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2.5.1. Foreword (J. M. COWLEY)

Given that electrons have wave properties and the wavelengths lie
in a suitable range, the diffraction of electrons by matter is
completely analogous to the diffraction of X-rays. While for
X-rays the scattering function is the electron-density distribution,
for electrons it is the potential distribution which is similarly peaked
at the atomic sites. Hence, in principle, electron diffraction may be
used as the basis for crystal structure determination. In practice it is
used much less widely than X-ray diffraction for the determination
of crystal structures but is receiving increasing attention as a means
for obtaining structural information not readily accessible with
X-ray- or neutron-diffraction techniques.

Electrons having wavelengths comparable with those of the
X-rays commonly used in diffraction experiments have energies of
the order of 100 eV. For such electrons, the interactions with matter
are so strong that they can penetrate only a few layers of atoms on
the surfaces of solids. They are used extensively for the study of
surface structures by low-energy electron diffraction (LEED) and
associated techniques. These techniques are not covered in this
series of volumes, which include the principles and practice of only
those diffraction and imaging techniques making use of high-energy
electrons, having energies in the range of 20 keV to 1 MeV or more,
in transmission through thin specimens.

For the most commonly used energy ranges of high-energy
electrons, 100 to 400 keV, the wavelengths are about 50 times
smaller than for X-rays. Hence the scattering angles are much
smaller, of the order of 10�2 rad, the recording geometry is
relatively simple and the diffraction pattern represents, to a useful
first approximation, a planar section of reciprocal space.

The elastic scattering of electrons by atoms is several orders of
magnitude greater than for X-rays. This fact has profound
consequences, which in some cases are highly favourable and in
other cases are serious hindrances to structure analysis work. On the
one hand it implies that electron-diffraction patterns can be obtained
from very small single-crystal regions having thicknesses equal to
only a few layers of atoms and, with recently developed techniques,
having diameters equivalent to only a few interatomic distances.
Hence single-crystal patterns can be obtained from microcrystalline
phases.

However, the strong scattering of electrons implies that the
simple kinematical single-scattering approximation, on which most
X-ray diffraction structure analysis is based, fails for electrons
except for very thin crystals composed of light-atom materials.
Strong dynamical diffraction effects occur for crystals which may
be 100 Å thick, or less for heavy-atom materials. As a consequence,
the theory of dynamical diffraction for electrons has been well
developed, particularly for the particular special diffracting
conditions relevant to the transmission of fast electrons (see
Chapter 5.2), and observations of dynamical diffraction effects
are commonly made and quantitatively interpreted. The possibility
has thus arisen of using the observation of dynamical diffraction
effects as the basis for obtaining crystal structure information. The
fact that dynamical diffraction is dependent on the relative phases of
the diffracted waves then implies that relative phase information
can be deduced from the diffraction intensities and the limitations of
kinematical diffraction, such as Friedel’s law, do not apply. The
most immediately practicable method for making use of this
possibility is convergent-beam electron diffraction (CBED) as
described in Section 2.5.3.

A further important factor, determining the methods for
observing electron diffraction, is that, being charged particles,
electrons can be focused by electromagnetic lenses. The irreducible

aberrations of cylindrical magnetic lenses have, to date, limited the
resolution of electron microscopes to the extent that the least
resolvable distances (or ‘resolutions’) are about 100 times the
electron wavelength. However, with microscopes having a
resolution of better than 2 Å it is possible to distinguish the
individual rows of atoms, parallel to the incident electron beam, in
the principal orientations of many crystalline phases. Thus
‘structure images’ can be obtained, sometimes showing direct
representation of projections of crystal structures [see IT C (1999),
Section 4.3.8]. However, the complications of dynamical scattering
and of the coherent imaging processes are such that the image
intensities vary strongly with crystal thickness and tilt, and with the
defocus or other parameters of the imaging system, making the
interpretation of images difficult except in special circumstances.
Fortunately, computer programs are readily available whereby
image intensities can be calculated for model structures [see IT C
(1999), Section 4.3.6] Hence the means exist for deriving the
projection of the structure if only by a process of trial and error and
not, as would be desirable, from a direct interpretation of the
observations.

The accuracy with which the projection of a structure can be
deduced from an image, or series of images, improves as the
resolution of the microscope improves but is not at all comparable
with the accuracy attainable with X-ray diffraction methods. A
particular virtue of high-resolution electron microscopy as a
structural tool is that it may give information on individual small
regions of the sample. Structures can be determined of ‘phases’
existing over distances of only a few unit cells and the defects and
local disorders can be examined, one by one.

The observation of electron-diffraction patterns forms an
essential part of the technique of structure imaging in high-
resolution electron microscopy, because the diffraction patterns
are used to align the crystals to appropriate axial orientations. More
generally, for all electron microscopy of crystalline materials the
image interpretation depends on knowledge of the diffraction
conditions. Fortunately, the diffraction pattern and image of any
specimen region can be obtained in rapid succession by a simple
switching of lens currents. The ready comparison of the image and
diffraction data has become an essential component of the electron
microscopy of crystalline materials but has also been of
fundamental importance for the development of electron-diffraction
theory and techniques.

The individual specimen regions giving single-crystal electron-
diffraction patterns are, with few exceptions, so small that they can
be seen only by use of an electron microscope. Hence, historically,
it was only after electron microscopes were commonly available
that the direct correlations of diffraction intensities with crystal size
and shape could be made, and a proper basis was available for the
development of the adequate dynamical diffraction theory.

For the complete description of a diffraction pattern or image
intensities obtained with electrons, it is necessary to include the
effects of inelastic scattering as well as elastic scattering. In contrast
to the X-ray diffraction case, the inelastic scattering does not
produce just a broad and generally negligible background. The
average energy loss for an inelastic scattering event is about 20 eV,
which is small compared with the energy of about 100 keV for the
incident electrons. The inelastically scattered electrons have a
narrow angular distribution and are diffracted in much the same
way as the incident or elastically scattered electrons in a crystal.
They therefore produce a highly modulated contribution to the
diffraction pattern, strongly peaked about the Bragg spot positions
(see Chapter 4.3). Also, as a result of the inelastic scattering
processes, including thermal diffuse scattering, an effective
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absorption function must be added in the calculation of intensities
for elastically scattered electrons.

The inelastic scattering processes in themselves give information
about the specimen in that they provide a measure of the excitations
of both the valence-shell and the inner-shell electrons of the solid.
The inner-shell electron excitations are characteristic of the type of
atom, so that microanalysis of small volumes of specimen material
(a few hundreds or thousands of atoms) may be achieved by
detecting either the energy losses of the transmitted electrons or the
emission of the characteristic X-ray [see IT C (1999), Section 4.3.4].

An adverse effect of the inelastic scattering processes, however,
is that the transfer of energy to the specimen material results in
radiation damage; this is a serious limitation of the application of
electron-scattering methods to radiation-sensitive materials such as
organic, biological and many inorganic compounds. The amount of
radiation damage increases rapidly as the amount of information per
unit volume, derived from the elastic scattering, is increased, i.e. as
the microscope resolution is improved or as the specimen volume
irradiated during a diffraction experiment is decreased. At the
current limits of microscopic resolution, radiation damage is a
significant factor even for the radiation-resistant materials such as
semiconductors and alloys.

In the historical development of electron-diffraction techniques
the progress has depended to an important extent on the level of
understanding of the dynamical diffraction processes and this
understanding has followed, to a considerable degree, from the
availability of electron microscopes. For the first 20 years of the
development, with few exceptions, the lack of a precise knowledge
of the specimen morphology meant that diffraction intensities were
influenced to an unpredictable degree by dynamical scattering and
the impression grew that electron-diffraction intensities could not
meaningfully be interpreted.

It was the group in the Soviet Union, led initially by Dr Z. G.
Pinsker and later by Dr B. K. Vainshtein and others, which showed
that patterns from thin layers of a powder of microcrystals could be
interpreted reliably by use of the kinematical approximation. The
averaging over crystal orientation reduced the dynamical diffraction
effects to the extent that practical structure analysis was feasible.
The development of the techniques of using films of crystallites
having strongly preferred orientations, to give patterns somewhat
analogous to the X-ray rotation patterns, provided the basis for the
collection of three-dimensional diffraction data on which many
structure analyses have been based [see Section 2.5.4 and IT C
(1999), Section 4.3.5].

In recent years improvements in the techniques of specimen
preparation and in the knowledge of the conditions under which
dynamical diffraction effects become significant have allowed
progress to be made with the use of high-energy electron diffraction
patterns from thin single crystals for crystal structure analysis.
Particularly for crystals of light-atom materials, including biologi-
cal and organic compounds, the methods of structure analysis
developed for X-ray diffraction, including the direct methods (see
Section 2.5.7), have been successfully applied in an increasing
number of cases. Often it is possible to deduce some structural
information from high-resolution electron-microscope images and
this information may be combined with that from the diffraction
intensities to assist the structure analysis process [see IT C (1999),
Section 4.3.8.8].

The determination of crystal symmetry by use of CBED (Section
2.5.3) and the accurate determination of structure amplitudes by use
of methods depending on the observation of dynamical diffraction
effects [IT C (1999), Section 4.3.7] came later, after the information
on morphologies of crystals, and the precision electron optics
associated with electron microscopes, became available.

In spite of the problem of radiation damage, a great deal of
progress has been made in the study of organic and biological

materials by electron-scattering methods. In some respects these
materials are very favourable because, with only light atoms
present, the scattering from thin films can be treated using the
kinematical approximation without serious error. Because of the
problem of radiation damage, however, special techniques have
been evolved to maximize the information on the required structural
aspects with minimum irradiation of the specimen. Image-
processing techniques have been evolved to take advantage of the
redundancy of information from a periodic structure and the means
have been devised for combining information from multiple images
and diffraction data to reconstruct specimen structure in three
dimensions. These techniques are outlined in Sections 2.5.5 and
2.5.6. They are based essentially on the application of the
kinematical approximation and have been used very effectively
within that limitation.

For most inorganic materials the complications of many-beam
dynamical diffraction processes prevent the direct application of
these techniques of image analysis, which depend on having a linear
relationship between the image intensity and the value of the
projected potential distribution of the sample. The smaller
sensitivities to radiation damage can, to some extent, remove the
need for the application of such methods by allowing direct
visualization of structure with ultra-high-resolution images and the
use of microdiffraction techniques.

2.5.2. Electron diffraction and electron microscopy
(J. M. COWLEY)

2.5.2.1. Introduction

The contributions of electron scattering to the study of the
structures of crystalline solids are many and diverse. This section
will deal only with the scattering of high-energy electrons (in the
energy range of 104 to 106 eV) in transmission through thin samples
of crystalline solids and the derivation of information on crystal
structures from diffraction patterns and high-resolution images. The
range of wavelengths considered is from about 0.122 Å (12.2 pm)
for 10 kV electrons to 0.0087 Å (0.87 pm) for 1 MeV electrons.
Given that the scattering amplitudes of atoms for electrons have
much the same form and variation with �sin ���� as for X-rays, it is
apparent that the angular range for strong scattering of electrons
will be of the order of 10�2 rad. Only under special circumstances,
usually involving multiple elastic and inelastic scattering from very
thick specimens, are scattering angles of more than 10�1 rad of
importance.

The strength of the interaction of electrons with matter is greater
than that of X-rays by two or three orders of magnitude. The single-
scattering, first Born approximation fails significantly for scattering
from single heavy atoms. Diffracted beams from single crystals may
attain intensities comparable with that of the incident beam for
crystal thicknesses of 102 Å, rather than 104 Å or more. It follows
that electrons may be used for the study of very thin samples, and
that dynamical scattering effects, or the coherent interaction of
multiply scattered electron waves, will modify the diffracted
amplitudes in a significant way for all but very thin specimens
containing only light atoms.

The experimental techniques for electron scattering are largely
determined by the possibility of focusing electron beams by use of
strong axial magnetic fields, which act as electron lenses having
focal lengths as short as 1 mm or less. Electron microscopes
employing such lenses have been produced with resolutions
approaching 1 Å. With such instruments, images showing indivi-
dual isolated atoms of moderately high atomic number may be
obtained. The resolution available is sufficient to distinguish
neighbouring rows of adjacent atoms in the projected structures
of thin crystals viewed in favourable orientations. It is therefore
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possible in many cases to obtain information on the structure of
crystals and of crystal defects by direct inspection of electron
micrographs.

The electromagnetic electron lenses may also be used to form
electron beams of very small diameter and very high intensity. In
particular, by the use of cold field-emission electron guns, it is
possible to obtain a current of 10�10 A in an electron beam of
diameter 10 Å or less with a beam divergence of less than 10�2 rad,
i.e. a current density of 104 A cm�2 or more. The magnitudes of
the electron scattering amplitudes then imply that detectable
signals may be obtained in diffraction from assemblies of fewer
than 102 atoms. On the other hand, electron beams may readily
be collimated to better than 10�6 rad.

The cross sections for inelastic scattering processes are, in
general, less than for the elastic scattering of electrons, but signals
may be obtained by the observation of electron energy losses, or the
production of secondary radiations, which allow the analysis of
chemical compositions or electronic excited states for regions of the
crystal 100 Å or less in diameter.

On the other hand, the transfer to the sample of large amounts of
energy through inelastic scattering processes produces radiation
damage which may severely limit the applicability of the imaging
and diffraction techniques, especially for biological and organic
materials, unless the information is gathered from large specimen
volumes with low incident electron beam densities.

Structure analysis of crystals can be performed using electron
diffraction in the same way as with X-ray or neutron diffraction.
The mathematical expressions and the procedures are much the
same. However, there are peculiarities of the electron-diffraction
case which should be noted.

(1) Structure analysis based on electron diffraction is possible for
thin specimens for which the conditions for kinematical scattering
are approached, e.g. for thin mosaic single-crystal specimens, for
thin polycrystalline films having a preferred orientation of very
small crystallites or for very extensive, very thin single crystals of
biological molecules such as membranes one or a few molecules
thick.

(2) Dynamical diffraction effects are used explicitly in the
determination of crystal symmetry (with no Friedel’s law
limitations) and for the measurement of structure amplitudes with
high accuracy.

(3) For many radiation-resistant materials, the structures of
crystals and of some molecules may be determined directly by
imaging atom positions in projections of the crystal with a reso-
lution of 2 Å or better. The information on atom positions is not
dependent on the periodicity of the crystal and so it is equally
possible to determine the structures of individual crystal defects in
favourable cases.

(4) Techniques of microanalysis may be applied to the
determination of the chemical composition of regions of diameter
100 Å or less using the same instrument as for diffraction, so that
the chemical information may be correlated directly with
morphological and structural information.

(5) Crystal-structure information may be derived from regions
containing as few as 102 or 103 atoms, including very small crystals
and single or multiple layers of atoms on surfaces.

