations are illustrated in the Argand diagram shown in
Fig. 2.4.2.1. FQ and FQ� would be collinear if all the atoms in Q
were of the same type and those in Q� of another single type, as in
the replacement of chlorine atoms in a structure by bromine atoms.

We have a case of ‘isomorphous replacement’ if FR � 0 �FH �
FQ� � FQ� and a case of ‘isomorphous addition’ if
FQ � FQ� � 0 �FH � FR�. Once FH is known, in addition to the
magnitudes of FN and FM , which can be obtained experimentally,
the two cases can be treated in an equivalent manner in reciprocal
space. In deference to common practice, the term ‘isomorphous
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replacement’ will be used to cover both cases. Also, in as much as
FM is the vector sum of FN and FH , FM and FNH will be used
synonymously. Thus

FM � FNH � FN � FH � �2�4�2�4�

2.4.2.2. Single isomorphous replacement method

The number of replaceable (or ‘added’) atoms is usually small
and they generally have high atomic numbers. Their positions are
often determined by a Patterson synthesis of one type or another
(see Chapter 2.3). It will therefore be assumed in the following
discussion that FH is known. Then it can be readily seen by referring
to Fig. 2.4.2.2 that

�N � �H � cos�1 F2
NH � F2

N � F2
H

2FN FH
� �H � �; �2�4�2�5�

when � is derived from its cosine function, it could obviously be
positive or negative. Hence, there are two possible solutions for �N .
These two solutions are distributed symmetrically about FH . One of
these would correspond to the correct value of �N . Therefore, in
general, the phase angle cannot be unambiguously determined using
a pair of isomorphous crystals.

The twofold ambiguity in phase angle vanishes when the
structures are centrosymmetric. FNH , FN and FH are all real in

centric data and the corresponding phase angles are 0 or 180	. From
(2.4.2.4)

FNH � FN � FH � �2�4�2�6�
The sign of FH is already known and the signs of FNH and FN can be
readily determined from (2.4.2.6) (Robertson & Woodward, 1937).

When the data are acentric, the best one can do is to use both the
possible phase angles simultaneously in a Fourier synthesis
(Bokhoven et al., 1951). This double-phased synthesis, which is
equivalent to the isomorphous synthesis of Ramachandran &
Raman (1959), contains the structure and its inverse when the
replaceable atoms have a centrosymmetric distribution (Ramachan-
dran & Srinivasan, 1970). When the distribution is noncentrosym-
metric, however, the synthesis contains peaks corresponding to the
structure and general background. Fourier syntheses computed
using the single isomorphous replacement method of Blow &
Rossmann (1961) and Kartha (1961) have the same properties. In
this method, the phase angle is taken to be the average of the two
possible solutions of �N , which is always �H or �H � 180	. Also,
the Fourier coefficients are multiplied by cos �, following
arguments based on the Blow & Crick (1959) formulation of
phase evaluation (see Section 2.4.4.4). Although Blow & Rossmann
(1961) have shown that this method could yield interpretable
protein Fourier maps, it is rarely used as such in protein
crystallography as the Fourier maps computed using it usually
have unacceptable background levels (Blundell & Johnson, 1976).

2.4.2.3. Multiple isomorphous replacement method

The ambiguity in �N in a noncentrosymmetric crystal can be
resolved only if at least two crystals isomorphous to it are available
(Bokhoven et al., 1951). We then have two equations of the type
(2.4.2.5), namely,

�N � �H1 � �1 and �N � �H2 � �2, �2�4�2�7�
where subscripts 1 and 2 refer to isomorphous crystals 1 and 2,
respectively. This is demonstrated graphically in Fig. 2.4.2.3 with
the aid of the Harker (1956) construction. A circle is drawn with FN
as radius and the origin of the vector diagram as the centre. Two
more circles are drawn with FNH1 and FNH2 as radii and the ends of
vectors �FH1 and �FH2, respectively as centres. Each of these
circles intersects the FN circle at two points corresponding to the
two possible solutions. One of the points of intersection is common
and this point defines the correct value of �N . With the assumption
of perfect isomorphism and if errors are neglected, the phase circles
corresponding to all the crystals would intersect at a common point
if a number of isomorphous crystals were used for phase
determination.

2.4.3. Anomalous-scattering method

2.4.3.1. Dispersion correction

Atomic scattering factors are normally calculated on the
assumption that the binding energy of the electrons in an atom is
negligible compared to the energy of the incident X-rays and the
distribution of electrons is spherically symmetric. The transition
frequencies within the atom are then negligibly small compared to
the frequency of the radiation used and the scattering power of each
electron in the atom is close to that of a free electron. When this
assumption is valid, the atomic scattering factor is a real positive
number and its value decreases as the scattering angle increases
because of the finite size of the atom. When the binding energy of
the electrons is appreciable, the atomic scattering factor at any
given angle is given by

Fig. 2.4.2.1. Vector relationship between FN and FM �� FNH �.

Fig. 2.4.2.2. Relationship between �N , �H and �.
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f0 � f � � if ��, �2�4�3�1�
where f0 is a real positive number and corresponds to the atomic
scattering factor for a spherically symmetric collection of free
electrons in the atom. The second and third terms are, respectively,
referred to as the real and the imaginary components of the
‘dispersion correction’ (IT IV, 1974). f � is usually negative whereas
f �� is positive. For any given atom, f �� is obviously 90	 ahead of the
real part of the scattering factor given by

f � f0 � f �� �2�4�3�2�
The variation of f � and f �� as a function of atomic number for two

typical radiations is given in Fig. 2.4.3.1 (Srinivasan, 1972; Cromer,
1965). The dispersion effects are pronounced when an absorption
edge of the atom concerned is in the neighbourhood of the
wavelength of the incident radiation. Atoms with high atomic
numbers have several absorption edges and the dispersion-
correction terms in their scattering factors always have appreciable
values. The values of f � and f �� do not vary appreciably with the
angle of scattering as they are caused by core electrons confined to a
very small volume around the nucleus. An atom is usually referred
to as an anomalous scatterer if the dispersion-correction terms in its
scattering factor have appreciable values. The effects on the
structure factors or intensities of Bragg reflections resulting from
dispersion corrections are referred to as anomalous-dispersion
effects or anomalous-scattering effects.

2.4.3.2. Violation of Friedel’s law

Consider a structure containing N atoms of which P are normal
atoms and the remaining Q anomalous scatterers. Let FP denote the
contribution of the P atoms to the structure, and FQ and F��Q the real
and imaginary components of the contribution of the Q atoms. The
relation between the different contributions to a reflection h and its
Friedel equivalent�h is illustrated in Fig. 2.4.3.2. For simplicity we
assume here that all Q atoms are of the same type. The phase angle
of F��Q is then exactly 90	 ahead of that of FQ. The structure factors
of h and �h are denoted in the figure by FN ��� and FN ���,
respectively. In the absence of anomalous scattering, or when the
imaginary component of the dispersion correction is zero, the
magnitudes of the two structure factors are equal and Friedel’s law
is obeyed; the phase angles have equal magnitudes, but opposite
signs. As can be seen from Fig. 2.4.3.2, this is no longer true when

F��Q has a nonzero value. Friedel’s law is then violated. A composite
view of the vector relationship for h and �h can be obtained, as in
Fig. 2.4.3.3, by reflecting the vectors corresponding to�h about the
real axis of the vector diagram. FP and FQ corresponding to the two
reflections superpose exactly, but F��Q do not. FN ��� and FN ��� then
have different magnitudes and phases.

