International
Tables for
Crystallography
Volume B
Reciprocal space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 2.4, p. 269   | 1 | 2 |

Section 2.4.4.1. Protein heavy-atom derivatives

M. Vijayana* and S. Ramaseshanb

a Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, and bRaman Research Institute, Bangalore 560 080, India
Correspondence e-mail:  mv@mbu.iisc.ernet.in

2.4.4.1. Protein heavy-atom derivatives

| top | pdf |

Perhaps the most spectacular applications of isomorphous replacement and anomalous-scattering methods have been in the structure solution of large biological macromolecules, primarily proteins. Since its first successful application on myoglobin and haemoglobin, the isomorphous replacement method, which is often used in conjunction with the anomalous-scattering method, has been employed in the solution of scores of proteins. The application of this method involves the preparation of protein heavy-atom derivatives, i.e. the attachment of heavy atoms like mercury, uranium and lead, or chemical groups containing them, to protein crystals in a coherent manner without changing the conformation of the molecules and their crystal packing. This is only rarely possible in ordinary crystals as the molecules in them are closely packed. Protein crystals, however, contain large solvent regions and isomorphous derivatives can be prepared by replacing the disordered solvent molecules by heavy-atom-containing groups without disturbing the original arrangement of protein molecules.








































to end of page
to top of page