2.5.2.2. The interactions of electrons with matter

(1) The elastic scattering of electrons results from the interaction
of the charged electrons with the electrostatic potential distribution,
��r�, of the atoms or crystals. An incident electron of kinetic energy
eW gains energy e��r� in the potential field. Alternatively it may be
stated that an incident electron wave of wavelength � � h�mv is
diffracted by a region of variable refractive index

n�r� � k�K0 � ��W � ��r���W	1�2 
 1� ��r��2W �

(2) The most important inelastic scattering processes are:
(a) thermal diffuse scattering, with energy losses of the order of

2� 10�2 eV, separable from the elastic scattering only with
specially devised equipment; the angular distribution of thermal
diffuse scattering shows variations with �sin ���� which are much
the same as for the X-ray case in the kinematical limit;

(b) bulk plasmon excitation, or the excitation of collective energy
states of the conduction electrons, giving energy losses of 3 to 30 eV
and an angular range of scattering of 10�4 to 10�3 rad;

(c) surface plasmons, or the excitation of collective energy states
of the conduction electrons at discontinuities of the structure, with
energy losses less than those for bulk plasmons and a similar
angular range of scattering;

(d) interband or intraband excitation of valence-shell electrons
giving energy losses in the range of 1 to 102 eV and an angular
range of scattering of 10�4 to 10�2 rad;

(e) inner-shell excitations, with energy losses of 102 eV or more
and an angular range of scattering of 10�3 to 10�2 rad, depending on
the energy losses involved.

(3) In the original treatment by Bethe (1928) of the elastic
scattering of electrons by crystals, the Schrödinger equation is
written for electrons in the periodic potential of the crystal; i.e.

�2��r� � K2
0 �1� ��r��W ���r� � 0, �2�5�2�1�

where

��r� � �
V �u� exp��2�iu  r	 du

��

h
Vh exp��2�ih  r	, �2�5�2�2�

K0 is the wavevector in zero potential (outside the crystal)
(magnitude 2���) and W is the accelerating voltage. The solutions
of the equation are Bloch waves of the form

��r� ��

h
Ch�k� exp��i�k0 � 2�h�  r	, �2�5�2�3�

where k0 is the incident wavevector in the crystal and h is a
reciprocal-lattice vector. Substitution of (2.5.2.2) and (2.5.2.3) in
(2.5.2.1) gives the dispersion equations

��2 � k2
h�Ch �

�

g

� Vh�gCg � 0� �2�5�2�4�

Here � is the magnitude of the wavevector in a medium of constant
potential V0 (the ‘inner potential’ of the crystal). The refractive
index of the electron in the average crystal potential is then

n � ��K � �1� V0�W�1�2 
 1� V0�2W � �2�5�2�5�
Since V0 is positive and of the order of 10 V and W is 104 to 106 V,
n� 1 is positive and of the order of 10�4.

Solution of equation (2.5.2.4) gives the Fourier coefficients C�i�h
of the Bloch waves ��i��r� and application of the boundary
conditions gives the amplitudes of individual Bloch waves (see
Chapter 5.2).

(4) The experimentally important case of transmission of high-
energy electrons through thin specimens is treated on the
assumption of a plane wave incident in a direction almost
perpendicular to an infinitely extended plane-parallel lamellar
crystal, making use of the small-angle scattering approximation
in which the forward-scattered wave is represented in the
paraboloidal approximation to the sphere. The incident-beam
direction, assumed to be almost parallel to the z axis, is unique
and the z component of k is factored out to give
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�2�� 2k	�� � �i2k

�


z
, �2�5�2�6�

where k � 2��� and 	 � 2�me��h2. [See Lynch & Moodie (1972),
Portier & Gratias (1981), Tournarie (1962), and Chapter 5.2.]

This equation is analogous to the time-dependent Schrödinger
equation with z replacing t. Retention of the � signs on the right-
hand side is consistent with both � and �� being solutions,
corresponding to propagation in opposite directions with respect to
the z axis. The double-valued solution is of importance in
consideration of reciprocity relationships which provide the basis
for the description of some dynamical diffraction symmetries. (See
Section 2.5.3.)

(5) The integral form of the wave equation, commonly used for
scattering problems, is written, for electron scattering, as

��r� � ��0��r� � �	���
�

exp��ik�r� r��	
�r� r�� ��r����r�� dr��

�2�5�2�7�
The wavefunction ��r� within the integral is approximated by

using successive terms of a Born series

��r� � ��0��r� � ��1��r� � ��2��r� � � � � � �2�5�2�8�
The first Born approximation is obtained by putting ��r� �

��0��r� in the integral and subsequent terms ��n��r� are generated by
putting ��n�1��r� in the integral.

For an incident plane wave, ��0��r� � exp��ik0  r	 and for a
point of observation at a large distance R � r� r� from the
scattering object ��R� � �r���, the first Born approximation is
generated as

��1��r� � i	
�R

exp��ik  R	
�

��r�� exp�iq  r�	 dr�,

where q � k� k0 or, putting u � q�2� and collecting the pre-
integral terms into a parameter �,

��u� � �
�
��r� exp�2�iu  r	 dr� �2�5�2�9�

This is the Fourier-transform expression which is the basis for the
kinematical scattering approximation. It is derived on the basis that
all ��n��r� terms for n �� 0 are very much smaller than ��0��r� and so
is a weak scattering approximation.

In this approximation, the scattered amplitude for an atom is
related to the atomic structure amplitude, f �u�, by the relationship,
derived from (2.5.2.8),

��r� � exp��ik0  r	 � i
exp��ik  r	

R�
	f �u�,

f �u� � �
��r� exp�2�iu  r	 dr� �2�5�2�10�

For centrosymmetrical atom potential distributions, the f �u� are
real, positive and monotonically decreasing with �u�. A measure of
the extent of the validity of the first Born approximation is given by
the fact that the effect of adding the higher-order terms of the Born
series may be represented by replacing f �u� in (2.5.2.10) by the
complex quantities f �u� � �f� exp�i��u�	 and for single heavy
atoms the phase factor � may vary from 0.2 for �u� � 0 to 4 or 5 for
large �u�, as seen from the tables of IT C (1999, Section 4.3.3).

(6) Relativistic effects produce appreciable variations of the
parameters used above for the range of electron energies
considered. The relativistic values are

m � m0�1� v2�c2��1�2 � m0�1� 2��1�2, �2�5�2�11�
� � h�2m0�e�W �1� �e�W�2m0c2���1�2 �2�5�2�12�
� �c�1� 2�1�2�, �2�5�2�13�

where �c is the Compton wavelength, �c � h�m0c � 0�0242 Å, and

	 � 2�me��h2 � �2�m0e�h2���c��
� 2����W �1� �1� 2�1�2�	� �2�5�2�14�

Values for these quantities are listed in IT C (1999, Section 4.3.2).
The variations of � and 	 with accelerating voltage are illustrated in
Fig. 2.5.2.1. For high voltages, 	 tends to a constant value,
2�m0e�c�h2 � e��hc.

2.5.2.3. Recommended sign conventions

There are two alternative sets of signs for the functions
describing wave optics. Both sets have been widely used in the
literature. There is, however, a requirement for internal consistency
within a particular analysis, independently of which set is adopted.
Unfortunately, this requirement has not always been met and, in
fact, it is only too easy at the outset of an analysis to make errors in
this way. This problem might have come into prominence
somewhat earlier were it not for the fact that, for centrosymmetric
crystals (or indeed for centrosymmetric projections in the case of
planar diffraction), only the signs used in the transmission and
propagation functions can affect the results. It is not until the origin
is set away from a centre of symmetry that there is a need to be
consistent in every sign used.

Signs for electron diffraction have been chosen from two points
of view: (1) defining as positive the sign of the exponent in the
structure-factor expression and (2) defining the forward propagating
free-space wavefunction with a positive exponent.

The second of these alternatives is the one which has been
adopted in most solid-state and quantum-mechanical texts.

The first, or standard crystallographic convention, is the one
which could most easily be adopted by crystallographers
accustomed to retaining a positive exponent in the structure-factor
equation. This also represents a consistent International Tables
usage. It is, however, realized that both conventions will continue to
be used in crystallographic computations, and that there are by now
a large number of operational programs in use.

Fig. 2.5.2.1. The variation with accelerating voltage of electrons of (a) the
wavelength, � and (b) the quantity ��1� �h2�m2

0c2�2�� � �c� which is
proportional to the interaction constant 	 [equation (2.5.2.14)]. The
limit is the Compton wavelength �c (after Fujiwara, 1961).
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It is therefore recommended (a) that a particular sign usage be
indicated as either standard crystallographic or alternative crystal-
lographic to accord with Table 2.5.2.1, whenever there is a need for
this to be explicit in publication, and (b) that either one or other of
these systems be adhered to throughout an analysis in a self-
consistent way, even in those cases where, as indicated above, some
of the signs appear to have no effect on one particular conclusion.

2.5.2.4. Scattering of electrons by crystals; approximations

The forward-scattering approximation to the many-beam
dynamical diffraction theory outlined in Chapter 5.2 provides the
basis for the calculation of diffraction intensities and electron-
microscope image contrast for thin crystals. [See Cowley (1995),
Chapter 5.2 and IT C (1999) Sections 4.3.6 and 4.3.8.] On the other
hand, there are various approximations which provide relatively
simple analytical expressions, are useful for the determination of
diffraction geometry, and allow estimates to be made of the relative
intensities in diffraction patterns and electron micrographs in
favourable cases.

(a) The kinematical approximation, derived in Section 2.5.2.2
from the first Born approximation, is analagous to the correspond-
ing approximation of X-ray diffraction. It assumes that the
scattering amplitudes are directly proportional to the three-
dimensional Fourier transform of the potential distribution, ��r�.

V �u� � �
��r� exp�2�iu  r	 dr, �2�5�2�15�

so that the potential distribution ��r� takes the place of the charge-
density distribution, ��r�, relevant for X-ray scattering.

The validity of the kinematical approximation as a basis for
structure analysis is severely limited. For light-atom materials, such
as organic compounds, it has been shown by Jap & Glaeser (1980)
that the thickness for which the approximation gives reasonable
accuracy for zone-axis patterns from single crystals is of the order
of 100 Å for 100 keV electrons and increases, approximately as 	�1,
for higher energies. The thickness limits quoted for polycrystalline
samples, having crystallite dimensions smaller than the sample
thickness, are usually greater (Vainshtein, 1956). For heavy-atom

materials the approximation is more limited since it may fail
significantly for single heavy atoms.

(b) The phase-object approximation (POA), or high-voltage
limit, is derived from the general many-beam dynamical diffraction
expression, equation (5.2.13.1), Chapter 5.2, by assuming the Ewald
sphere curvature to approach zero. Then the scattering by a thin
sample can be expressed by multiplying the incoming wave
amplitude by the transmission function

q�xy� � exp��i	��xy�	, �2�5�2�16�

where ��xy� � �
��r� dz is the projection of the potential

distribution of the sample in the z direction, the direction of the
incident beam. The diffraction-pattern amplitudes are then given by
two-dimensional Fourier transform of (2.5.2.16).

This approximation is of particular value in relation to the
electron microscopy of thin crystals. The thickness for its validity
for 100 keV electrons is within the range 10 to 50 Å , depending on
the accuracy and spatial resolution involved, and increases with
accelerating voltage approximately as ��1�2. In computational
work, it provides the starting point for the multi-slice method of
dynamical diffraction calculations (IT C, 1999, Section 4.3.6.1).

(c) The two-beam approximation for dynamical diffraction of
electrons assumes that only two beams, the incident beam and one
diffracted beam (or two Bloch waves, each with two component
amplitudes), exist in the crystal. This approximation has been
adapted, notably by Hirsch et al. (1965), for use in the electron
microscopy of inorganic materials.

It forms a convenient basis for the study of defects in crystals
having small unit cells (metals, semiconductors etc.) and provides
good preliminary estimates for the determination of crystal
thicknesses and structure amplitudes for orientations well removed
from principal axes, and for electron energies up to 200–500 keV,
but it has decreasing validity, even for favourable cases, for higher
energies. It has been used in the past as an ‘extinction correction’ for
powder-pattern intensities (Vainshtein, 1956).

(d) The Bethe second approximation, proposed by Bethe (1928)
as a means for correcting the two-beam approximation for the

Table 2.5.2.1. Standard crystallographic and alternative crystallographic sign conventions for electron diffraction

Standard Alternative

Free-space wave exp��i�k  r� �t�� exp��i�k  r� �t��
Fourier transforming from real space to reciprocal space

�
��r� exp��2�i�u  r�� dr

�
��r� exp��2�i�u  r�� dr

Fourier transforming from reciprocal space to real space ��r� � �
��u� exp��2�i�u  r�� du

�
��u� exp��2�i�u  r�� du

Structure factors V �h� � �1����j fj�h� exp��2�ih  rj� �1����j fj�h� exp��2�ih  rj�
Transmission function (real space) exp��i	��x, y��z� exp��i	��x, y��z�
Phenomenological absorption 	��r� � i��r� 	��r� � i��r�
Propagation function P(h) (reciprocal space) within the crystal exp��2�i�h�z� exp��2�i�h�z�
Iteration (reciprocal space) �n�1�h� � ��n�h�  P�h�� � Q�h�
Unitarity test (for no absorption) T�h� � Q�h� � Q���h� � ��h�
Propagation to the image plane-wave aberration function,
where ��U� � ���fU2 � 1

2�Cs�
3U4, U2 � u2 � v2 and �f is

positive for overfocus

exp�i��U�� exp��i��U��

	 � electron interaction constant � 2�me��h2; m � (relativistic) electron mass; � � electron wavelength; e � (magnitude of) electron charge; h � Planck’s
constant; k � 2���; � � volume of the unit cell; u � continuous reciprocal-space vector, components u, v; h � discrete reciprocal-space coordinate; ��x, y� �
crystal potential averaged along beam direction (positive); �z � slice thickness; ��r� � absorption potential [positive; typically � 0�1	��r�]; �f � defocus
(defined as negative for underfocus); Cs � spherical aberration coefficient; �h � excitation error relative to the incident-beam direction and defined as negative
when the point h lies outside the Ewald sphere; fj�h� � atomic scattering factor for electrons, fe, related to the atomic scattering factor for X-rays, fX , by the Mott
formula fe � �e��U2��Z � fX �. Q�h� � Fourier transform of periodic slice transmission function.
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effects of weakly excited beams, replaces the Fourier coefficients of
potential by the ‘Bethe potentials’

Uh � Vh � 2k0	
�

g

Vg  Vh�g

�2 � k2
g
� �2�5�2�17�

Use of these potentials has been shown to account well for the
deviations of powder-pattern intensities from the predictions of
two-beam theory (Horstmann & Meyer, 1965) and to predict
accurately the extinctions of Kikuchi lines at particular accelerating
voltages due to relativistic effects (Watanabe et al., 1968), but they
give incorrect results for the small-thickness limit.