It is easily seen that Friedel’s law is obeyed in centric data even
when anomalous scatterers are present. FP and FQ are then parallel
to the real axis and F��Q perpendicular to it. The vector sum of the
three components is the same for h and �h. It may, however, be
noted that the phase angle of the structure factor is then no longer 0
or 180	. Even when the structure is noncentrosymmetric, the effect
of anomalous scattering in terms of intensity differences between
Friedel equivalents varies from reflection to reflection. The
difference between FN ��� and FN ��� is zero when �P � �Q or
�Q � 180	. The difference tends to the maximum possible value
�2F ��

Q� when �P � �Q � 90	.
Intensity differences between Friedel equivalents depend also on

the ratio (in terms of number and scattering power) between
anomalous and normal scatterers. Differences obviously do not
occur when all the atoms are normal scatterers. On the other hand, a
structure containing only anomalous scatterers of the same type also

Fig. 2.4.2.3. Harker construction when two heavy-atom derivatives are
available.

Fig. 2.4.3.1. Variation of �a� f � and �b� f �� as a function of atomic number
for Cu K� and Mo K� radiations. Adapted from Fig. 3 of Srinivasan
(1972).
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does not give rise to intensity differences. Expressions for intensity
differences between Friedel equivalents have been derived by
Zachariasen (1965) for the most general case of a structure
containing normal as well as different types of anomalous
scatterers. Statistical distributions of such differences under various
conditions have also been derived (Parthasarathy & Srinivasan,
1964; Parthasarathy, 1967). It turns out that, with a single type of
anomalous scatterer in the structure, the ratio


F2
N ��� � F2

N ���

F2

N ��� � F2
N ���

has a maximum mean value when the scattering powers of the
anomalous scatterers and the normal scatterers are nearly the same
(Srinivasan, 1972). Also, for a given ratio between the scattering
powers, the smaller the number of anomalous scatterers, the higher
is the mean ratio.

2.4.3.3. Friedel and Bijvoet pairs

The discussion so far has been concerned essentially with
crystals belonging to space groups P1 and P�1. In the centrosym-
metric space group, the crystal and the diffraction pattern have the
same symmetry, namely, an inversion centre. In P1, however, the
crystals are noncentrosymmetric while the diffraction pattern has an
inversion centre, in the absence of anomalous scattering. When
anomalous scatterers are present in the structure �F��Q �� 0�, Friedel’s
law breaks down and the diffraction pattern no longer has an
inversion centre. Thus the diffraction pattern displays the same
symmetry as that of the crystal in the presence of anomalous
scattering. The same is true with higher-symmetry space groups
also. For example, consider a crystal with space group P222,
containing anomalous scatterers. The magnitudes of FP are the
same for all equivalent reflections; so are those of FQ and F��Q. Their
phase angles, however, differ from one equivalent to another, as can
be seen from Table 2.4.3.1. When F��Q � 0, the magnitudes of the
vector sum of FP and FQ are the same for all the equivalent
reflections. The intensity pattern thus has point-group symmetry
2�m 2�m 2�m. When F��Q �� 0, the equivalent reflections can be
grouped into two sets in terms of their intensities: hkl, h�k�l, �hk�l and
�h�kl; and �h�k�l, �hkl, h�kl and hk�l. The equivalents belonging to the first
group have the same intensity; so have the equivalents in the second
group. But the two intensities are different. Thus the symmetry of
the pattern is 222, the same as that of the crystal.

In general, under conditions of anomalous scattering, equivalent
reflections generated by the symmetry elements in the crystal have
intensities different from those of equivalent reflections generated
by the introduction of an additional inversion centre in normal
scattering. There have been suggestions that a reflection from the
first group and another from the second group should be referred to
as a ‘Bijvoet pair’ instead of a ‘Friedel pair’, when the two
reflections are not inversely related. Most often, however, the terms
are used synonymously. The same practice will be followed in this
article.

2.4.3.4. Determination of absolute configuration

The determination of the absolute configuration of chiral
molecules has been among the most important applications of
anomalous scattering. Indeed, anomalous scattering is the only
effective method for this purpose and the method, first used in the
early 1950s (Peerdeman et al., 1951), has been extensively
employed in structural crystallography (Ramaseshan, 1963; Vos,
1975).

Many molecules, particularly biologically important ones, are
chiral in that the molecular structure is not superimposable on its
mirror image. Chirality (handedness) arises primarily on account of
the presence of asymmetric carbon atoms in the molecule. A
tetravalent carbon is asymmetric when the four atoms (or groups)
bonded to it are all different from one another. The substituents can
then have two distinct arrangements which are mirror images of (or
related by inversion to) each other. These optical isomers or
enantiomers have the same chemical and physical properties except

Fig. 2.4.3.2. Vector diagram illustrating the violation of Friedel’s law when
F��Q �� 0.

Fig. 2.4.3.3. A composite view of the vector relationship between FN ���
and FN ���.

Table 2.4.3.1. Phase angles of different components of the
structure factor in space group P222

Phase angle �	� of

Reflection FP FQ F��Q

hkl, h�k�l, �hk�l, �h�kl �P �Q 90� �Q

�h�k�l, �hkl, h�kl, hk�l ��P ��Q 90� �Q

267

2.4. ISOMORPHOUS REPLACEMENT AND ANOMALOUS SCATTERING



that they rotate the plane of polarization in opposite directions when
polarized light passes through them. It is not, however, possible to
calculate the sign of optical rotation, given the exact spatial
arrangement or the ‘absolute configuration’ of the molecule.
Therefore, one cannot distinguish between the possible enantio-
morphic configurations of a given asymmetric molecule from
measurements of optical rotation. This is also true of molecules with
chiralities generated by overall asymmetric geometry instead of the
presence of asymmetric carbon atoms in them.

Normal X-ray scattering does not distinguish between enantio-
mers. Two structures A �xj, yj, zj� and B ��xj, � yj, � zj� � j �
1, � � � , N� obviously produce the same diffraction pattern on
account of Friedel’s law. The situation is, however, different
when anomalous scatterers are present in the structure. The intensity
difference between reflections h and �h, or that between members
of any Bijvoet pair, has the same magnitude, but opposite sign for
structures A and B. If the atomic coordinates are known, the
intensities of Bijvoet pairs can be readily calculated. The absolute
configuration can then be determined, i.e. one can distinguish
between A and B by comparing the calculated intensities with the
observed ones for a few Bijvoet pairs with pronounced anomalous
effects.

2.4.3.5. Determination of phase angles

An important application of anomalous scattering is in the
determination of phase angles using Bijvoet differences (Rama-
chandran & Raman, 1956; Peerdeman & Bijvoet, 1956). From Figs.
2.4.3.2 and 2.4.3.3, we have

F2
N ��� � F2

N � F ��2
Q � 2FN F ��

Q cos � �2�4�3�3�
and

F2
N ��� � F2

N � F ��2
Q � 2FN F ��

Q cos �� �2�4�3�4�
Then

cos � � F2
N ��� � F2

N ���
4FN F ��

Q

� �2�4�3�5�

In the above equations FN may be approximated to
�FN ��� � FN ����2. Then � can be evaluated from (2.4.3.5) except
for the ambiguity in its sign. Therefore, from Fig. 2.4.3.2, we have

�N � �Q � 90	 � �� �2�4�3�6�
The phase angle thus has two possible values symmetrically
distributed about F��Q. Anomalous scatterers are usually heavy
atoms and their positions can most often be determined by Patterson
methods. �Q can then be calculated and the two possible values of
�N for each reflection evaluated using (2.4.3.6).