2.5.2.5. Kinematical diffraction formulae

(1) Comparison with X-ray diffraction. The relations of real-
space and reciprocal-space functions are analogous to those for
X-ray diffraction [see equations (2.5.2.2), (2.5.2.10) and (2.5.2.15)].
For diffraction by crystals

��r� �
�

h

Vh exp��2�ih  r	,

Vh �
�

��r� exp�2�ih  r	 dr �2�5�2�18�

� 1
�

�

i

fi�h� exp�2�ih  ri	, �2�5�2�19�

where the integral of (2.5.2.18) and the summation of (2.5.2.19) are
taken over one unit cell of volume (see Dawson et al., 1974).

Important differences from the X-ray case arise because
(a) the wavelength is relatively small so that the Ewald-sphere

curvature is small in the reciprocal-space region of appreciable
scattering amplitude;

(b) the dimensions of the single-crystal regions giving appreci-
able scattering amplitudes are small so that the ‘shape transform’
regions of scattering power around the reciprocal-lattice points are
relatively large;

(c) the spread of wavelengths is small (10�5 or less, with no
white-radiation background) and the degree of collimation is better
(10�4 to 10�6) than for conventional X-ray sources.

As a consequence of these factors, single-crystal diffraction
patterns may show many simultaneous reflections, representing
almost-planar sections of reciprocal space, and may show fine
structure or intensity variations reflecting the crystal dimensions
and shape.

(2) Kinematical diffraction-pattern intensities are calculated in a
manner analogous to that for X-rays except that

(a) no polarization factor is included because of the small-angle
scattering conditions;

(b) integration over regions of scattering power around
reciprocal-lattice points cannot be assumed unless appropriate
experimental conditions are ensured.

For a thin, flat, lamellar crystal of thickness H, the observed
intensity is

Ih�I0 � �	�Vh����sin��hH�����h��2, �2�5�2�20�
where �h is the excitation error for the h reflection and � is the unit-
cell volume.

For a single-crystal diffraction pattern obtained by rotating a
crystal or from a uniformly bent crystal or for a mosaic crystal with
a uniform distribution of orientations, the intensity is

Ih � I0
	2�Vh�2Vcdh

4�2�2
, �2�5�2�21�

where Vc is the crystal volume and dh is the lattice-plane spacing.

For a polycrystalline sample of randomly oriented small crystals,
the intensity per unit length of the diffraction ring is

Ih � I0
	2�Vh�2Vcd2

hMh

8�2�2L�
, �2�5�2�22�

where Mh is the multiplicity factor for the h reflection and L is the
camera length, or the distance from the specimen to the detector
plane. The special cases of ‘oblique texture’ patterns from powder
patterns having preferred orientations are treated in IT C (1999,
Section 4.3.5).

(3) Two-beam dynamical diffraction formulae: complex poten-
tials including absorption. In the two-beam dynamical diffraction
approximation, the intensities of the directly transmitted and
diffracted beams for transmission through a crystal of thickness
H, in the absence of absorption, are

I0 � �1� w2��1 w2 � cos2 �H�1� w2�1�2

�h

� �� �

�2�5�2�23�

Ih � �1� w2��1 sin2 �H�1� w2�1�2

�h

� �

, �2�5�2�24�

where �h is the extinction distance, �h � �2	�Vh���1, and

w � �h�h � ����2	�Vh�dh�, �2�5�2�25�
where �� is the deviation from the Bragg angle.

For the case that �h � 0, with the incident beam at the Bragg
angle, this reduces to the simple Pendellösung expression

Ih � 1� I0 � sin2�2�	�Vh�H	� �2�5�2�26�
The effects on the elastic Bragg scattering amplitudes of the

inelastic or diffuse scattering may be introduced by adding an out-
of-phase component to the structure amplitudes, so that for a
centrosymmetric crystal, Vh becomes complex by addition of an
imaginary component. Alternatively, an absorption function ��r�,
having Fourier coefficients �h, may be postulated so that 	Vh is
replaced by 	Vh � i�h. The �h are known as phenomenological
absorption coefficients and their validity in many-beam diffraction
has been demonstrated by, for example, Rez (1978).

The magnitudes �h depend on the nature of the experiment and
the extent to which the various inelastically or diffusely scattered
electrons are included in the measurements being made. If
measurements are made of purely elastic scattering intensities for
Bragg reflections or of image intensity variations due to the
interaction of the sharp Bragg reflections only, the main
contributions to the absorption coefficients are as follows (Radi,
1970):

(a) from plasmon and single-electron excitations, �0 is of the
order of 0�1 V0 and �h, for h �� 0, is negligibly small;

(b) from thermal diffuse scattering; �h is of the order of 0�1 Vh
and decreasing more slowly than Vh with scattering angle.

Including absorption effects in (2.5.2.26) for the case �h � 0
gives

I0 � 1
2 exp���0H	�cosh�hH � cos�2�	VhH��,

Ih � 1
2 exp���0H	�cosh�hH � cos�2�	VhH��� �2�5�2�27�

The Borrmann effect is not very pronounced for electrons because
�h � �0, but can be important for the imaging of defects in thick
crystals (Hirsch et al., 1965; Hashimoto et al., 1961).

Attempts to obtain analytical solutions for the dynamical
diffraction equations for more than two beams have met with few
successes. There are some situations of high symmetry, with
incident beams in exact zone-axis orientations, for which the many-
beam solution can closely approach equivalent two- or three-beam
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behaviour (Fukuhara, 1966). Explicit solutions for the three-beam
case, which displays some aspects of many-beam character, have
been obtained (Gjønnes & Høier, 1971; Hurley & Moodie, 1980).

2.5.2.6. Imaging with electrons

Electron optics. Electrons may be focused by use of axially
symmetric magnetic fields produced by electromagnetic lenses. The
focal length of such a lens used as a projector lens (focal points
outside the lens field) is given by

f �1
p � e

8mWr

��

��
H2

z �z� dz, �2�5�2�28�

where Wr is the relativistically corrected accelerating voltage and
Hz is the z component of the magnetic field. An expression in terms
of experimental constants was given by Liebman (1955) as

1
f
� A0�NI�2

Wr�S � D� , �2�5�2�29�

where A0 is a constant, NI is the number of ampere turns of the lens
winding, S is the length of the gap between the magnet pole pieces
and D is the bore of the pole pieces.

Lenses of this type have irreducible aberrations, the most
important of which for the paraxial conditions of electron
microscopy is the third-order spherical aberration, coefficient Cs,
giving a variation of focal length of Cs�

2 for a beam at an angle � to
the axis. Chromatic aberration, coefficient Cc, gives a spread of
focal lengths

�f � Cc
�W0

W0
� 2

�I
I

	 


�2�5�2�30�

for variations �W0 and �I of the accelerating voltage and lens
currents, respectively.

The objective lens of an electron microscope is the critical lens
for the determination of image resolution and contrast. The action of
this lens in a conventional transmission electron microscope (TEM)
is described by use of the Abbe theory for coherent incident
illumination transmitted through the object to produce a wavefunc-
tion �0�xy� (see Fig. 2.5.2.2).

The amplitude distribution in the back focal plane of the
objective lens is written

�0�u, v�  T�u, v�, �2�5�2�31�
where �0�u, v� is the Fourier transform of �0�x, y� and T(u, v) is the
transfer function of the lens, consisting of an aperture function

A�u, v� � 1 for �u2 � v2�1�2 � A
0 elsewhere

�

�2�5�2�32�

and a phase function exp �i��u, v�	 where the phase perturbation
��uv� due to lens defocus �f and aberrations is usually
approximated as

��uv� � � �f  ��u2 � v2� � �

2
Cs�

3�u2 � v2�2, �2�5�2�33�
and u, v are the reciprocal-space variables related to the scattering
angles �x, �y by

u � �sin�x���,

v � �sin�y����
The image amplitude distribution, referred to the object

coordinates, is given by Fourier transform of (2.5.2.31) as

��xy� � �0�xy� � t�xy�, �2�5�2�34�

where t�xy�, given by Fourier transform of T�u, v�, is the spread
function. The image intensity is then

I�xy� � ���xy��2 � ��0�xy� � t�xy��2� �2�5�2�35�
In practice the coherent imaging theory provides a good

approximation but limitations of the coherence of the illumination
have appreciable effects under high-resolution imaging conditions.

The variation of focal lengths according to (2.5.2.30) is described
by a function G��f �. Illumination from a finite incoherent source
gives a distribution of incident-beam angles H�u1, v1�. Then the
image intensity is found by integrating incoherently over �f and
u1, v1:

I�xy� � � �
G��f �  H�u1v1�

� �� ��0�u� u1, v� v1�  T�f �u, v�	�2 d��f �  du1 dv1,

�2�5�2�36�

where � denotes the Fourier-transform operation.
In the scanning transmission electron microscope (STEM), the

objective lens focuses a small bright source of electrons on the
object and directly transmitted or scattered electrons are detected to
form an image as the incident beam is scanned over the object (see
Fig. 2.5.2.2). Ideally the image amplitude can be related to that of
the conventional transmission electron microscope by use of the
‘reciprocity relationship’ which refers to point sources and detectors
for scalar radiation in scalar fields with elastic scattering processes
only. It may be stated: ‘The amplitude at a point B due to a point
source at A is identical to that which would be produced at A for the
identical source placed at B’.

For an axial point source, the amplitude distribution produced by
the objective lens on the specimen is

� �T�u, v�� � t�xy�� �2�5�2�37�
If this is translated by the scan to X, Y, the transmitted wave is

�0�xy� � q�xy�  t�x� X , y� Y�� �2�5�2�38�
The amplitude on the plane of observation following the

specimen is then

��uv� � Q�u, v� � �T�uv� exp�2�i�uX � vY��	, �2�5�2�39�
and the image signal produced by a detector having a sensitivity
function H(u, v) is

Fig. 2.5.2.2. Diagram representing the critical components of a
conventional transmission electron microscope (TEM) and a scanning
transmission electron microscope (STEM). For the TEM, electrons from
a source A illuminate the specimen and the objective lens forms an
image of the transmitted electrons on the image plane, B. For the STEM,
a source at B is imaged by the objective lens to form a small probe on the
specimen and some part of the transmitted beam is collected by a
detector at A.
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I�X , Y� � �
H�u, v��Q�u, v� � T�u, v�

� exp�2�i�uX � vY�	�2 du dv�

�2�5�2�40�
If H(u, v) represents a small detector, approximated by a delta
function, this becomes

I�x, y� � �q�xy� � t�xy��2, �2�5�2�41�
which is identical to the result (2.5.2.35) for a plane incident wave
in the conventional transmission electron microscope.

2.5.2.7. Imaging of very thin and weakly scattering objects

(a) The weak-phase-object approximation. For sufficiently thin
objects, the effect of the object on the incident-beam amplitude may
be represented by the transmission function (2.5.2.16) given by the
phase-object approximation. If the fluctuations, ��xy� � ��, about
the mean value of the projected potential are sufficiently small so
that 	���xy� � ��� � 1, it is possible to use the weak-phase-object
approximation (WPOA)

q�xy� � exp��i	��xy�	 � 1� i	��xy�, �2�5�2�42�
where ��xy� is referred to the average value, ��. The assumption that
only first-order terms in 	��xy� need be considered is the equivalent
of a single-scattering, or kinematical, approximation applied to the
two-dimensional function, the projected potential of (2.5.2.16).
From (2.5.2.42), the image intensity (2.5.2.35) becomes

I�xy� � 1� 2	��xy� � s�xy�, �2�5�2�43�
where the spread function s(xy) is the Fourier transform of the
imaginary part of T(uv), namely A�uv� sin��uv�.

The optimum imaging condition is then found, following
Scherzer (1949), by specifying that the defocus should be such
that � sin�� is close to unity for as large a range of U � �u2 � v2�1�2

as possible. This is so for a negative defocus such that ��uv�
decreases to a minimum of about �2��3 before increasing to zero
and higher as a result of the fourth-order term of (2.5.2.33) (see Fig.
2.5.2.3). This optimum, ‘Scherzer defocus’ value is given by

d�
du
� 0 for � � �2��3

or

�f � � 4
3 Cs�
� 1�2

� �2�5�2�44�
The resolution limit is then taken as corresponding to the value of

U � 1�51C�1�4
s ��3�4 when sin� becomes zero, before it begins to

oscillate rapidly with U. The resolution limit is then

�x � 0�66C1�4
s �3�4� �2�5�2�45�

For example, for Cs � 1 mm and � � 2�51� 10�2 Å (200 keV),
�x � 2�34 Å.

Within the limits of the WPOA, the image intensity can be
written simply for a number of other imaging modes in terms of the
Fourier transforms c�r� and s�r� of the real and imaginary parts of
the objective-lens transfer function T�u� � A�u� exp�i��u�	,
where r and u are two-dimensional vectors in real and reciprocal
space, respectively.

For dark-field TEM images, obtained by introducing a central
stop to block out the central beam in the diffraction pattern in the
back-focal plane of the objective lens,

I�r� � �	��r� � c�r��2 � �	��r� � s�r��2� �2�5�2�46�
Here, as in (2.5.2.42), ��r� should be taken to imply the difference
from the mean potential value, ��r� � ��.

For bright-field STEM imaging with a very small detector placed
axially in the central beam of the diffraction pattern (2.5.2.39) on
the detector plane, the intensity, from (2.5.2.41), is given by
(2.5.2.43).

For a finite axially symmetric detector, described by D�u�, the
image intensity is

I�r� � 1� 2	��r� � �s�r��d�r� � c�r�� � c�r��d�r� � s�r��	,
�2�5�2�47�

where d�r� is the Fourier transform of D�u� (Cowley & Au, 1978).
For STEM with an annular dark-field detector which collects all

electrons scattered outside the central spot of the diffraction pattern
in the detector plane, it can be shown that, to a good approximation
(valid except near the resolution limit)

I�r� � 	2�2�r� � �c2�r� � s2�r��� �2�5�2�48�
Since c2�r� � s2�r� � �t�r��2 is the intensity distribution of the
electron probe incident on the specimen, (2.5.2.48) is equivalent to
the incoherent imaging of the function 	2�2�r�.

Within the range of validity of the WPOA or, in general,
whenever the zero beam of the diffraction pattern is very much
stronger than any diffracted beam, the general expression (2.5.2.36)
for the modifications of image intensities due to limited coherence
may be conveniently approximated. The effect of integrating over
the variables �f , u1, v1, may be represented by multiplying the
transfer function T (u, v) by so-called ‘envelope functions’ which
involve the Fourier transforms of the functions G��f � and
H�u1, v1�.