In practice, the twofold ambiguity in phase angles can often be
resolved in a relatively straightforward manner. As indicated
earlier, anomalous scatterers usually have relatively high atomic
numbers. The ‘heavy-atom’ phases calculated from their positions
therefore contain useful information. For any given reflection, that
phase angle which is closer to the heavy-atom phase, from the two
phases calculated using (2.4.3.6), may be taken as the correct phase
angle. This method has been successfully used in several structure
determinations including that of a derivative of vitamin B12 (Dale
et al., 1963). The same method was also employed in a probabilistic
fashion in the structure solution of a small protein (Hendrickson &
Teeter, 1981). A method for obtaining a unique, but approximate,
solution for phase angles from (2.4.3.6) has also been suggested
(Srinivasan & Chacko, 1970). An accurate unique solution for phase
angles can be obtained if one collects two sets of intensity data
using two different wavelengths which have different dispersion-
correction terms for the anomalous scatterers in the structure. Two

equations of the type (2.4.3.6) are then available for each reflection
and the solution common to both is obviously the correct phase
angle. Different types of Patterson and Fourier syntheses can also be
employed for structure solution using intensity differences between
Bijvoet equivalents (Srinivasan, 1972; Okaya & Pepinsky, 1956;
Pepinsky et al., 1957).

An interesting situation occurs when the replaceable atoms in a
pair of isomorphous structures are anomalous scatterers. The phase
angles can then be uniquely determined by combining isomorphous
replacement and anomalous-scattering methods. Such situations
normally occur in protein crystallography and are discussed in
Section 2.4.4.5.

2.4.3.6. Anomalous scattering without phase change

The phase determination, and hence the structure solution,
outlined above relies on the imaginary component of the dispersion
correction. Variation in the real component can also be used in
structure analysis. In early applications of anomalous scattering, the
real component of the dispersion correction was made use of to
distinguish between atoms of nearly the same atomic numbers
(Mark & Szillard, 1925; Bradley & Rodgers, 1934). For example,
copper and manganese, with atomic numbers 29 and 25,
respectively, are not easily distinguishable under normal X-ray
scattering. However, the real components of the dispersion
correction for the two elements are �1�129 and �3�367,
respectively, when Fe K� radiation is used (IT IV, 1974). Therefore,
the difference between the scattering factors of the two elements is
accentuated when this radiation is used. The difference is more
pronounced at high angles as the normal scattering factor falls off
comparatively rapidly with increasing scattering angle whereas the
dispersion-correction term does not.

The structure determination of KMnO4 provides a typical
example for the use of anomalous scattering without phase change
in the determination of a centrosymmetric structure (Ramaseshan et
al., 1957; Ramaseshan & Venkatesan, 1957). f � and f �� for
manganese for Cu K� radiation are �0�568 and 2.808, respectively.
The corresponding values for Fe K� radiation are �3�367 and
0.481, respectively (IT IV, 1974). The data sets collected using the
two radiations can now be treated as those arising from two
perfectly isomorphous crystals. The intensity differences between a
reflection in one set and the corresponding reflection in the other are
obviously caused by the differences in the dispersion-correction
terms. They can, however, be considered formally as intensity
differences involving data from two perfectly isomorphous crystals.
They can be used, as indeed they were, to determine the position of
the manganese ion through an appropriate Patterson synthesis (see
Section 2.4.4.2) and then to evaluate the signs of structure factors
using (2.4.2.6) when the structure is centrosymmetric. When the
structure is noncentrosymmetric, a twofold ambiguity exists in the
phase angles in a manner analogous to that in the isomorphous
replacement method. This ambiguity can be removed if the
structure contains two different subsets of atoms Q1 and Q2
which, respectively, scatter radiations �Q1 and �Q2 anomalously.
Data sets can then be collected with �, which is scattered normally
by all atoms, �Q1 and �Q2. The three sets can be formally treated as
those from three perfectly isomorphous structures and the phase
determination effected using (2.4.2.7) (Ramaseshan, 1963).

2.4.3.7. Treatment of anomalous scattering in structure
refinement

The effect of anomalous scattering needs to be taken into account
in the refinement of structures containing anomalous scatterers, if
accurate atomic parameters are required. The effect of the real part
of the dispersion correction is largely confined to the thermal
parameters of anomalous scatterers. This effect can be eliminated
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by simply adding f � to the normal scattering factor of the anomalous
scatterers.

The effects of the imaginary component of the dispersion
correction are, however, more complex. These effects could lead
to serious errors in positional parameters when the space group is
polar, if data in the entire diffraction sphere are not used (Ueki et al.,
1966; Cruickshank & McDonald, 1967). For example, accessible
data in a hemisphere are normally used for X-ray analysis when the
space group is P1. If the hemisphere has say h positive, the x
coordinates of all the atoms would be in error when the structure
contains anomalous scatterers. The situation in other polar space
groups has been discussed by Cruickshank & McDonald (1967). In
general, in the presence of anomalous scattering, it is desirable to
collect data for the complete sphere, if accurate structural
parameters are required (Srinivasan, 1972).

Methods have been derived to correct for dispersion effects in
observed data from centrosymmetric and noncentrosymmetric
crystals (Patterson, 1963). The methods are empirical and depend
upon the refined parameters at the stage at which corrections are
applied. This is obviously an unsatisfactory situation and it has been
suggested that the measured structure factors of Bijvoet equivalents
should instead be treated as independent observations in structure
refinement (Ibers & Hamilton, 1964). The effect of dispersion
corrections needs to be taken into account to arrive at the correct
scale and temperature factors also (Wilson, 1975; Gilli &
Cruickshank, 1973).

2.4.4. Isomorphous replacement and anomalous
scattering in protein crystallography

2.4.4.1. Protein heavy-atom derivatives

Perhaps the most spectacular applications of isomorphous
replacement and anomalous-scattering methods have been in the
structure solution of large biological macromolecules, primarily
proteins. Since its first successful application on myoglobin and
haemoglobin, the isomorphous replacement method, which is often
used in conjunction with the anomalous-scattering method, has
been employed in the solution of scores of proteins. The application
of this method involves the preparation of protein heavy-atom
derivatives, i.e. the attachment of heavy atoms like mercury,
uranium and lead, or chemical groups containing them, to protein
crystals in a coherent manner without changing the conformation of
the molecules and their crystal packing. This is only rarely possible
in ordinary crystals as the molecules in them are closely packed.
Protein crystals, however, contain large solvent regions and
isomorphous derivatives can be prepared by replacing the
disordered solvent molecules by heavy-atom-containing groups
without disturbing the original arrangement of protein molecules.

2.4.4.2. Determination of heavy-atom parameters

For any given reflection, the structure factor of the native protein
crystal �FN �, that of a heavy-atom derivative �FNH�, and the
contribution of the heavy atoms in that derivative �FH� are related
by the equation

FNH � FN � FH � �2�4�4�1�
The value of FH depends not only on the positional and thermal
parameters of the heavy atoms, but also on their occupancy factors,
because, at a given position, the heavy atom may not often be
present in all the unit cells. For example, if the heavy atom is
present at a given position in only half the unit cells in the crystal,
then the occupancy factor of the site is said to be 0.5.