For example, if G��f � is approximated by a Gaussian of width �
(at e�1 of the maximum) centred at �f0 and H�u1v1� is a circular
aperture function

H�u1v1� � 1 if u1, v1 � b
0 otherwise,

�

the transfer function T0�uv� for coherent radiation is multiplied by

exp���2�2�2�u2 � v2�2�4	  J1��B�����B��
where

� � f0��u� v� � Cs�
3�u3 � v3�

� �i�2�2�u3 � u2v� uv2 � v3��2� �2�5�2�49�
(b) The projected charge-density approximation. For very thin

specimens composed of moderately heavy atoms, the WPOA is

Fig. 2.5.2.3. The functions ��U�, the phase factor for the transfer function
of a lens given by equation (2.5.2.33), and sin��U� for the Scherzer
optimum defocus condition, relevant for weak phase objects, for which
the minimum value of ��U� is �2��3.
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inadequate. Within the region of validity of the phase-object
approximation (POA), more complicated relations analagous to
(2.5.2.43) to (2.5.2.47) may be written. A simpler expression may
be obtained by use of the two-dimensional form of Poisson’s
equation, relating the projected potential distribution ��xy� to the
projected charge-density distribution ��xy�. This is the PCDA
(projected charge-density approximation) (Cowley & Moodie,
1960),

I�xy� � 1� 2�f  �	��xy�� �2�5�2�50�
This is valid for sufficiently small values of the defocus �f,

provided that the effects of the spherical aberration may be
neglected, i.e. for image resolutions not too close to the Scherzer
resolution limit (Lynch et al., 1975). The function ��xy� includes
contributions from both the positive atomic nuclei and the negative
electron clouds. For underfocus (�f negative), single atoms give
dark spots in the image. The contrast reverses with defocus.

2.5.2.8. Crystal structure imaging

(a) Introduction. It follows from (2.5.2.43) and (2.5.2.42) that,
within the severe limitations of validity of the WPOA or the PCDA,
images of very thin crystals, viewed with the incident beam parallel
to a principal axis, will show dark spots at the positions of rows of
atoms parallel to the incident beam. Provided that the resolution
limit is less than the projected distances between atom rows
(1–3 Å), the projection of the crystal structure may be seen directly.

In practice, theoretical and experimental results suggest that
images may give a direct, although non-linear, representation of the
projected potential or charge-density distribution for thicknesses
much greater than the thicknesses for validity of these approxima-
tions, e.g. for thicknesses which may be 50 to 100 Å for 100 keV
electrons for 3 Å resolutions and which increase for comparable
resolutions at higher voltage but decrease with improved resolu-
tions.

The use of high-resolution imaging as a means for determining
the structures of crystals and for investigating the form of the
defects in crystals in terms of the arrangement of the atoms has
become a widely used and important branch of crystallography with
applications in many areas of solid-state science. It must be
emphasized, however, that image intensities are strongly dependent
on the crystal thickness and orientation and also on the instrumental
parameters (defocus, aberrations, alignment etc.). It is only when all
of these parameters are correctly adjusted to lie within strictly
defined limits that interpretation of images in terms of atom
positions can be attempted [see IT C (1999, Section 4.3.8)].

Reliable interpretations of high-resolution images of crystals
(‘crystal structure images’) may be made, under even the most
favourable circumstances, only by the comparison of observed
image intensities with intensities calculated by use of an adequate
approximation to many-beam dynamical diffraction theory [see IT
C (1999, Section 4.3.6)]. Most calculations for moderate or large
unit cells are currently made by the multi-slice method based on
formulation of the dynamical diffraction theory due to Cowley &
Moodie (1957). For smaller unit cells, the matrix method based on
the Bethe (1928) formulation is also frequently used (Hirsch et al.,
1965).

(b) Fourier images. For periodic objects in general, and crystals
in particular, the amplitudes of the diffracted waves in the back
focal plane are given from (2.5.2.31) by

�0�h�  T�h�� �2�5�2�51�
For rectangular unit cells of the projected unit cell, the vector h has
components h�a and k�b. Then the set of amplitudes (2.5.2.34), and
hence the image intensities, will be identical for two different sets of
defocus and spherical aberration values �f1, Cs1 and �f2, Cs2 if, for
an integer N,

�1�h� � �2�h� � 2N�;

i.e.

��
h2

a2
� k2

b2

	 


��f1 ��f2� � 1
2
��3 h2

a2
� k2

b2

	 
2

�Cs1 � Cs2� � 2�N �

This relationship is satisfied for all h, k if a2�b2 is an integer and

�f1 ��f2 � 2na2��

and

Cs1 � Cs2 � 4ma4��3, �2�5�2�52�
where m, n are integers (Kuwabara, 1978). The relationship for �f
is an expression of the Fourier image phenomenon, namely that for
a plane-wave incidence, the intensity distribution for the image of a
periodic object repeats periodically with defocus (Cowley &
Moodie, 1960). Hence it is often necessary to define the defocus
value by observation of a non-periodic component of the specimen
such as a crystal edge (Spence et al., 1977).

For the special case a2 � b2, the image intensity is also
reproduced exactly for

�f1 ��f2 � �2n� 1�a2��, �2�5�2�53�
except that in this case the image is translated by a distance a�2
parallel to each of the axes.

2.5.2.9. Image resolution

(1) Definition and measurement. The ‘resolution’ of an electron
microscope or, more correctly, the ‘least resolvable distance’, is
usually defined by reference to the transfer function for the coherent
imaging of a weak phase object under the Scherzer optimum
defocus condition (2.5.2.44). The resolution figure is taken as the
inverse of the U value for which sin��U� first crosses the axis and is
given, as in (2.5.2.45), by

�x � 0�66C1�4
s �3�4� �2�5�2�45�

It is assumed that an objective aperture is used to eliminate the
contribution to the image for U values greater than the first zero
crossing, since for these contributions the relative phases are
distorted by the rapid oscillations of sin��U� and the corresponding
detail of the image is not directly interpretable in terms of the
projection of the potential distribution of the object.

The resolution of the microscope in practice may be limited by
the incoherent factors which have the effect of multiplying the
WPOA transfer function by envelope functions as in (2.5.2.49).

The resolution, as defined above, and the effects of the envelope
functions may be determined by Fourier transform of the image of a
suitable thin, weakly scattering amorphous specimen. The Fourier-
transform operation may be carried out by use of an optical
diffractometer. A more satisfactory practice is to digitize the image
directly by use of a two-dimensional detector system in the
microscope or from a photographic recording, and perform the
Fourier transform numerically.

For the optical diffractometer method, the intensity distribution
obtained is given from (2.5.2.43) as a radially symmetric function of
U,

I�U� � �� I�xy��2

� ��U� � 4	2���u��2  sin2 ��U�  E2�U�, �2�5�2�54�
where E�U� is the product of the envelope functions.

In deriving (2.5.2.54) it has been assumed that:
(a) the WPOA applies;
(b) the optical transmission function of the photographic record is

linearly related to the image intensity, I�xy�;
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(c) the diffraction intensity ���U��2 is a radially symmetric,
smoothly varying function such as is normally produced by a
sufficiently large area of the image of an amorphous material;

(d) there is no astigmatism present and no drift of the specimen;
either of these factors would remove the radial symmetry.

From the form of (2.5.2.54) and a preknowledge of ���U��2, the
zero crossings of sin� and the form of E�U� may be deduced.
Analysis of a through-focus series of images provides more
complete and reliable information.

(2) Detail on a scale much smaller than the resolution of the
electron microscope, as defined above, is commonly seen in
electron micrographs, especially for crystalline samples. For
example, lattice fringes, having the periodicity of the crystal lattice
planes, with spacings as small as 0.6 Å in one direction, have been
observed using a microscope having a resolution of about 2.5 Å
(Matsuda et al., 1978), and two-dimensionally periodic images
showing detail on the scale of 0.5 to 1 Å have been observed with a
similar microscope (Hashimoto et al., 1977).

Such observations are possible because
(a) for periodic objects the diffraction amplitude �0�uv� in

(2.5.2.31) is a set of delta functions which may be multiplied by the
corresponding values of the transfer function that will allow strong
interference effects between the diffracted beams and the zero
beam, or between different diffracted beams;

(b) the envelope functions for the WPOA, arising from
incoherent imaging effects, do not apply for strongly scattering
crystals; the more general expression (2.5.2.36) provides that the
incoherent imaging factors will have much less effect on the
interference of some sets of diffracted beams.

The observation of finely spaced lattice fringes provides a
measure of some important factors affecting the microscope
performance, such as the presence of mechanical vibrations,
electrical interference or thermal drift of the specimen. A measure
of the fineness of the detail observable in this type of image may
therefore be taken as a measure of ‘instrumental resolution’.

2.5.2.10. Electron diffraction in electron microscopes

Currently most electron-diffraction patterns are obtained in
conjunction with images, in electron microscopes of one form or
another, as follows.

(a) Selected-area electron-diffraction (SAED) patterns are
obtained by using intermediate and projector lenses to form an
image of the diffraction pattern in the back-focal plane of the
objective lens (Fig. 2.5.2.2). The area of the specimen from which
the diffraction pattern is obtained is defined by inserting an aperture
in the image plane of the objective lens. For parallel illumination of
the specimen, sharp diffraction spots are produced by perfect
crystals.

A limitation to the area of the specimen from which the
diffraction pattern can be obtained is imposed by the spherical
aberration of the objective lens. For a diffracted beam scattered
through an angle �, the spread of positions in the object for which
the diffracted beam passes through a small axial aperture in the
image plane is Cs�

3, e.g. for Cs � 1 mm, � � 5� 10�2 rad (10�0�0
reflection from gold for 100 keV electrons), Cs�

3 � 1250 Å, so that
a selected-area diameter of less than about 2000 Å is not feasible.
For higher voltages, the minimum selected-area diameter decreases
with �2 if the usual assumption is made that Cs increases for higher-
voltage microscopes so that Cs� is a constant.

(b) Convergent-beam electron-diffraction (CBED) patterns are
obtained when an incident convergent beam is focused on the
specimen, as in an STEM instrument or an STEM attachment for a
conventional TEM instrument.

For a large, effectively incoherent source, such as a conventional
hot-filament electron gun, the intensities are added for each
incident-beam direction. The resulting CBED pattern has an

intensity distribution

I�uv� � � ��u1v1�uv��2 du1 dv1, �2�5�2�55�
where �u1v1�uv� is the Fourier transform of the exit wave at the
specimen for an incident-beam direction u1, v1.

(c) Coherent illumination from a small bright source such as a
field emission gun may be focused on the specimen to give an
electron probe having an intensity distribution �t�xy��2 and a
diameter equal to the STEM dark-field image resolution [equation
(2.5.2.47)] of a few Å. The intensity distribution of the resulting
microdiffraction pattern is then

���uv��2 � ��0�uv� � T�uv��2, �2�5�2�56�
where �0�uv� is the Fourier transform of the exit wave at the
specimen. Interference occurs between waves scattered from the
various incident-beam directions. The diffraction pattern is thus an
in-line hologram as envisaged by Gabor (1949).

(d) Diffraction patterns may be obtained by using an optical
diffractometer (or computer) to produce the Fourier transform
squared of a small selected region of a recorded image. The optical
diffraction-pattern intensity obtained under the ideal conditions
specified under equation (2.5.2.54) is given, in the case of weak
phase objects, by

I�uv� � ��uv� � 4	2���uv��2  sin2 ��uv�  E2�uv� �2�5�2�57�
or, more generally, by

I�uv� � c��uv� � ���uv�  T�uv� � ���uv�  T��uv��2,

where ��uv� is the Fourier transform of the wavefunction at the exit
face of the specimen and c is a constant depending on the
characteristics of the photographic recording medium.

2.5.3. Space-group determination by convergent-beam
electron diffraction* (P. GOODMAN)

2.5.3.1. Introduction

2.5.3.1.1. CBED

Convergent-beam electron diffraction, originating in the experi-
ments of Kossel and Möllenstedt (Kossel & Möllenstedt, 1938) has
been established over the past two decades as a powerful technique
for the determination of space group in inorganic materials, with
particular application when only microscopic samples are available.
Relatively recently, with the introduction of the analytical electron
microscope, this technique – abbreviated as CBED – has become
available as a routine, so that there is now a considerable
accumulation of data from a wide range of materials. A significant
extension of the technique in recent times has been the introduction
of LACBED (large-angle CBED) by Tanaka & Terauchi (1985).
This technique allows an extensive angular range of single
diffraction orders to be recorded and, although this method cannot
be used for microdiffraction (since it requires an extensive single-
crystal area), new LACBED applications appear regularly,
particularly in the field of semiconductor research (see Section
2.5.3.6).

The CBED method relies essentially on two basic properties of
transmission electron diffraction, namely the radical departure from
Friedel’s law and the formation of characteristic extinction bands

� Questions related to this section may be addressed to Professor M. Tanaka,
Research Institute for Scientific Measurements, Tohoku University, Sendai 980-
8577, Japan.
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within space-group-forbidden reflections. Departure from Friedel’s
law in electron diffraction was first noted experimentally by Miyake
& Uyeda (1950). The prediction of space-group-forbidden bands
(within space-group-forbidden reflections) by Cowley & Moodie
(1959), on the other hand, was one of the first successes of N-beam
theory. A detailed explanation was later given by Gjønnes &
Moodie (1965). These are known variously as ‘GM’ bands (Tanaka
et al., 1983), or more simply and definitively as ‘GS’ (glide–screw)
bands (this section). These extinctions have a close parallel with
space-group extinctions in X-ray diffraction, with the reservation
that only screw axes of order two are accurately extinctive under N-
beam conditions. This arises from the property that only those
operations which lead to identical projections of the asymmetric
unit can have N-beam dynamical symmetries (Cowley et al., 1961).

Additionally, CBED from perfect crystals produces high-order
defect lines in the zero-order pattern, analogous to the defect
Kikuchi lines of inelastic scattering, which provide a sensitive
measurement of unit-cell parameters (Jones et al., 1977; Fraser et
al., 1985; Tanaka & Terauchi, 1985).

The significant differences between X-ray and electron diffrac-
tion, which may be exploited in analysis, arise as a consequence of a
much stronger interaction in the case of electrons (Section 2.5.2).
Hence, thin, approximately parallel-sided crystal regions must be
used in high-energy (100 kV–1 MV) electron transmission work, so
that diffraction is produced from crystals effectively infinitely
periodic in only two dimensions, leading to the relaxation of three-
dimensional diffraction conditions known as ‘excitation error’
(Chapter 5.2). Also, there is the ability in CBED to obtain data from
microscopic crystal regions of around 50 Å in diameter, with
corresponding exposure times of several seconds, allowing a survey
of a material to be carried out in a relatively short time.

In contrast, single-crystal X-ray diffraction provides much more
limited symmetry information in a direct fashion [although
statistical analysis of intensities (Wilson, 1949) will considerably
supplement this information], but correspondingly gives much more
direct three-dimensional geometric data, including the determina-
tion of unit-cell parameters and three-dimensional extinctions.

The relative strengths and weaknesses of the two techniques
make it useful where possible to collect both convergent-beam and
X-ray single-crystal data in a combined study. However, all
parameters can be obtained from convergent-beam and electron-
diffraction data, even if in a somewhat less direct form, making
possible space-group determination from microscopic crystals and
microscopic regions of polygranular material. Several reviews of
the subject are available (Tanaka, 1994; Steeds & Vincent, 1983;
Steeds, 1979). In addition, an atlas of characteristic CBED patterns
for direct phase identification of metal alloys has been published
(Mansfield, 1984), and it is likely that this type of procedure,
allowing N-beam analysis by comparison with standard simula-
tions, will be expanded in the near future.

2.5.3.1.2. Zone-axis patterns from CBED

Symmetry analysis is necessarily tied to examination of patterns
near relevant zone axes, since the most intense N-beam interaction
occurs amongst the zero-layer zone-axis reflections, with in
addition a limited degree of upper-layer (higher-order Laue zone)
interaction. There will generally be several useful zone axes
accessible for a given parallel-sided single crystal, with the regions
between axes being of little use for symmetry analysis. Only one
such zone axis can be parallel to a crystal surface normal, and a
microcrystal is usually chosen at least initially to have this as the
principal symmetry axis. Other zone axes from that crystal may
suffer mild symmetry degradation because the N-beam lattice
component (‘excitation error’ extension) will not have the
symmetry of the structure (Goodman, 1974; Eades et al., 1983).

Upper-layer interactions, responsible for imparting three-
dimensional information to the zero layer, are of two types: the
first arising from ‘overlap’ of dynamic shape transforms and
causing smoothly varying modulations of the zero-layer reflections,
and the second, caused by direct interactions with the upper-layer,
or higher-order Laue zone lines, leading to a sharply defined fine-
line structure. These latter interactions are especially useful in
increasing the accuracy of space-group determination (Tanaka et
al., 1983), and may be enhanced by the use of low-temperature
specimen stages. The presence of these defect lines in convergent-
beam discs, occurring especially in low-symmetry zone-axis
patterns, allows symmetry elements to be related to the three-
dimensional structure (Section 2.5.3.5; Fig. 2.5.3.4c).

To the extent that such three-dimensional effects can be ignored
or are absent in the zero-layer pattern the projection approximation
(Chapter 5.2) can be applied. This situation most commonly occurs
in zone-axis patterns taken from relatively thin crystals and
provides a useful starting point for many analyses, by identifying
the projected symmetry.

2.5.3.2. Background theory and analytical approach

2.5.3.2.1. Direct and reciprocity symmetries: types I and II

Convergent-beam diffraction symmetries are those of Schrödin-
ger’s equation, i.e. of crystal potential, plus the diffracting electron.
The appropriate equation is given in Section 2.5.2 [equation
(2.5.2.6)] and Chapter 5.2 [equation (5.2.2.1)] in terms of the
real-space wavefunction �. The symmetry elements of the crystal
responsible for generating pattern symmetries may be conveniently
classified as of two types (I and II) as follows.

I. The direct (type I: Table 2.5.3.1) symmetries imposed by this
equation on the transmitted wavefunction given z-axis illumination
(k0, the incident wavevector parallel to Z, the surface normal) are
just the symmetries of � whose operation leaves both crystal and z
axis unchanged. These are also called ‘vertical’ symmetry elements,
since they contain Z. These symmetries apply equally in real and
reciprocal space, since the operator �2 has circular symmetry in
both spaces and does nothing to degrade the symmetry in

Table 2.5.3.1. Listing of the symmetry elements relating to
CBED patterns under the classifications of ‘vertical’ (I),

‘horizontal’ (II) and combined or roto-inversionary axes

I. Vertical symmetry elements

International symbols

2, 3, 4, 6 �21, 31, � � ��
m �c�
a, b �n�

II. Horizontal symmetry elements

Diperiodic symbols BESR symbols

2� m

2�1
m� 1R

a�, b�, n�

�1� 2R

I� II �4� 4R

I� II �3� � 3� �1� 6R � 3  2R

�6� � 3� m� 31R
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transmission. Hence, for high-symmetry crystals (zone axis parallel
to z axis), and to a greater or lesser degree for crystals of a more
general morphology, these zone-axis symmetries apply both to
electron-microscope lattice images and to convergent-beam
patterns under z-axis-symmetrical illumination, and so impact
also on space-group determination by means of high-resolution
electron microscopy (HREM). In CBED, these elements lead to
whole pattern symmetries, to which every point in the pattern
contributes, regardless of diffraction order and Laue zone
(encompassing ZOLZ and HOLZ reflections).

II. Reciprocity-induced symmetries, on the other hand, depend
upon ray paths and path reversal, and in the present context have
relevance only to the diffraction pattern. Crystal-inverting or
horizontal crystal symmetry elements combine with reciprocity to
yield indirect pattern symmetries lacking a one-to-one real-space
correspondence, within individual diffraction discs or between disc
pairs. Type II elements are assumed to lie on the central plane of the
crystal, midway between surfaces, as symmetry operators; this
assumption amounts to a ‘central plane’ approximation, which has a
very general validity in space-group-determination work (Good-
man, 1984a).

A minimal summary of basic theoretical points, otherwise found
in Chapter 5.2 and numerous referenced articles, is given here.

For a specific zero-layer diffraction order g �� h, k� the incident
and diffracted vectors are k0 and kg. Then the three-dimensional
vector K0g � 1

2 �k0 � kg� has the pattern-space projection,
Kg � p�K0g�. The point Kg � 0 gives the symmetrical Bragg
condition for the associated diffraction disc, and Kg �� 0 is
identifiable with the angular deviation of K0g from the vertical z
axis in three-dimensional space (see Fig. 2.5.3.1). Kg � 0 also
defines the symmetry centre within the two-dimensional disc
diagram (Fig. 2.5.3.2); namely, the intersection of the lines S and
G, given by the trace of excitation error, Kg � 0, and the
perpendicular line directed towards the reciprocal-space origin,
respectively. To be definitive it is necessary to index diffracted
amplitudes relating to a fixed crystal thickness and wavelength, with
both crystallographic and momentum coordinates, as ug� K , to
handle the continuous variation of ug (for a particular diffraction
order), with angles of incidence as determined by k0, and registered
in the diffraction plane as the projection of K0g.

2.5.3.2.2. Reciprocity and Friedel’s law

Reciprocity was introduced into the subject of electron
diffraction in stages, the essential theoretical basis, through
Schrödinger’s equation, being given by Bilhorn et al. (1964), and
the N-beam diffraction applications being derived successively by
von Laue (1935), Cowley (1969), Pogany & Turner (1968), Moodie
(1972), Buxton et al. (1976), and Gunning & Goodman (1992).

Reciprocity represents a reverse-incidence configuration reached
with the reversed wavevectors �k0 � �kg and �kg � �k0, so that the
scattering vector �k � kg � k0 � �k0 � �kg is unchanged, but
�K0g � 1

2 ��k0 � �kg� is changed in sign and hence reversed (Moodie,
1972). The reciprocity equation,

ug� K � u�g� �K, �2�5�3�1�
is valid independently of crystal symmetry, but cannot contribute
symmetry to the pattern unless a crystal-inverting symmetry
element is present (since �K belongs to a reversed wavevector).
The simplest case is centrosymmetry, which permits the right-hand
side of (2.5.3.1) to be complex-conjugated giving the useful CBED
pattern equation

ug� K � u�g� K� �2�5�3�2�
Since K is common to both sides there is a point-by-point identity

between the related distributions, separated by 2g (the distance
between g and �g reflections). This invites an obvious analogy with
Friedel’s law, Fg � F��g , with the reservation that (2.5.3.2) holds
only for centrosymmetric crystals. This condition (2.5.3.2)
constitutes what has become known as the �H symmetry and,
incidentally, is the only reciprocity-induced symmetry so general as
to not depend upon a disc symmetry-point or line, nor on a
particular zone axis (i.e. it is not a point symmetry but a
translational symmetry of the pattern intensity).

2.5.3.2.3. In-disc symmetries

(a) Dark-field (diffracted-beam) discs. Other reciprocity-
generated symmetries which are available for experimental
observation relate to a single (zero-layer) disc and its origin
Kg � 0, and are summarized here by reference to Fig. 2.5.3.2, and
given in operational detail in Table 2.5.3.2. The notation subscript
R, for reciprocity-induced symmetries, introduced by Buxton et al.
(1976) is now adopted (and referred to as BESR notation). Fig.

Fig. 2.5.3.1. Vector diagram in semi-reciprocal space, using Ewald-sphere
constructions to show the ‘incident’, ‘reciprocity’ and ‘reciprocity �
centrosymmetry’ sets of vectors. Dashed lines connect the full vectors
K0g to their projections Kg in the plane of observation.

Fig. 2.5.3.2. Diagrammatic representation of a CBED disc with symmetry
lines m, mR (alternate labels G, S) and the central point Kg � 0.
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2.5.3.2 shows a disc crossed by reference lines m and mR . These will
be mirror lines of intensity if: (a) g is parallel to a vertical mirror
plane; and (b) g is parallel to a horizontal diad axis, respectively.
The third possible point symmetry, that of disc centrosymmetry (1R
in BESR notation) will arise from the presence of a horizontal
mirror plane. Lines m and mR become the GS extinction lines G and
S when glide planes and screw axes are present instead of mirror
planes and diad axes.

(b) Bright-field (central-beam) disc. The central beam is a special
case since the point K0 � 0 is the centre of the whole pattern as well
as of that particular disc. Therefore, both sets of rotational
symmetry (types I and II) discussed above apply (see Table 2.5.3.3).

In addition, the central-beam disc is a source of three-
dimensional lattice information from defect-line scattering. Given
a sufficiently perfect crystal this fine-line structure overlays the
more general intensity modulation, giving this disc a lower and
more precisely recorded symmetry.

2.5.3.2.4. Zero-layer absences

Horizontal glides, a�, n� (diperiodic, primed notation), generate
zero-layer absent rows, or centring, rather than GS bands (see Fig.
2.5.3.3). This is an example of the projection approximation in its
most universally held form, i.e. in application to absences. Other
examples of this are: (a) appearance of both G and S extinction
bands near their intersection irrespective of whether glide or screw
axes are involved; and (b) suppression of the influence of vertical,
non-primitive translations with respect to observations in the zero

layer. It is generally assumed as a working rule that the zero-layer or
ZOLZ pattern will have the rotational symmetry of the point-group
component of the vertical screw axis (so that 21 
 2). Elements
included in Table 2.5.3.1 on this pretext are given in parentheses.
However, the presence of 21 rather than 2 (31 rather than 3 etc.)
should be detectable as a departure from accurate twofold symmetry
in the first-order-Laue-zone (FOLZ) reflection circle (depicted in
Fig. 2.5.3.3). This has been observed in the cubic structure of
Ba2Fe2O5Cl2, permitting the space groups I23 and I213 to be
distinguished (Schwartzman et al., 1996). A summary of all the
symmetry components described in this section is given dia-
grammatically in Table 2.5.3.2.

2.5.3.3. Pattern observation of individual symmetry elements

The following guidelines, the result of accumulated experience
from several laboratories, are given in an experimentally based
sequence, and approximately in order of value and reliability.

(i) The value of X in an X-fold rotation axis is made immediately
obvious in a zone-axis pattern, although a screw component is not
detected in the pattern symmetry.

Roto-inversionary axes require special attention: �6 and �3 may be
factorized, as in Tables 2.5.3.1, 2.5.3.3 and 2.5.3.4, to show better
the additional CBED symmetries (3�m� and 3� �1�, respectively). �4
cannot be decomposed further (Table 2.5.3.1) and generates its own
diffraction characteristics in non-projective patterns (see Section
2.5.3.5). This specific problem of observing the fourfold roto-

Table 2.5.3.2. Diagrammatic illustrations of the actions of five types of symmetry elements (given in the last column in Volume A
diagrammatic symbols) on an asymmetric pattern component, in relation to the centre of the pattern at K00 � 0, shown as ‘ �’, or

in relation to the centre of a diffraction order at K0g � 0, shown as ‘+’

Type
Symmetry
element Observation and action In combination Interpretation

Vertical

4

m; a

Horizontal

2�; 2�1

i��1��

m�; a�
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inversion symmetry has been resolved recently by Tanaka et al.
(1994) using both CBED and LACBED techniques.

(ii) Vertical mirror plane determination may be the most accurate
crystal point-symmetry test, given that it is possible to follow the
symmetry through large crystal rotations (say 5 to 15°) about the
mirror normal. It is also relatively unaffected by crystal surface
steps as compared to (v) below.

(iii) Horizontal glide planes are determined unequivocally from
zero-layer absences when the first Laue zone is recorded, either with
the main pattern or by further crystal rotation; i.e. a section of this
zone is needed to determine the lateral unit-cell parameters. This
observation is illustrated diagrammatically in Fig. 2.5.3.3.

(iv) An extinction (GS) line or band through odd-order
reflections of a zone-axis pattern indicates only a projected glide
line. This is true because both P21 (No. 4) and Pa (No. 7)
symmetries project into ‘pg’ in two dimensions. However, the
projection approximation has only limited validity in CBED. For all
crystal rotations around the 21 axis, or alternatively about the glide-
plane ‘a’ normal, dynamic extinction conditions are retained. This
is summarized by saying that the diffraction vector K0g should be
either normal to a screw axis or contained within a glide plane for
the generation of the S or G bands, respectively. Hence P21 and Pa
may be distinguished by these types of rotations away from the zone
axis with the consequence that the element 21 in particular is
characterized by extinctions close to the Laue circle for the tilted
ZOLZ pattern (Goodman, 1984b), and that the glide a will generate
extinction bands through both ZOLZ and HOLZ reflections for all
orientations maintaining Laue-circle symmetry about the S band
(Steeds et al., 1978).

As a supplement to this, in a refined technique not universally
applicable, Tanaka et al. (1983) have shown that fine-line detail
from HOLZ interaction can be observed which will separately
identify S- �21� and G-band symmetry from a single pattern (see
Fig. 2.5.3.6).

(v) The centre-of-symmetry (or �H) test can be made very
sensitive by suitable choice of diffraction conditions but requires a
reasonably flat crystal since it involves a pair of patterns (the
angular beam shift involved is very likely to be associated with

some lateral probe shift on the specimen). This test is best carried
out at a low-symmetry zone axis, free from other symmetries, and
preferably incorporating some fine-line HOLZ detail, in the
following way. The hkl and �h�k�l reflections are successively
illuminated by accurately exchanging the central-beam aperture
with the diffracted-beam apertures, having first brought the zone
axis on to the electron-microscope optic axis. This produces the
symmetrical �H condition.