For the successful determination of the heavy-atom parameters,
as also for the subsequent phase determination, the data sets from

the native and the derivative crystals should have the same relative
scale. The different data sets should also have the same overall
temperature factor. Different scaling procedures have been
suggested (Blundell & Johnson, 1976) and, among them, the
following procedure, based on Wilson’s (1942) statistics, appears to
be the most feasible in the early stages of structure analysis.

Assuming that the data from the native and the derivative crystals
obey Wilson’s statistics, we have, for any range of sin2 ���2,

ln

�
f 2
Nj

�F2
N �

� �

� ln KN � 2BN
sin2 �

�2
�2�4�4�2�

and

ln

�
f 2
Nj �

�
f 2
Hj

�F2
NH�

� �

� ln KNH � 2BNH
sin2 �

�2
, �2�4�4�3�

where fNj and fHj refer to the atomic scattering factors of protein
atoms and heavy atoms, respectively. KN and KNH are the scale
factors to be applied to the intensities from the native and the
derivative crystals, respectively, and BN and BNH the temperature
factors of the respective structure factors. Normally one would be
able to derive the absolute scale factor and the temperature factor
for both the data sets from (2.4.4.2) and (2.4.4.3) using the well
known Wilson plot. The data from protein crystals, however, do not
follow Wilson’s statistics as protein molecules contain highly non-
random features. Therefore, in practice, it is difficult to fit a straight
line through the points in a Wilson plot, thus rendering the
parameters derived from it unreliable. (2.4.4.2) and (2.4.4.3) can,
however, be used in a different way. From the two equations we
obtain

ln

�
f 2
Nj �

�
f 2
Hj�

f 2
Nj

� �F
2
N �

�F2
NH�

� �

� ln
KNH

KN

� �

� 2�BNH � BN � sin2 �

�2
� �2�4�4�4�

The effects of structural non-randomness in the crystals obviously
cancel out in (2.4.4.4). When the left-hand side of (2.4.4.4) is
plotted against �sin2 ����2, it is called a comparison or difference
Wilson plot. Such plots yield the ratio between the scales of the
derivative and the native data, and the additional temperature factor
of the derivative data. Initially, the number and the occupancy
factors of heavy-atom sites are unknown, and are roughly estimated
from intensity differences to evaluate

�
f 2
Hj. These estimates

usually undergo considerable revision in the course of the
determination and the refinement of heavy-atom parameters.

At first, heavy-atom positions are most often determined by
Patterson syntheses of one type or another. Such syntheses are
discussed in some detail elsewhere in Chapter 2.3. They are
therefore discussed here only briefly.

Equation (2.4.2.6) holds when the data are centric. FH is usually
small compared to FN and FNH , and the minus sign is then relevant
on the left-hand side of (2.4.2.6). Thus the difference between the
magnitudes of FNH and FN , which can be obtained experimentally,
normally gives a correct estimate of the magnitude of FH for most
reflections. Then a Patterson synthesis with �FNH � FN �2 as
coefficients corresponds to the distribution of vectors between
heavy atoms, when the data are centric. But proteins are made up of
L-amino acids and hence cannot crystallize in centrosymmetric
space groups. However, many proteins crystallize in space groups
with centrosymmetric projections. The centric data corresponding
to these projections can then be used for determining heavy-atom
positions through a Patterson synthesis of the type outlined above.
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The situation is more complex for three-dimensional acentric
data. It has been shown (Rossmann, 1961) that

�FNH � FN �2 � F2
H cos2��NH � �H � �2�4�4�5�

when FH is small compared to FNH and FN . Patterson synthesis with
�FNH � FN �2 as coefficients would, therefore, give an approxima-
tion to the heavy-atom vector distribution. An isomorphous
difference Patterson synthesis of this type has been used extensively
in protein crystallography to determine heavy-atom positions. The
properties of this synthesis have been extensively studied
(Ramachandran & Srinivasan, 1970; Rossmann, 1960; Phillips,
1966; Dodson & Vijayan, 1971) and it has been shown that this
Patterson synthesis would provide a good approximation to the
heavy-atom vector distribution even when FH is large compared to
FN (Dodson & Vijayan, 1971).

As indicated earlier (see Section 2.4.3.1), heavy atoms are always
anomalous scatterers, and the structure factors of any given
reflection and its Friedel equivalent from a heavy-atom derivative
have unequal magnitudes. If these structure factors are denoted by
FNH ��� and FNH ��� and the real component of the heavy-atom
contributions (including the real component of the dispersion
correction) by FH , then it can be shown (Kartha & Parthasarathy,
1965) that

k
2

� �2

�FNH��� � FNH ���2 � F2
H sin2��NH � �H �, �2�4�4�6�

where k � �fH � f �H��f ��H . Here it has been assumed that all the
anomalous scatterers are of the same type with atomic scattering
factor fH and dispersion-correction terms f �H and f ��H . A Patterson
synthesis with the left-hand side of (2.4.4.6) as coefficients would
also yield the vector distribution corresponding to the heavy-atom
positions (Rossmann, 1961; Kartha & Parthasarathy, 1965).
However, FNH��� � FNH ��� is a small difference between two
large quantities and is liable to be in considerable error. Patterson
syntheses of this type are therefore rarely used to determine heavy-
atom positions.

It is interesting to note (Kartha & Parthasarathy, 1965) that
addition of (2.4.4.5) and (2.4.4.6) readily leads to

�FNH � FN �2 � k
2

� �2

�FNH��� � FNH ���2 � F2
H � �2�4�4�7�

Thus, the magnitude of the heavy-atom contribution can be
estimated if intensities of Friedel equivalents have been measured
from the derivative crystal. FNH is then not readily available, but to
a good approximation

FNH � �FNH��� � FNH����2� �2�4�4�8�
A different and more accurate expression for estimating F2

H from
isomorphous and anomalous differences was derived by Matthews
(1966). According to a still more accurate expression derived by
Singh & Ramaseshan (1966),

F2
H � F2

NH � F2
N � 2FNH FN cos��N � �NH �

� F2
NH � F2

N � 2FNH FN

� �1� �k�FNH��� � FNH ����2FN�2�1�2� �2�4�4�9�
The lower estimate in (2.4.4.9) is relevant when 
�N � �NH 
 � 90	
and the upper estimate is relevant when 
�N � �NH 
 � 90	. The
lower and the upper estimates may be referred to as FHLE and FHUE,
respectively. It can be readily shown (Dodson & Vijayan, 1971) that
the lower estimate would represent the correct value of FH for a vast
majority of reflections. Thus, a Patterson synthesis with F2

HLE as
coefficients would yield the vector distribution of heavy atoms in

the derivative. Such a synthesis would normally be superior to those
with the left-hand sides of (2.4.4.5) and (2.4.4.6) as coefficients.
However, when the level of heavy-atom substitution is low, the
anomalous differences are also low and susceptible to large
percentage errors. In such a situation, a synthesis with �FNH �
FN �2 as coefficients is likely to yield better results than that with
F2

HLE as coefficients (Vijayan, 1981).
Direct methods employing different methodologies have also

been used successfully for the determination of heavy-atom
positions (Navia & Sigler, 1974). These methods, developed
primarily for the analysis of smaller structures, have not yet been
successful in a priori analysis of protein structures. The very size of
protein structures makes the probability relations used in these
methods weak. In addition, data from protein crystals do not
normally extend to high enough angles to permit resolution of
individual atoms in the structure and the feasibility of using many of
the currently popular direct-method procedures in such a situation
has been a topic of much discussion. The heavy atoms in protein
derivative crystals, however, are small in number and are normally
situated far apart from one another. They are thus expected to be
resolved even when low-resolution X-ray data are used. In most
applications, the magnitudes of the differences between FNH and FN
are formally considered as the ‘observed structure factors’ of the
heavy-atom distribution and conventional direct-method proce-
dures are then applied to them.

Once the heavy-atom parameters in one or more derivatives have
been determined, approximate protein phase angles, �N ’s, can be
derived using methods described later. These phase angles can then
be readily used to determine the heavy-atom parameters in a new
derivative employing a difference Fourier synthesis with coeffi-
cients

�FNH � FN � exp�i�N �� �2�4�4�10�
Such syntheses are also used to confirm and to improve upon the
information on heavy-atom parameters obtained through Patterson
or direct methods. They are obviously very powerful when centric
data corresponding to centrosymmetric projections are used. The
synthesis yields satisfactory results even when the data are acentric
although the difference Fourier technique becomes progressively
less powerful as the level of heavy-atom substitution increases
(Dodson & Vijayan, 1971).

While the positional parameters of heavy atoms can be
determined with a reasonable degree of confidence using the
above-mentioned methods, the corresponding temperature and
occupancy factors cannot. Rough estimates of the latter are usually
made from the strength and the size of appropriate peaks in
difference syntheses. The estimated values are then refined, along
with the positional parameters, using the techniques outlined below.

2.4.4.3. Refinement of heavy-atom parameters

The least-squares method with different types of minimization
functions is used for refining the heavy-atom parameters, including
the occupancy factors. The most widely used method (Dickerson et
al., 1961; Muirhead et al., 1967; Dickerson et al., 1968) involves
the minimization of the function

� ��
w�FNH � 
FN � FH 
�2, �2�4�4�11�

where the summation is over all the reflections and w is the weight
factor associated with each reflection. Here FNH is the observed
magnitude of the structure factor for the particular derivative and
FN � FH is the calculated structure factor. The latter obviously
depends upon the protein phase angle �N , and the magnitude and
the phase angle of FH which are in turn dependent on the heavy-
atom parameters. Let us assume that we have three derivatives A, B
and C, and that we have already determined the heavy-atom
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parameters HAi, HBi and HCi. Then,

FHA � FHA�HAi�
FHB � FHB�HBi� �2�4�4�12�
FHC � FHC�HCi��

A set of approximate protein phase angles is first calculated,
employing methods described later, making use of the unrefined
heavy-atom parameters. These phase angles are used to construct
FN � FH for each derivative. (2.4.4.11) is then minimized,
separately for each derivative, by varying HAi for derivative A,
HBi for derivative B, and HCi for derivative C. The refined values of
HAi, HBi and HCi are subsequently used to calculate a new set of
protein phase angles. Alternate cycles of parameter refinement and
phase-angle calculation are carried out until convergence is
reached. The progress of refinement may be monitored by
computing an R factor defined as (Kraut et al., 1962)

RK �
� 
FNH � 
FN � FH 



FNH
� �2�4�4�13�

The above method has been successfully used for the refinement
of heavy-atom parameters in the X-ray analysis of many proteins.
However, it has one major drawback in that the refined parameters
in one derivative are dependent on those in other derivatives
through the calculation of protein phase angles. Therefore, it is
important to ensure that the derivative, the heavy-atom parameters
of which are being refined, is omitted from the phase-angle
calculation (Blow & Matthews, 1973). Even when this is done,
serious problems might arise when different derivatives are related
by common sites. In practice, the occupancy factors of the common
sites tend to be overestimated compared to those of the others
(Vijayan, 1981; Dodson & Vijayan, 1971). Yet another factor which
affects the occupancy factors is the accuracy of the phase angles.
The inclusion of poorly phased reflections tends to result in the
underestimation of occupancy factors. It is therefore advisable to
omit from refinement cycles reflections with figures of merit less
than a minimum threshold value or to assign a weight proportional
to the figure of merit (as defined later) to each term in the
minimization function (Dodson & Vijayan, 1971; Blow &
Matthews, 1973).

If anomalous-scattering data from derivative crystals are
available, the values of FH can be estimated using (2.4.4.7) or
(2.4.4.9) and these can be used as the ‘observed’ magnitudes of the
heavy-atom contributions for the refinement of heavy-atom
parameters, as has been done by many workers (Watenpaugh et
al., 1975; Vijayan, 1981; Kartha, 1965). If (2.4.4.9) is used for
estimating FH , the minimization function has the form

� ��
w�FHLE � FH�2� �2�4�4�14�

The progress of refinement may be monitored using a reliability
index defined as

R �
� 
FHLE � FH 
�

FHLE
� �2�4�4�15�

The major advantage of using FHLE’s in refinement is that the
heavy-atom parameters in each derivative can now be refined
independently of all other derivatives. Care should, however, be
taken to omit from calculations all reflections for which FHUE is
likely to be the correct estimate of FH . This can be achieved in
practice by excluding from least-squares calculations all reflections
for which FHUE has a value less than the maximum expected value
of FH for the given derivative (Vijayan, 1981; Dodson & Vijayan,
1971).

A major problem associated with this refinement method is
concerned with the effect of experimental errors on refined

parameters. The values of FNH��� � FNH��� are often comparable
to the experimental errors associated with FNH ��� and FNH ���. In
such a situation, even random errors in FNH��� and FNH ��� tend to
increase systematically the observed difference between them
(Dodson & Vijayan, 1971). In (2.4.4.7) and (2.4.4.9), this difference
is multiplied by k or k�2, a quantity much greater than unity, and
then squared. This could lead to the systematic overestimation of
FHLE’s and the consequent overestimation of occupancy factors.
The situation can be improved by employing empirical values of k,
evaluated using the relation (Kartha & Parthasarathy, 1965;
Matthews, 1966)

k � 2
� 
FNH � FN 
� 
FNH��� � FNH���
 , �2�4�4�16�

for estimating FHLE or by judiciously choosing the weighting
factors in (2.4.4.14) (Dodson & Vijayan, 1971). The use of a
modified form of FHLE, arrived at through statistical considerations,
along with appropriate weighting factors, has also been advocated
(Dodson et al., 1975).

When the data are centric, (2.4.4.9) reduces to

FH � FNH � FN � �2�4�4�17�
Here, again, the lower estimate most often corresponds to the
correct value of FH . (2.4.4.17) does not involve FNH��� � FNH���
which, as indicated earlier, is prone to substantial error. Therefore,
FH ’s estimated using centric data are more reliable than those
estimated using acentric data. Consequently, centric reflections,
when available, are extensively used for the refinement of heavy-
atom parameters. It may also be noted that in conditions under
which FHLE corresponds to the correct estimate of FH , minimization
functions (2.4.4.11) and (2.4.4.14) are identical for centric data.

A Patterson function correlation method with a minimization
function of the type

� ��
w��FNH � FN �2 � F2

H 2 �2�4�4�18�
was among the earliest procedures suggested for heavy-atom-
parameter refinement (Rossmann, 1960). This procedure would
obviously work well when centric reflections are used. A modified
version of this procedure, in which the origins of the Patterson
functions are removed from the correlation, and centric and acentric
data are treated separately, has been proposed (Terwilliger &
Eisenberg, 1983).