(vi) In seeking internal mR symmetry as a test for a horizontal
diad axis it is as well to involve some distinctive detail in the mirror
symmetry (i.e. simple two-beam-like fringes should be avoided),
and also to rotate the crystal about the supposed diad axis, to avoid
an mR symmetry due to projection [for examples see Fraser et al.
(1985) and Goodman & Whitfield (1980)].

(vii) The presence or absence of the in-disc centrosymmetry
element 1R formally indicates the presence or absence of a
horizontal mirror element m�, either as a true mirror or as the
mirror component of a horizontal glide plane g�. In this case the
absence of symmetry provides more positive evidence than its
presence, since absence is sufficient evidence for a lack of central-
mirror crystal symmetry but an observed symmetry could arise from
the operation of the projection approximation. If some evidence of
the three-dimensional interaction is included in the observation or if
three-dimensional interaction (from a large c axis parallel to the
zone axis) is evident in the rest of the pattern, this latter possibility
can be excluded. Interpretation is also made more positive by
extending the angular aperture, especially by the use of LACBED.

These results are illustrated in Table 2.5.3.2 and by actual
examples in Section 2.5.3.5.

2.5.3.4. Auxiliary tables

Space groups may very well be identified using CBED patterns
from an understanding of the diffraction properties of real-space
symmetry elements, displayed for example in Table 2.5.3.2. It is,
however, of great assistance to have the symmetries tabulated in
reciprocal space, to allow direct comparison with the pattern
symmetries.

There are three generally useful ways in which this can be done,
and these are set out in Tables 2.5.3.3 to 2.5.3.5. The simplest of
these is by means of point group, following the procedures of
Buxton et al. (1976). Next, the CBED pattern symmetries can be
listed as diperiodic groups which are space groups in two
dimensions, allowing identification with a restricted set of three-
dimensional space groups (Goodman, 1984b). Finally, the dynamic
extinctions (GS bands and zero-layer absences) can be listed for
each non-symmorphic space group, together with the diffraction
conditions for their observation (Tanaka et al., 1983; Tanaka &
Terauchi, 1985). Descriptions for these tables are given below.

Table 2.5.3.3. BESR symbols (Buxton et al., 1976) incorporate
the subscript R to describe reciprocity-related symmetry elements,
R being the operator that rotates the disc pattern by 180° about its
centre. The symbols formed in this way are 1R , 2R , 4R , 6R , where XR
represents 2��X rotation about the zone axis, followed by R. Of
these, 2R represents the �H symmetry (two twofold rotations)
described earlier [equation (2.5.3.2)] as a transformation of
crystalline centrosymmetry; 6R may be thought of as decomposing
into 3  2R for purposes of measurement. The mirror line mR (Fig.
2.5.3.2) is similarly generated by m  1R .

Table 2.5.3.3 gives the BESR interrelation of pattern symmetries
with point group (Buxton et al., 1976; Steeds, 1983). Columns I and
II of the table list the point symmetries of the whole pattern and
bright-field pattern, respectively; column III gives the BESR
diffraction groups. [Note: following the Pond & Vlachavas (1983)
usage, ‘�’ has been appended to the centrosymmetric groups.]

Fig. 2.5.3.3. Diagrammatic representation of the influence of non-
symmorphic elements: (i) Alternate rows of the zero-layer pattern are
absent owing to the horizontal glide plane. The pattern is indexed as for
an ‘a’ glide; the alternative indices (in parentheses) apply for a ‘b’ glide.
(ii) GS bands are shown along the central row of the zero layer, for odd-
order reflections.
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Inspection of columns I and II shows that 11 of the 31 diffraction
groups can be determined from a knowledge of the whole pattern
and bright-field (central-beam disc) point symmetries alone. The
remaining 10 pairs of groups need additional observation of the
dark-field pattern for their resolution. Disc symmetries 1R , mR (Fig.
2.5.3.2; Table 2.5.3.2) are sought (a) in general zero-layer discs and
(b) in discs having an mR line perpendicular to a proposed twofold
axis, respectively; the �H test is applied for centrosymmetry, to
complete the classification.

Column IV gives the equivalent diperiodic point-group symbol,
which, unprimed, gives the corresponding three-dimensional
symbol. This will always refer to a non-cubic point group. Column
V gives the additional cubic point-group information indicating,
where appropriate, how to translate the diffraction symmetry into
[100] or [110] cubic settings, respectively.

Of the groups listed in column III, those representing the
projection group of their class are underlined. These groups all
contain 1R , the BESR symbol for m�. When the projection

approximation is applicable, only those groups underlined will
apply. The effect of this approximation is to add a horizontal mirror
plane to the symmetry group.

Table 2.5.3.4. This lists possible space groups for each of the
classified zero-layer CBED symmetries. Since the latter constitute
the 80 diperiodic groups, it is first necessary to index the pattern in
diperiodic nomenclature; the set of possible space groups is then
given by the table.

A basic requirement for diperiodic group nomenclature has been
that of compatibility with IT A and I. This has been met by the
recent Pond & Vlachavas (1983) tabulation. For example, DG:
���pban�, where � indicates centrosymmetry, becomes space group
Pban when, in Seitz matrix description, the former group matrix is
multiplied by the third primitive translation, a3. Furthermore, in
textual reference the prime can be optionally omitted, since the
lower-case lattice symbol is sufficient indication of a two-
dimensional periodicity (as pban).

The three sections of Table 2.5.3.4 are:
I. Point-group entries, given in H–M and BESR symbols.
II. Pattern symmetries, in diperiodic nomenclature, have three

subdivisions: (i) symmorphic groups: patterns without zero-layer
absences or extinctions. Non-symmorphic groups are then given in
two categories: (ii) patterns with zero-layer GS bands, and (iii)
patterns with zero-layer absences resulting from a horizontal glide
plane; where the pattern also contains dynamic extinctions (GS
bands) and so is listed in column (ii), the column (iii) listing is given
in parentheses.

The ‘short’ (Pond & Vlachavas) symbol has proved an adequate
description for all but nine groups for which the screw-axis content
was needed: here �2�1�, or �2�12�1�, have been added to the symbol.

III. Space-group entries are given in terms of IT A numbers. The
first column of each row gives the same-name space group as
illustrated by the example pban� � Pban above. The groups
following in the same row (which have the same zero-layer
symmetry) complete an exhaustive listing of the IIb subgroups,
given in IT A. Cubic space groups are underlined for the sake of
clarity; hence, those giving rise to the zero-layer symmetry of the
diffraction group in the [100] (cyclic) setting have a single
underline: these are type I minimal supergroups in IT A
nomenclature. The cubic groups are also given in the [110] setting,
in underlined italics, since this is a commonly encountered high-
symmetry setting. (Note: these then are no longer minimal
supergroups and the relationship has to be found through a series
of IT A listings.)

The table relates to maximal-symmetry settings. For monoclinic
and orthorhombic systems there are three equally valid settings. For
monoclinic groups, the oblique and rectangular settings appear
separately; where rectangular C-centred groups appear in a second
setting this is indicated by superscript ‘2’. For orthorhombic groups,
superscripts correspond to the ‘incident-beam’ system adopted in
Table 2.5.3.5, as follows: no superscript: [001] beam direction;
superscript 1: [100] beam direction; superscript 2: [010] beam
direction. The cubic system is treated specially as described above.

Table 2.5.3.5. This lists conditions for observation of GS bands
for the 137 space groups exhibiting these extinctions. These are
entered as ‘G’, ‘S’, or ‘GS’, indicating whether a glide plane, screw
axis, or both is responsible for the GS band. All three possibilities
will lead to a glide line (and hence to both extinction bands) in
projection, and one of the procedures (a), (b), or (c) of Section
2.5.3.3(iv) above is needed to complete the three-dimensional
interpretation. In addition, the presence of horizontal glide planes,
which result in systematic absences in these particular cases in the
zero-layer pattern, is indicated by the symbol ‘�’. Where these
occur at the site of prospective ‘G’ or ‘S’ bands from other glide or

Table 2.5.3.3. Diffraction point-group tables, giving whole-
pattern and central-beam pattern symmetries in terms of BESR

diffraction-group symbols and diperiodic group symbols

I II III IV V

Whole
pattern

Bright
field
(central
beam)

BESR
group

Diperiodic
group
(point
group)

Cubic point groups

[100] [110]

1 1 1 1

1 2 1R m�

2 2 2 2

1 1 �2R
�1
�

2 2 �21R 2�m�

1 m mR 2� 23

m m m m

m 2mm m1R 2�mm� �43m

2 2mm 2mRmR 2�2�2 23 432

2mm 2mm 2mm mm2

m m �2RmmR 2��m m�3

2mm 2mm �2mm1R mmm� m�3 m�3m

4 4 4 4

2 4 4R
�4�

4 4 �41R 4�m�

4 4mm 4mRmR 42�2� �432

4mm 4mm 4mm 4mm

2mm 4mm 4RmmR
�4�m2� �43m

4mm 4mm �4mm1R 4�m�mm m�3m

3 3 3 3

3 6 31R
�6�

3 3m 3mR 32�

3m 3m 3m 3m

3m 6mm 3m1R
�6�m2�

6 6 6 6

3 3 �6R �3�

6 6 �61R 6�m�

6 6mm 6mRmR 62�2�

6mm 6mm 6mm 6mm

3m 3m �6RmmR
�3�m

6mm 6mm �6mm1R 6�m�mm
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screw elements the symbol of that element is given and the ‘G’ or
‘S’ symbol is omitted.

The following paragraphs give information on the real-space
interpretation of GS band formation, and their specific extinction
rules, considered useful in structural interpretation.

Real-space interpretation of extinction conditions. Dynamic
extinctions (GS bands) are essentially a property of symmetry in
reciprocal space. However, since diagrams from IT I and A are used
there is a need to give an equivalent real-space description. These
bands are associated with the half-unit-cell-translational glide
planes and screw axes represented in these diagrams. Inconsis-
tencies between ‘conventional’ and ‘physical’ real-space descrip-
tions, however, become more apparent in dynamical electron
diffraction, which is dependent upon three-dimensional scattering
physics, than in X-ray diffraction. Also, the distinction between
general (symmorphic) and specific (non-symmorphic) extinctions is
more basic (in the former case). This is clarified by the following
points:

(i) Bravais lattice centring restricts the conditions for observation
of GS bands. For example, in space group Abm2 (No. 39), ‘A’
centring prevents observation of the GS bands associated with the
‘b’ glide at the [001] zone-axis orientation; this observation, and
hence verification of the b glide, must be made at the lower-
symmetry zone axes [0vw] (see Table 2.5.3.5). In the exceptional
cases of space groups I212121 and I213 (Nos. 24 and 199),
conditions for the observation of the relevant GS bands are
completely prevented by body centring; here the screw axes of
the symmorphic groups I222 and I23 are parallel to the screw axes
of their non-symmorphic derivatives. However, electron crystal-
lographic methods also include direct structure imaging by HREM,
and it is important to note here that while the indistinguishability
encountered in data sets acquired in Fourier space applies to both
X-ray diffraction and CBED (notwithstanding possible differences
in HOLZ symmetries), this limitation does not apply to the HREM
images (produced by dynamic scattering) yielding an approximate
structure image for the (zone-axis) projection. This technique then
becomes a powerful tool in space-group research by supplying
phase information in a different form.

(ii) A different complication, relating to nomenclature, occurs in
the space groups P�43n, Pn3n and Pm3n (Nos. 218, 222 and 223)
where ‘c’ glides parallel to a diagonal plane of the unit cell occur as
primary non-symmorphic elements (responsible for reciprocal-
space extinctions) but are not used in the Hermann–Maugin
symbol; instead the derivative ‘n’ glide planes are used as
characters, resulting in an apparent lack of correspondence between
the conventionally given real-space symbols and the reciprocal-
space extinctions.

(Note: In IT I non-symmorphic reflection rules which duplicate
rules given by lattice centring, or those which are a consequence of
more general rules, are given in parentheses; in IT A this
clarification by parenthesizing, helpful for electron-diffraction
analysis, has been removed.)

(iii) Finally, diamond glides (symbol ‘d’) require special
consideration since they are associated with translations 1

4,
1
4,

1
4,

and so would appear not to qualify for GS bands; however, this
translation is a result of the conventional cell being defined in real
rather than reciprocal space where the extinction symmetry is
formed. Hence ‘d’ glides occur only in F-centred lattices (most
obviously Nos. 43, 70, 203, 277 and 228). These have correspond-
ingly an I-centred reciprocal lattice for which the zero-layer two-
dimensional unit cell has an edge of a��� � 2a�. Consequently, the
first-order row reflection along the diamond glide retains the
reciprocal-space anti-symmetry on the basis of this physical unit
cell (halved in real space), and leads to the labelling of odd-order
reflections as 4n� 2 (instead of 2n� 1 when the cell is not halved).
Additionally, although seven space groups are I-centred in real

space with the conventional unit cell (Nos. 109, 110, 122, 141, 142,
220 and 230), these space groups are F-centred with the
transformation a�� � �110�, b�� � �1�10�, and correspondingly I-
centred in the reciprocal-space cell as before, but the directions
[100], [010] and reflection rows h00, 0k0 become replaced by
directions [110] (or [1�10]) and rows hh0, h�h0, in the entries of Table
2.5.3.5.

Extinction rules for symmetry elements appearing in Table
2.5.3.5. Reflection indices permitting observation of G and S bands
follow [here ‘zero-layer’ and ‘out-of-zone’ (i.e. HOLZ or
alternative zone) serve to emphasize that these are zone-axis
observations].

(i) Vertical glide planes lead to ‘G’ bands in reflections as listed
(‘a’, ‘b’, ‘c’ and ‘n’ glides):

h0l, hk0, 0kl out-of-zone reflections (for glide planes having
normals [010], [001] and [100]) having h� l, h� k,
k � l � 2n� 1, respectively, in the case of ‘n’ glides, or h, k, l
odd in the case of ‘a’, ‘b’ or ‘c’ glides, respectively;

h00, 0k0, 00l zero-layer reflections with h, k or l odd.
Correspondingly for ‘d’ glides:
(a) In F-centred cells:
h0l, hk0, 0kl out-of-zone reflections (for glide planes having

normals [010], [100] and [001], having h� l, k � l, or
h� k � 4n� 2, respectively, with h, k and l even; and (space
group No. 43 only) zero-layer reflections h00, 0k0 with h, k even
and � 4n� 2.