2.4.4.4. Treatment of errors in phase evaluation: Blow and
Crick formulation

As shown in Section 2.4.2.3, ideally, protein phase angles can be
evaluated if two isomorphous heavy-atom derivatives are available.
However, in practice, conditions are far from ideal on account of
several factors such as imperfect isomorphism, errors in the
estimation of heavy-atom parameters, and the experimental errors
in the measurement of intensity from the native and the derivative
crystals. It is therefore desirable to use as many derivatives as are
available for phase determination. When isomorphism is imperfect
and errors exist in data and heavy-atom parameters, all the circles in
a Harker diagram would not intersect at a single point; instead, there
would be a distribution of intersections, such as that illustrated in
Fig. 2.4.4.1. Consequently, a unique solution for the phase angle
cannot be deduced.

The statistical procedure for computing protein phase angles
using multiple isomorphous replacement (MIR) was derived by
Blow & Crick (1959). In their treatment, Blow and Crick assume,
for mathematical convenience, that all errors, including those
arising from imperfect isomorphism, could be considered as
residing in the magnitudes of the derivative structure factors only.
They further assume that these errors could be described by a
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Gaussian distribution. With these simplifying assumptions, the
statistical procedure for phase determination could be derived in the
following manner.

Consider the vector diagram, shown in Fig. 2.4.4.2, for a
reflection from the ith derivative for an arbitrary value � for the
protein phase angle. Then,

DHi��� � �F2
N � F2

Hi � 2FN FHi cos��Hi � ��1�2� �2�4�4�19�
If � corresponds to the true protein phase angle �N , then DHi
coincides with FNHi. The amount by which DHi��� differs from
FNHi, namely,

	Hi��� � FNHi � DHi���, �2�4�4�20�
is a measure of the departure of � from �N . 	 is called the lack of
closure. The probability for � being the correct protein phase angle
could now be defined as

Pi��� � Ni exp��	2
Hi����2E2

i , �2�4�4�21�
where Ni is the normalization constant and Ei is the estimated r.m.s.
error. The methods for estimating Ei will be outlined later. When
several derivatives are used for phase determination, the total
probability of the phase angle � being the protein phase angle
would be

P��� ��
Pi��� � N exp ��

i
�	2

Hi����2E2
i 

� �

, �2�4�4�22�

where the summation is over all the derivatives. A typical
distribution of P��� plotted around a circle of unit radius is
shown in Fig. 2.4.4.3. The phase angle corresponding to the highest
value of P��� would obviously be the most probable protein phase,
�M , of the given reflection. The most probable electron-density
distribution is obtained if each FN is associated with the
corresponding �M in a Fourier synthesis.

Blow and Crick suggested a different way of using the
probability distribution. In Fig. 2.4.4.3, the centroid of the
probability distribution is denoted by P. The polar coordinates of
P are m and �B, where m, a fractional positive number with a
maximum value of unity, and �B are referred to as the ‘figure of
merit’ and the ‘best phase’, respectively. One can then compute a
‘best Fourier’ with coefficients

mFN exp�i�B��
The best Fourier is expected to provide an electron-density
distribution with the lowest r.m.s. error. The figure of merit and
the best phase are usually calculated using the equations

m cos�B �
�

i
P��i� cos��i��

�

i
P��i�

m sin�B �
�

i
P��i� sin��i��

�

i
P��i�,

�2�4�4�23�

where P��i� are calculated, say, at 5	 intervals (Dickerson et al.,
1961). The figure of merit is statistically interpreted as the cosine of
the expected error in the calculated phase angle and it is obviously a
measure of the precision of phase determination. In general, m is
high when �M and �B are close to each other and low when they are
far apart.

2.4.4.5. Use of anomalous scattering in phase evaluation

When anomalous-scattering data have been collected from
derivative crystals, FNH ��� and FNH��� can be formally treated
as arising from two independent derivatives. The corresponding
Harker diagram is shown in Fig. 2.4.4.4. Thus, in principle, protein
phase angles can be determined using a single derivative when
anomalous-scattering effects are also made use of. It is interesting to
note that the information obtained from isomorphous differences,
FNH � FN , and that obtained from anomalous differences,

Fig. 2.4.4.1. Distribution of intersections in the Harker construction under
non-ideal conditions.

Fig. 2.4.4.2. Vector diagram indicating the calculated structure factor,
DHi���, of the ith heavy-atom derivative for an arbitrary value � for the
phase angle of the structure factor of the native protein.

Fig. 2.4.4.3. The probability distribution of the protein phase angle. The
point P is the centroid of the distribution.
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FNH ��� � FNH ���, are complementary. The isomorphous differ-
ence for any given reflection is a maximum when FN and FH are
parallel or antiparallel. The anomalous difference is then zero, if all
the anomalous scatterers are of the same type, and �N is determined
uniquely on the basis of the isomorphous difference. The
isomorphous difference decreases and the anomalous difference
increases as the inclination between FN and FH increases. The
isomorphous difference tends to be small and the anomalous
difference tends to have the maximum possible value when FN and
FH are perpendicular to each other. The anomalous difference then
has the predominant influence in determining the phase angle.

Although isomorphous and anomalous differences have a
complementary role in phase determination, their magnitudes are
obviously unequal. Therefore, when FNH ��� and FNH��� are
treated as arising from two derivatives, the effect of anomalous
differences on phase determination would be only marginal as, for
any given reflection, FNH ��� � FNH��� is usually much smaller
than FNH � FN . However, the magnitude of the error in the
anomalous difference would normally be much smaller than that
in the corresponding isomorphous difference. Firstly, the former is
obviously free from the effects of imperfect isomorphism.
Secondly, FNH ��� and FNH��� are expected to have the same
systematic errors as they are measured from the same crystal. These
errors are eliminated in the difference between the two quantities.
Therefore, as pointed out by North (1965), the r.m.s. error used for
anomalous differences should be much smaller than that used for
isomorphous differences. Denoting the r.m.s. error in anomalous
differences by E�, the new expression for the probability distribution
of protein phase angle may be written as

Pi��� � Ni exp��	2
Hi����2E2

i 
� exp����Hi ��Hical���2�2E

�2
i �, �2�4�4�24�

where

�Hi � FNHi��� � FNHi���
and

�Hical��� � 2F ��
Hi sin��Di � �Hi��

Here �Di is the phase angle of DHi��� [see (2.4.4.19) and Fig.
2.4.4.2]. �Hical��� is the anomalous difference calculated for the
assumed protein phase angle �. FNHi may be taken as the average of
FNHi��� and FNHi��� for calculating 	2

Hi��� using (2.4.4.20).

2.4.4.6. Estimation of r.m.s. error

Perhaps the most important parameters that control the reliability
of phase evaluation using the Blow and Crick formulation are the
isomorphous r.m.s. error Ei and the anomalous r.m.s. error E�i. For a
given derivative, the sharpness of the peak in the phase probability
distribution obviously depends upon the value of E and that of E�
when anomalous-scattering data have also been used. When several
derivatives are used, an overall underestimation of r.m.s. errors
leads to artifically sharper peaks, the movement of �B towards �M ,
and deceptively high figures of merit. Opposite effects result when
E’s are overestimated. Underestimation or overestimation of the
r.m.s. error in the data from a particular derivative leads to
distortions in the relative contribution of that derivative to the
overall phase probability distributions. It is therefore important that
the r.m.s. error in each derivative is correctly estimated.

Centric reflections, when present, obviously provide the best
means for evaluating E using the expression

E2 ��

n
�
FNH � FN 
 � FN �2�n� �2�4�4�25�

As suggested by Blow & Crick (1959), values of E thus estimated
can be used for acentric reflections as well. Once a set of
approximate protein phase angles is available, Ei can be calculated
as the r.m.s. lack of closure corresponding to �B [i.e. � � �B in
(2.4.4.20)] (Kartha, 1976). E�i can be similarly evaluated as the
r.m.s. difference between the observed anomalous difference and
the anomalous difference calculated for �B [see (2.4.4.24)].
Normally, the value of E�i is about a third of that of Ei (North, 1965).

A different method, outlined below, can also be used to evaluate
E and E� when anomalous scattering is present (Vijayan, 1981;
Adams, 1968). From Fig. 2.4.2.2, we have

cos
 � �F2
NH � F2

H � F2
N ��2FNH FH �2�4�4�26�

and

F2
N � F2

NH � F2
H � 2FNH FH cos
, �2�4�4�27�

where 
 � �NH � �H . Using arguments similar to those used in
deriving (2.4.3.5), we obtain

sin
 � �F2
NH ��� � F2

NH ����4FNH F ��
H � �2�4�4�28�

If FNH is considered to be equal to �FNH ��� � FNH ����2, we
obtain from (2.4.4.28)

FNH ��� � FNH��� � 2F ��
H sin
� �2�4�4�29�

We obtain what may be called 
iso if the magnitude of 
 is
determined from (2.4.4.26) and the quadrant from (2.4.4.28).
Similarly, we obtain 
ano if the magnitude of 
 is determined
from (2.4.4.28) and the quadrant from (2.4.4.26). Ideally, 
iso and

ano should have the same value and the difference between them is
a measure of the errors in the data. FN obtained from (2.4.4.27)
using 
ano may be considered as its calculated value �FNcal�. Then,
assuming all errors to lie in FN , we may write

E2 ��

n
�FN � FNcal�2�n� �2�4�4�30�

Similarly, the calculated anomalous difference ��Hcal� may be
evaluated from (2.4.4.29) using 
iso. Then

E�2 ��

n
�
FNH ��� � FNH ���
 ��Hcal2�n� �2�4�4�31�

If all errors are assumed to reside in FH , E can be evaluated in yet
another way using the expression

Fig. 2.4.4.4. Harker construction using anomalous-scattering data from a
single derivative.
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E2 ��

n
�FHLE � FH�2�n� �2�4�4�32�

2.4.4.7. Suggested modifications to Blow and Crick
formulation and the inclusion of phase information from
other sources

Modifications to the Blow and Crick procedure of phase
evaluation have been suggested by several workers, although
none represent a fundamental departure from the essential features
of their formulation. In one of the modifications (Cullis et al.,
1961a; Ashida, 1976), all Ei’s are assumed to be the same, but the
lack-of-closure error 	Hi for the ith derivative is measured as the
distance from the mean of all intersections between phase circles to
the point of intersection of the phase circle of that derivative with
the phase circle of the native protein. Alternatively, individual
values of Ei are retained, but the lack of closure is measured from
the weighted mean of all intersections (Ashida, 1976). This is
obviously designed to undo the effects of the unduly high weight
given to FN in the Blow and Crick formulation. In another
modification (Raiz & Andreeva, 1970; Einstein, 1977), suggested
for the same purpose, the FN and FNHi circles are treated as circular
bands, the width of each band being related to the error in the
appropriate structure factor. A comprehensive set of modifications
suggested by Green (1979) treats different types of errors
separately. In particular, errors arising from imperfect isomorphism
are treated in a comprehensive manner.

Although the isomorphous replacement method still remains the
method of choice for the ab initio determination of protein
structures, additional items of phase information from other sources
are increasingly being used to replace, supplement, or extend the
information obtained through the application of the isomorphous
replacement. Methods have been developed for the routine
refinement of protein structures (Watenpaugh et al., 1973; Huber
et al., 1974; Sussman et al., 1977; Jack & Levitt, 1978; Isaacs &
Agarwal, 1978; Hendrickson & Konnert, 1980) and they provide a
rich source of phase information. However, the nature of the
problem and the inherent limitations of the Fourier technique are
such that the possibility of refinement yielding misleading results
exists (Vijayan, 1980a,b). It is therefore sometimes desirable to
combine the phases obtained during refinement with the original
isomorphous replacement phases. The other sources of phase
information include molecular replacement (see Chapter 2.3),
direct methods (Hendrickson & Karle, 1973; Sayre, 1974; de
Rango et al., 1975; see also Chapter 2.2) and different types of
electron-density modifications (Hoppe & Gassmann, 1968; Collins,
1975; Schevitz et al., 1981; Bhat & Blow, 1982; Agard & Stroud,
1982; Cannillo et al., 1983; Raghavan & Tulinsky, 1979; Wang,
1985).

The problem of combining isomorphous replacement phases
with those obtained by other methods was first addressed by
Rossmann & Blow (1961). The problem was subsequently
examined by Hendrickson & Lattman (1970) and their method,
which involves a modification of the Blow and Crick formulation, is
perhaps the most widely used for combining phase information
from different sources.

The Blow and Crick procedure is based on an assumed Gaussian
‘lumped’ error in FNHi which leads to a lack of closure, 	Hi���, in
FNHi defined by (2.4.4.20). Hendrickson and Lattman make an
equally legitimate assumption that the lumped error, again assumed
to be Gaussian, is associated with F2

NHi. Then, as in (2.4.4.20), we
have

	��Hi��� � F2
NHi � D2

Hi���, �2�4�4�33�
where 	��Hi��� is the lack of closure associated with F2

NHi for an
assumed protein phase angle �. Then the probability for � being the

correct phase angle can be expressed as

Pi��� � Ni exp��	��2Hi����2E��2i , �2�4�4�34�
where E��i is the r.m.s. error in F2

NHi, which can be evaluated using
methods similar to those employed for evaluating Ei. Hendrickson
and Lattman have shown that the exponent in the probability
expression (2.4.4.34) can be readily expressed as a linear
combination of five terms in the following manner.

�	��2Hi����2E��2i � Ki � Ai cos�� Bi sin�� Ci cos 2�

� Di sin 2�, �2�4�4�35�
where Ki, Ai, Bi, Ci and Di are constants dependent on FN , FHi, FNHi
and E��i . Thus, five constants are enough to store the complete
probability distribution of any reflection. Expressions for the five
constants have been derived for phase information from anomalous
scattering, tangent formula, partial structure and molecular
replacement. The combination of the phase information from all
sources can then be achieved by simply taking the total value of
each constant. Thus, the total probability of the protein phase angle
being � is given by

P��� ��
Ps��� � N exp

�

s
Ks �

�

s
As cos���

s
Bs sin�

�

��
s

Cs cos 2���

s
Ds sin 2�

�

,

�2�4�4�36�
where Ks, As etc. are the constants appropriate for the sth source and
N is the normalization constant.