(b) In I-centred cells:
hhl (cyclic on h, k, l for cubic groups) out-of-zone reflections

having 2h� l � 4n� 2, with l even; and zero-layer reflections hh0,
h�h0 (cyclic on h, k, l for cubic groups) having h odd.

(ii) Horizontal screw axes, namely 21 or the 21 component of
screw axes 41, 43, 61, 63, 65, lead to ‘S’ bands in reflection rows
parallel to the screw axis, i.e. either h00, 0k0 or 00l, with
conventional indexing, for h, k or l odd.

(iii) Horizontal glide planes lead to zero-layer absences rather
than GS bands. When these prevent observation of a specific GS
band (by removing the two-dimensional conditions), the symbol
‘�’ indicates a situation where, in general, there will simply be
absences for the odd-order reflections. However, Ishizuka & Taftø
(1982) were the first to observe finite-intensity narrow bands under
these conditions, and it is now appreciated that with a sufficient
crystal thickness and a certain minimum for the z-axis repeat
distance, GS bands can be recorded by violating the condition for
horizontal-mirror-plane (m�) extinction while satisfying the condi-
tion for G or S, achieved by appropriate tilts away from the exact
zone-axis orientation [see Section 2.5.3.3(iv)].

2.5.3.5. Space-group analyses of single crystals;
experimental procedure and published examples

2.5.3.5.1. Stages of procedure

(i) Zone-axis patterns. The first need is to record a principal zone-
axis pattern. From this, the rotational order X of the vertical axis and
associated mirror (including glide-line) components are readily
observed (see all examples).

This pattern may include part of the higher-order Laue zone; in
particular the closest or first-order Laue zone (FOLZ) should be
included in order to establish the presence or absence of horizontal
glide planes, as illustrated in Fig. 2.5.3.3. The projection
approximation frequently applies to the zone-axis pattern,
particularly when this is obtained from thin crystals (although this
cannot apply by definition to the FOLZ). This is indicated by the
absence of fine-line detail in the central beam particularly;
identification of the projected symmetry is then straightforward.

(ii) Laue circle patterns. Next, it is usual to seek patterns in
which discs around the Laue circle include the line mR (Fig.
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2.5.3.2). The internal disc symmetries observed together with those
from the zone-axis pattern will determine a diffraction group,
classifying the zero-layer symmetry. [Fig. 6(c) of Goodman &
Whitfield (1980) gives an example of Laue-circle symmetries.]

(iii) Alternative zone axes or higher-order Laue zones. Finally,
alternative zone or higher-order Laue-zone patterns may be sought
for additional three-dimensional data: (a) to determine the three-
dimensional extinction rules, (b) to test for centrosymmetry, or (c)
to test for the existence of mirror planes perpendicular to the
principal rotation axis. These procedures are illustrated in the
following examples.

2.5.3.5.2. Examples

(1) Determination of centrosymmetry; examples from the
hexagonal system. Fig. 2.5.3.4(a) illustrates the allocation of planar
point groups from [0001] zone-axis patterns of -Si3N4 (left-hand
side) and -GaS (right-hand side); the patterns exhibit point
symmetries of 6 and 6mm, respectively, as indicated by the
accompanying geometric figures, permitting point groups 6 or
6�m, and 6mm or 6�mmm, in three dimensions. Alternative zone
axes are required to distinguish these possibilities, the actual test
used (testing for the element m� or the centre of symmetry) being
largely determined in practice by the type of crystal preparation.

Fig. 2.5.3.4(b) shows the CBED pattern from the [11�20] zone
axis of -Si3N4 (Bando, 1981), using a crystal with the
corresponding cleavage faces. The breakdown of Friedel’s law
between reflections 0002 and 000�2 rules out the point group 6�m
(the element m� from the first setting is not present) and establishes 6
as the correct point group.

Also, the GS bands in the 0001 and 000�1 reflections are con-
sistent with the space group P63. [Note: screw axes 61, 63 and 65 are
not distinguished from these data alone (Tanaka et al., 1983).]

Fig. 2.5.3.4(c) shows CBED patterns from the vicinity of the
[1�102] zone axis of -GaS, only 11.2° rotated from the [0001] axis
and accessible using the same crystal as for the previous [0001]
pattern. This shows a positive test for centrosymmetry using a
conjugate reflection pair 1�101��110�1, and establishes the centrosym-
metric point group 6�mmm, with possible space groups Nos. 191,
192, 193 and 194. Rotation of the crystal to test the extinction rule
for hh2�hl reflections with l odd (Goodman & Whitfield, 1980)
establishes No. 194 �P63�mmc� as the space group.

Comment: These examples show two different methods for
testing for centrosymmetry. The �H test places certain require-
ments on the specimen, namely that it be reasonably accurately
parallel-sided – a condition usually met by easy-cleavage materials
like GaS, though not necessarily by the wedge-shaped refractory
Si3N4 crystals. On the other hand, the 90° setting, required for direct
observation of a possible perpendicular mirror plane, is readily
available in these fractured samples, but not for the natural cleavage
samples.

(2) Point-group determination in the cubic system, using Table
2.5.3.3. Fig. 2.5.3.5 shows [001] (cyclic) zone-axis patterns from
two cubic materials, which serve to illustrate the ability to
distinguish cubic point groups from single zone-axis patterns
displaying detailed central-beam structures. The left-hand pattern,
from the mineral gahnite (Ishizuka & Taftø, 1982) has 4mm
symmetry in both the whole pattern and the central (bright-field)
beam, permitting only the BESR group 4mm1R for the cubic system
(column III, Table 2.5.3.3); this same observation establishes the
crystallographic point group as m3m (column V of Table 2.5.3.3).
The corresponding pattern for the �-phase precipitate of stainless
steel (Steeds & Evans, 1980) has a whole-pattern symmetry of only
2mm, lower than the central-beam (bright-field) symmetry of 4mm
(this lower symmetry is made clearest from the innermost
reflections bordering the central beam). This combination leads to

the BESR group 4RmmR (column III, Table 2.5.3.3), and identifies
the cubic point group as �43m.

(3) Analysis of data from FeS2 illustrating use of Tables 2.5.3.4
and 2.5.3.5. FeS2 has a cubic structure for which a complete set of
data has been obtained by Tanaka et al. (1983); the quality of the
data makes it a textbook example (Tanaka & Terauchi, 1985) for
demonstrating the interpretation of extinction bands.

Figs. 2.5.3.6(a) and (b) show the [001] (cyclic) exact zone-axis
pattern and the pattern with symmetrical excitation of the 100
reflection, respectively (Tanaka et al., 1983).

(i) Using Table 2.5.3.4, since there are GS bands, the pattern
group must be listed in column II(ii); since a horizontal ‘b’ glide
plane is present (odd rows are absent in the b� direction), the symbol
must contain a ‘b�’ (or ‘a�’) (cf. Fig. 2.5.3.3). The only possible
cubic group from Table 2.5.3.4 is No. 205.

(ii) Again, a complete GS cross, with both G and S arms, is
present in the 100 reflection (central in Fig. 2.5.3.6b), confirmed by
mirror symmetries across the G and S lines. From Table 2.5.3.5 only
space group No. 205 has the corresponding entry in the column for
‘[100] cyclic’ with GS in the cubic system (space groups Nos. 198–
230). Additional patterns for the [110] setting, appearing in the
original paper (Tanaka et al., 1983), confirm the cubic system, and
also give additional extinction characteristics for 001 and 1�10
reflections (Tanaka et al., 1983; Tanaka & Terauchi, 1985).

(4) Determination of centrosymmetry and space group from
extinction characteristics. Especially in working with thin crystals
used in conjunction with high-resolution lattice imaging, it is
sometimes most practical to determine the point group (i.e. space-
group class) from the dynamic extinction data. This is exemplified
in the Moodie & Whitfield (1984) studies of orthorhombic
materials. Observations on the zero-layer pattern for Ge3SbSe3
with a point symmetry of 2mm, and with GS extinction bands along
odd-order h00 reflections, together with missing reflection rows in
the 0k0 direction, permit identification from Table 2.5.3.4. This
zone-axis pattern has the characteristics illustrated in Figs. 2.5.3.3
and hence (having both missing rows and GS bands) should be
listed in both II(ii) and II(iii). Hence the diffraction group must be
either No. 40 or 41. Here, the class mmm, and hence centro-
symmetry, has been identified through non-symmorphic elements.

This identification leaves seven possible space groups, Nos. 52,
54, 56, 57, 60, 61 and 62, to be distinguished by hkl extinctions.

The same groups are identified from Table 2.5.3.5 by seeking the
entry GS ‘�’ in one of the [001] (cyclic) entries for the
orthorhombic systems. With the assumption that no other principal
zone axis is readily available from the same sample (which will
generally be true), Table 2.5.3.5, in the last three columns, indicates
which minor zone axes should be sought in order to identify the
space group, from the glide-plane extinctions of ‘G’ bands. For
example, space group 62 has no h0l extinctions, but will give 0kl
extinction bands ‘G’ according to the rules for an ‘n’ glide, i.e. in
reflections for which k � l � 2n� 1. Again, if the alternative
principal settings are available (from the alternative cleavages of
the sample) the correct space group can be found from the first three
columns of Table 2.5.3.5.

From the above discussions it will be clear that Tables 2.5.3.4
and 2.5.3.5 present information in a complementary way: in Table
2.5.3.4 the specific pattern group is indexed first with the possible
space groups following, while in Table 2.5.3.5 the space group is
indexed first, and the possible pattern symmetries are then given, in
terms of the standard International Tables setting.

2.5.3.6. Use of CBED in study of crystal defects, twins and
non-classical crystallography

(i) Certain crystal defects lend themselves to analysis by CBED
and LACBED. In earlier work, use was made of the high sensitivity
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of HOLZ line geometry to unit-cell parameters (Jones et al., 1977).
A computer program (Tanaka & Terauchi, 1985) is available for
simulating relative line positions from lattice geometry, assuming
kinematical scattering, which at least provides a valid starting point

since these spacings are mainly determined from geometric
considerations. Fraser et al. (1985), for example, obtained a sensi-
tivity of 0.03% in measurements of cubic-to-tetragonal distortions
in this way, although the absolute accuracy was not established.

Fig. 2.5.3.4. (a) Zone-axis patterns from hexagonal structures -Si3N4 (left) and -GaS (right) together with the appropriate planar figures for point
symmetries 6 and 6mm, respectively. (b) [12�10] zone-axis pattern from -Si3N4, showing Friedel’s law breakdown in symmetry between 0002 and
000�2 reflections (Bando, 1981). (c) Conjugate pair of 1�101��1101 patterns from -GaS, taken near the [110�2] zone axis, showing a translational
symmetry associated with structural centrosymmetry.
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(ii) By contrast, techniques have been devised for evaluating
Bragg-line splitting caused by the action of a strain field within the
single crystal. One method depends upon the observation of
splitting in HOLZ lines (Carpenter & Spence, 1982). More recently,
the use of LACBED has allowed quantitative evaluation of lattice
distortions in semiconductor heterostructures (e.g. containing
GaAs–InGaAs interfaces). This technique has been reviewed by
Chou et al. (1994).

(iii) Quite distinct from this is the analysis of stacking faults
between undistorted crystal domains (Johnson, 1972). Coherent
twin boundaries with at least a two-dimensional coincidence site
lattice can be considered in a similar fashion (Schapink et al., 1983).
In marked contrast to electron-microscopy image analysis these
boundaries need to be parallel (or nearly so) to the crystal surfaces
rather than inclined or perpendicular to them for analysis by CBED
or LACBED.

The term ‘rigid-body displacement’ (RBD) is used when it is
assumed that no strain field develops at the boundary. A
classification of the corresponding bi-crystal symmetries was
developed by Schapink et al. (1983) for these cases. Since
experimental characterization of grain boundaries is of interest in
metallurgy, this represents a new area for the application of
LACBED and algorithms invoking reciprocity now make routine
N-beam analysis feasible.

The original investigations, of a mid-plane stacking fault in
graphite (Johnson, 1972) and of a mid-plane twin boundary in gold
(Schapink et al., 1983), represent classic examples of the influence
of bi-crystal symmetry on CBED zone-axis patterns, whereby the
changed central-plane symmetry is transformed through reciprocity
into an exact diffraction symmetry. (a) In the graphite �P63�mmc�
example, the hexagonal pattern of the unfaulted graphite is replaced
by a trigonal pattern with mid-plane faulting. Here a mirror plane at

Fig. 2.5.3.5. Zone-axis patterns from cubic structures gahnite (left) (Ishizuka & Taftø, 1982) and �-phase precipitate (right) (Steeds & Evans, 1980).

Fig. 2.5.3.6. (a) CBED pattern from the exact [001] (cyclic) zone-axis orientation of FeS2. (b) Pattern from the [001] zone axis oriented for symmetrical
excitation of the 100 reflection (central in the printed pattern) [from the collection of patterns presented in Tanaka et al. (1983); originals kindly
supplied by M. Tanaka].
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the centre of the perfect crystal (A–B–A stacking) is replaced by an
inversion centre at the midpoint of the single rhombohedral cell A–
B–C; the projected symmetry is also reduced from hexagonal to
trigonal: both whole pattern and central beam then have the
symmetry of 3m1. The 2H polytype of TaS2 �P63�mmc� (Tanaka &
Terauchi, 1985) gives a second clear example. (b) In the case of a
[111] gold crystal, sectioning the f.c.c. structure parallel to [111]
preparatory to producing the twin already reduces the finite crystal
symmetry to R�3m, i.e. a trigonal space group for which the central
beam, and the HOLZ reflections in particular, exhibit the trigonal
symmetry of 31m (rather than the 3m1 of trigonal graphite). A
central-plane twin boundary with no associated translation
introduces a central horizontal mirror plane into the crystal. For
the zone-axis pattern the only symmetry change will be in the
central beam, which will become centrosymmetric, increasing its
symmetry to 6mm. Using diffraction-group terminology these cases
are seen to be relative inverses. Unfaulted graphite has the BESR
group 6mm1R (central beam and whole pattern hexagonal); central-
plane faulting results in a change to the group 6RmmR . Unfaulted
[111] gold correspondingly has the BESR group symmetry 6RmmR ;
central-plane twinning results in the addition of the element 1R (for
a central mirror plane), leading to the group 6mm1R .

(iv) Finally, no present-day discussion of electron-crystal-
lographic investigations of symmetry could be complete without
reference to two aspects of non-classical symmetries widely
discussed in the literature in recent years. The recent discovery of
noncrystallographic point symmetries in certain alloys (Shechtman
et al., 1984) has led to the study of quasi-crystallinity. An excellent
record of the experimental side of this subject may be found in the
book Convergent-beam electron diffraction III by Tanaka et al.
(1994), while the appropriate space-group theory has been
developed by Mermin (1992). It would be inappropriate to comment
further on this new subject here other than to state that this is clearly
an area of study where combined HREM, CBED and selected-area
diffraction (SAD) evidence is vital to structural elucidation.