2.4.4.8. Fourier representation of anomalous scatterers

It is often useful to have a Fourier representation of only the
anomalous scatterers in a protein. The imaginary component of the
electron-density distribution obviously provides such a representa-
tion. When the structure is known and FN ��� and FN ��� have been
experimentally determined, Chacko & Srinivasan (1970) have
shown that this representation is obtained in a Fourier synthesis with
i�FN ��� � F�N ����2 as coefficients, where F�N ���, whose magni-
tude is FN ���, is the complex conjugate of FN ���. They also
indicated a method for calculating the phase angles of FN ��� and
F�N ���. It has been shown (Hendrickson & Sheriff, 1987) that the
Bijvoet-difference Fourier synthesis proposed earlier by Kraut
(1968) is an approximation of the true imaginary component of the
electron density. The imaginary synthesis can be useful in
identifying minor anomalous-scattering centres when the major
centres are known and also in providing an independent check on
the locations of anomalous scatterers and in distinguishing between
anomalous scatterers with nearly equal atomic numbers (Sheriff &
Hendrickson, 1987; Kitagawa et al., 1987).

2.4.5. Anomalous scattering of neutrons and synchrotron
radiation. The multiwavelength method

The multiwavelength anomalous-scattering method (Ramaseshan,
1982) relies on the variation of dispersion-correction terms as a
function of the wavelength used. The success of the method
therefore depends upon the size of the correction terms and the
availability of incident beams of comparable intensities at different
appropriate wavelengths. Thus, although this method was used as
early as 1957 (Ramaseshan et al., 1957) as an aid to structure
solution employing characteristic X-rays, it is, as outlined below,
ideally suited in structural work employing neutrons and synchro-
tron radiation. In principle, �-radiation can also be used for phase
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determination (Raghavan, 1961; Moon, 1961) as the anomalous-
scattering effects in �-ray scattering could be very large; the
wavelength is also easily tunable. However, the intensity obtainable
for �-rays is several orders lower than that obtainable from X-ray
and neutron sources, and hence �-ray anomalous scattering is of
hardly any practical value in structural analysis.

2.4.5.1. Neutron anomalous scattering

Apart from the limitations introduced by experimental factors,
such as the need for large crystals and the comparatively low flux of
neutron beams, there are two fundamental reasons why neutrons are
less suitable than X-rays for the ab initio determination of crystal
structures. First, the neutron scattering lengths of different nuclei
have comparable magnitudes whereas the atomic form factors for
X-rays vary by two orders of magnitude. Therefore, Patterson
techniques and the related heavy-atom method are much less
suitable for use with neutron diffraction data than with X-ray data.
Secondly, neutron scattering lengths could be positive or negative
and hence, in general, the positivity criterion (Karle & Hauptman,
1950) or the squarability criterion (Sayre, 1952) does not hold good
for nuclear density. Therefore, the direct methods based on these
criteria are not strictly applicable to structure analysis using neutron
data, although it has been demonstrated that these methods could be
successfully used in favourable situations in neutron crystal-
lography (Sikka, 1969). The anomalous-scattering method is,
however, in principle more powerful in the neutron case than in
the X-ray case for ab initio structure determination.

Thermal neutrons are scattered anomalously at appropriate
wavelengths by several nuclei. In a manner analogous to
(2.4.3.1), the neutron scattering length of these nuclei can be
written as

b0 � b� � ib�� � b� ib��� �2�4�5�1�

The correction terms b� and b�� are strongly wavelength-dependent.
In favourable cases, b��b0 and b���b0 can be of the order of 10
whereas they are small fractions in X-ray anomalous scattering. In
view of this pronounced anomalous effect in neutron scattering,
Ramaseshan (1966) suggested that it could be used for structure
solution. Subsequently, Singh & Ramaseshan (1968) proposed a
two-wavelength method for unique structure analysis using neutron
diffraction. The first part of the method is the determination of the
positions of the anomalous scatterers from the estimated values of
FQ. The method employed for estimating FQ is analogous to that
using (2.4.4.9) except that data collected at two appropriate
wavelengths are used instead of those from two isomorphous
crystals. The second stage of the two-wavelength method involves
phase evaluation. Referring to Fig. 2.4.3.2 and in a manner
analogous to (2.4.3.5), we have

sin
1 �
F2

N1��� � F2
N1���

4FN1F ��
Q1

, �2�4�5�2�

where 
 � �N � �Q and subscript 1 refers to data collected at
wavelength �1. Singh and Ramaseshan showed that cos 
1 can also
be determined when data are available at wavelength �1 and �2. We
may define

F2
m � �F2

N ��� � F2
N ����2 �2�4�5�3�

and we have from (2.4.3.3), (2.4.3.4) and (2.4.5.3)

FN � �F2
m � F ��2

Q �1�2� �2�4�5�4�

Then,

cos
1 � F2
m1 � F2

m2 � ��b2
1 � b��21 � � �b2

2 � b��22 �x2

2�b1 � b2�FN1x
� FQ1

FN1
,

�2�4�5�5�

where x is the magnitude of the temperature-corrected geometrical
part of FQ. 
1 and hence �N1 can be calculated using (2.4.5.2) and
(2.4.5.5). �N2 can also be obtained in a similar manner.

During the decade that followed Ramaseshan’s suggestion,
neutron anomalous scattering was used to solve half a dozen crystal
structures, employing the multiple-wavelength methods as well as
the methods developed for structure determination using X-ray
anomalous scattering (Koetzle & Hamilton, 1975; Sikka &
Rajagopal, 1975; Flook et al., 1977). It has also been demonstrated
that measurable Bijvoet differences could be obtained, in
favourable situations, in neutron diffraction patterns from protein
crystals (Schoenborn, 1975). However, despite the early promise
held by neutron anomalous scattering, the method has not been as
successful as might have been hoped. In addition to the need for
large crystals, the main problem with using this method appears to
be the time and expense involved in data collection (Koetzle &
Hamilton, 1975).

2.4.5.2. Anomalous scattering of synchrotron radiation

The most significant development in recent years in relation to
anomalous scattering of X-rays has been the advent of synchrotron
radiation (Helliwell, 1984). The advantage of using synchrotron
radiation for making anomalous-scattering measurements essen-
tially arises out of the tunability of the wavelength. Unlike the
characteristic radiation from conventional X-ray sources, synchro-
tron radiation has a smooth spectrum and the wavelength to be used
can be finely selected. Accurate measurements have shown that
values in the neighbourhood of 30 electrons could be obtained in
favourable cases for f � and f �� (Templeton, Templeton, Phillips &
Hodgson, 1980; Templeton, Templeton & Phizackerley, 1980;
Templeton et al., 1982). Schemes for the optimization of the
wavelengths to be used have also been suggested (Narayan &
Ramaseshan, 1981). Interestingly, the anomalous differences
obtainable using synchrotron radiation are comparable in magni-
tude to the isomorphous differences normally encountered in
protein crystallography. Thus, the use of anomalous scattering at
several wavelengths would obviously eliminate the need for
employing many heavy-atom derivatives. The application of
anomalous scattering of synchrotron radiation for macromolecular
structure analysis began to yield encouraging results in the 1980s
(Helliwell, 1985). Intensity measurements from macromolecular
X-ray diffraction patterns using synchrotron radiation at first relied
primarily upon oscillation photography (Arndt & Wonacott, 1977).
This method is not particularly suitable for accurately evaluating
anomalous differences. Much higher levels of accuracy began to be
achieved with the use of position-sensitive detectors (Arndt, 1986).
Anomalous scattering, in combination with such detectors, has
developed into a major tool in macromolecular crystallography (see
IT F, 2001).
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