The other relatively new topic is that of modulated structures.
From experimental evidence, two distinct structural phenomena can
be distinguished for structures exhibiting incommensurate super-
lattice reflections. Firstly, there are ‘Vernier’ phases, which exist
within certain composition ranges of solid solutions and are
composed of two extensive substructures, for which the super-
space-group nomenclature developed by de Wolff et al. (1981) is
structurally valid (e.g. Withers et al., 1993). Secondly, there are
structures essentially composed of random mixtures of two or more
substructures existing as microdomains within the whole crystal
(e.g. Grzinic, 1985). Here the SAD patterns will contain superlattice
reflections with characteristic profiles and/or irregularities of
spacings. A well illustrated review of incommensurate-structure
analysis in general is given in the book by Tanaka et al. (1994),
while specific discussions of this topic are given by Goodman et al.
(1992), and Goodman & Miller (1993).

2.5.3.7. Present limitations and general conclusions

The list of examples given here must necessarily be regarded as
unsatisfactory considering the vastness of the subject, although
some attempt has been made to choose a diverse range of problems
which will illustrate the principles involved. Some particular
aspects, however, need further mention.

One of these concerns the problem of examining large-unit-cell
materials with a high diffraction-pattern density. This limits the
possible convergence angle, if overlap is to be avoided, and leaves
numerous but featureless discs [for example Goodman (1984b)].
Technical advances which have been made to overcome this
problem include the beam-rocking technique (Eades, 1980) and
LACBED (Tanaka et al., 1980), both of which are reviewed by

Tanaka & Terauchi (1985) and Eades et al. (1983). The
disadvantage of these latter methods is that they both require a
significantly larger area of specimen than does the conventional
technique, and it may be that more sophisticated methods of
handling the crowded conventional patterns are still needed.

Next, the matter of accuracy must be considered. There are two
aspects of the subject where this is of concern. Firstly, there is a very
definite limit to the sensitivity with which symmetry can be
detected. In a simple structure of medium-light atoms, displace-
ments of say 0.1 Å or less from a pseudomirror plane could easily be
overlooked. An important aspect of CBED analysis, not mentioned
above, is the N-beam computation of patterns which is required
when something approaching a refinement (in the context of
electron diffraction) is being attempted. Although this quantitative
aspect has a long history [for example see Johnson (1972)], it has
only recently been incorporated into symmetry studies as a routine
(Creek & Spargo, 1985; Tanaka, 1994). Multi-slice programs which
have been developed to produce computer-simulated pattern output
are available (Section 2.5.3.8).

Next there is concern as to the allocation of a space group to
structures which microscopically have a much lower symmetry
(Goodman et al., 1984). This arises because the volume sampled by
the electron probe necessarily contains a large number of unit cells.
Reliable microscopic interpretation of certain nonstoichiometric
materials requires that investigations be accompanied by high-
resolution microscopy. Frequently (especially in mineralogical
samples), nonstoichiometry implies that a space group exists only
on average, and that the concept of absolute symmetry elements is
inapplicable.

From earlier and concluding remarks it will be clear that
combined X-ray/CBED and CBED/electron-microscopy studies of
inorganic materials represents the standard ideal approach to space-
group analysis at present; given this approach, all the space-group
problems of classical crystallography appear soluble. As has been
noted earlier, it is important that HREM be considered jointly with
CBED in determining space group by electron crystallography, and
that only by this joint study can the so-called ‘phase problem’ be
completely overcome. The example of the space-group pairs
I222�I212121 and I23�I213 has already been cited. Using CBED,
it might be expected that FOLZ lines would show a break from
twofold symmetry with the incident beam aligned with a 21 axis.
However, a direct distinction should be made apparent from high-
resolution electron micrographs. Other less clear-cut cases occur
where the HREM images allow a space-group distinction to be
made between possible space groups of the same arithmetic class,
especially when only one morphology is readily obtained (e.g.
P2221, P22121, P212121).

The slightly more subtle problem of distinguishing enantio-
morphic space-group pairs can be solved by one of two approaches:
either the crystal must be rotated around an axis by a known amount
to obtain two projections, or the required three-dimensional phase
information can be deduced from specific three-beam-interaction
data. This problem is part of the more general problem of solving
handedness in an asymmetric structure, and is discussed in detail by
Johnson & Preston (1994).

2.5.3.8. Computer programs available

(1) A FORTRAN source listing of program TCBED for
simulating three-dimensional convergent-beam patterns with
absorption by the Bloch-wave method: Zuo et al. (1989) [see also
Electron microdiffraction (Spence & Zuo, 1992) for other useful
programs and worked examples for the analysis of these diffraction

(continued on page 306)
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Table 2.5.3.4. Tabulation of principal-axis CBED pattern symmetries against relevant space groups given as IT A numbers

Three columns of diperiodic groups (central section) correspond to (i) symmorphic groups, (ii) non-symmorphic groups (GS bands) and (iii) non-symmorphic
groups (zero-layer absences arising from horizontal glide planes). Cubic space groups are given underlined in the right-hand section with the code:
underlining � �001�(cyclic) setting; italics � underlining � �110�(cyclic) setting. Separators ‘;’ and ‘:’ indicate change of Bravais lattice type and change of crystal
system, respectively.

I II III

Point groups Diperiodic groups Space groups

DG H–M BESR (i) (ii) (iii) SG Subgroups IIb (Subgroups 1)

Oblique Triclinic

1 1 1 p1 1

2* �1 2R p�1� 2

Monoclinic (Oblique)

3 12 2 p2 3 4, 5

4 1m 1R pm� 6 8

5 1m pb� 7 9

6* 2�m 21R p2�m� 10 11, 12

7* 2�m 21R p2�b� 13 14, 15

Rectangular (Rectangular)

8 21 mR p2� 3 52: 195; 197, 199

9 21 mR p2�1 4 198

10 21 mR c2� 5 196

11 m1 m pm 62 7, 82

12 m1 m pa 72 92

13 m1 m cm 8 9

14* 12�m 2RmmR p2��m 10 13, 122: 200, 201; 204

15* 12�m 2RmmR p2�1�m 11 14

16* 12�m 2RmmR p2��a 132 152: 206

17* 12�m 2RmmR p2�1�m 142 205

18* 12�m 2RmmR c2��m 12 15: 202, 203

Orthorhombic

19 222 2mRmR p2�2�2 16 17; 212; 22: 195; 196, 207, 206; 211, 214

20 222 2mRmR p2�12�2 172 182; 202: 212, 213

21 222 2mRmR p2�12�12 18 19: 198

22 222 2mRmR c2�2�2 21 20; 23, 24: 197, 199, 209, 210

23 mm2 2mm pmm2 25 26, 27; 38, 39; 42

24 mm2 2mm pbm2 28 29, 30, 312; 40, 41

25 mm2 2mm pba2 32 33, 34; 43

26 mm2 2mm cmm2 35 36, 37; 44, 45, 46

27 mm2 m1R p2�mm� 252 281; 352, 422; 382, 392: 215; 217

28 mm2 m1R p2�1m�a 261 311; 361

29 mm2 m1R p2�1ab� �p2�1ab�� 292 332

30 mm2 m1R p2�1ma� 262 291; 362

31 mm2 m1R p2�1mn� 312 332

32 mm2 m1R p2�mb� 282 322, 402, 412

33 mm2 m1R p2�aa� 272 302; 372

34 mm2 m1R pb2�n� 301 342; 432: 218; 219

35 mm2 m1R c2�mm� 381 401; 442, 461: 216; 220

36 mm2 m1R c2�mb� 391 411; 452, 462

37* mmm 2mm1R pmmm� 47 49, 511; 652, 672; 69:

200; 202, 221, 224, 226, 228, 229

38* mmm 2mm1R pbmm� �2�1� 512 531, 57, 592; 631, 641

39* mmm 2mm1R pbam� �2�12�1� 55 58, 622

40* mmm 2mm1R pmab� �2�12�1� �pmab�� 571 602, 61, 62: 205

41* mmm 2mm1R pbaa� �2�1� �pbaa�� 542 52, 562, 601
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I II III

Point groups Diperiodic groups Space groups

DG H–M BESR (i) (ii) (iii) SG Subgroups IIb (Subgroups 1)

42* mmm 2mm1R pmma� �2�1� 51 54, 552, 572; 632, 642

43* mmm 2mm1R pmmn� �2�12�1� 59 56, 621

44* mmm 2mm1R pbmn� �2�1� 532 521, 581, 60

45* mmm 2mm1R pmaa� 492 502, 53, 541; 662, 681: 222, 223

46* mmm 2mm1R pban� 50 522, 48; 70: 201; 203, 230

47* mmm 2mm1R cmmm� 65 63, 66; 72, 742, 71: 204, 225, 227

48* mmm 2mm1R cmma� 67 64, 68; 721, 74, 73: 206

Square Tetragonal

49 4 4 p4 75 77, 76, 78; 79, 80

50 4�m 41R p4�m� 83 84; 87

51 4�m 41R p4�n� 85 86, 88

52 422 4mRmR p42�2� 89 93, 91, 95; 97, 98:

207, 208; 209, 210; 211, 214

53 422 4mRmR p42�12� 90 94, 92, 96: 212, 213

54 4mm 4mm p4mm 99 101, 103, 105; 107, 108

55 4mm 4mm p4bm 100 102, 104, 106; 109, 110

56* 4�mmm 4mm1R p4�m�mm 123 124, 131, 132; 139, 140;

221, 223; 225, 226; 229

57* 4�mmm 4mm1R p4�m�bm �2�1� 127 128, 135, 136

58* 4�mmm 4mm1R p4�n�bm 125 126, 133, 134; 141, 142:

222, 224; 227, 228; 230

59* 4�mmm 4mm1R p4�n�mm �2�1� 129 130, 137, 138

60 �4 4R p�4� 81 82

61 �42m 4RmmR p�4�m�2� 115 116; 119, 120

62 �42m 4RmmR p�4b2� 117 118; 122: 220

63 �42m 4RmmR p�4�2�m 111 112; 121: 215; 216; 217; 218; 219

64 �42m 4RmmR p4�2�1m 113 114

Hexagonal Trigonal

65 3 3 p3 143 144, 145; 146

66 �3 6R p�3� 147 148

67 32 3mR p312� 149 151, 153

68 32 3mR p32�1 150 152, 154; 155

69 3m 3m p31m 157 159

70 3m 3m p3m1 156 158; 160, 161

71* �3m 6RmmR p�3�1m 162 163

72* �3m 6RmmR p�3�m1 164 165; 166, 167

Hexagonal

73 6 6 p6 168 171, 172, 173, 169, 170

74 �6 31R p3�m� �p�6�� 174

75 622 6mRmR p62�2� 177 180, 181, 182, 178, 179

76 6mm 6mm p6mm 183 184, 185, 186

77* 6�m 61R p6�m� 175 176

78* 6�mmm 6mm1R p6�m�mm 191 192, 193, 194

79 �6m2 3m1R p3�m�2�m
�p�6�m2��

189 190

80 �6m2 3m1R p3�m�m2�

�p�6�2�m�
187 188

Table 2.5.3.4. Tabulation of principal-axis CBED pattern symmetries against relevant space groups given as IT A numbers (cont.)
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Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions

Point groups 2, m, 2�m (2nd setting unique axis �b)

Incident-beam direction

Space group [u0w]

4 P21

0k0
S

21

7 Pc
h0l

G
c

9 Cc
h0l

G
c

11 P21�m
0k0

S
21

13 P2�c
h0l

G
c

14 P21�c

0k0
S

21

h0l
G

c

15 C2�c
h0l

Gc

Point groups 222, mm2

Incident-beam direction

Space group [100] [010] [001] [uv0] [0vw] [u0w]

17 P2221

00l
S

00l
S

00l
S

21 21 21

18 P21212
0k0

S
h00

S
h00, 0k0

S
h00

S
0k0

S21 21 21 21 21

19 P212121

0k0, 00l
S

h00, 00l
S

h00, 0k0
S

00l
S

h00
S

0k0
S21 21 21 21 21 21

20 C2221

00l
S

00l
S

00l
S

21 21 21

26 Pmc21

00l
GS

00l
c�� 00l

S
h0l

G
c� 21 21 21 c

27 Pcc2
00l

c�� 00l
c�� 0kl

G
h0l

G
c c c c

28 Pma2
h00

G
h0l

G
a a

29 Pca21

00l
c�� 00l

GS
h00

G
00l

S
0kl

G
h0l

G21 c� 21 a 21 c a

30 Pnc2
00l

n�� 00l
c�� 0k0

G
0kl

G
h0l

G
c n n n c

31 Pmn21

00l
GS

00l
n�� h00

G
00l

S
h0l

G
n� 21 21 n 21 n

32 Pba2
h00, 0k0

G
0kl

G
h0l

G
a b b a
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Incident-beam direction

Space group [100] [010] [001] [uv0] [0vw] [u0w]

33 Pna21

00l
n�� 00l

GS
h00, 0k0

G
00l

S
0kl

G
h0l

G
21 n� 21 a b 21 n a

34 Pnn2
00l

n�� 00l
n�� h00, 0k0

G
0kl

G
h0l

G
n n n n n

36 Cmc21

00l
GS

00l
c�� 00l

S
h0l

G
c� 21 21 21 c

37 Ccc2
00l

c�� 00l
c�� 0kl

G
h0l

G
c c c c

39 Abm2
0kl

G
b

40 Ama2
h00

G
h0l

G
a a

41 Aba2
h00

G
0kl

G
h0l

G
a b a

43 Fdd2
00l

d�� 00l
d�� h00, 0k0

G
0kl

G
h0l

G
d d d d

45 Iba2 b�� a�� 0kl
G

h0l
G

b a

46 Ima2 a��
h0l

Ga

Point group mmm

Incident-beam direction

Space group [100] [010] [001] [uv0] [0vw] [u0w]

48 P 2/n 2/n 2/n
00l, 0k0

n�� 00l, h00
n�� 0k0, h00

n�� hk0
G

0kl
G

h0l
G

n n n n n n

49 P 2/c 2/c 2/m
00l

c�� 00l
c�� 0kl

G
h0l

G
c c c c

50 P 2/b 2/a 2/n
0k0

b�� h00
a�� 0k0, h00

n�� hk0
G

0kl
G

h0l
G

n n b a n b a

51 P 21�m 2�m 2�a
h00

GS
h00

a�� hk0
G

h00
S

a� 21 21 a 21

52 P 2�n 21�n 2�a 00l, 0k0 a�� 00l, h00 n��

0k0
GS

hk0 G 0kl G

h0l
G

n� 21 n

n 21 n a h00
n�� a n 0k0 S

n 21

53 P 2�m 2�n 21�a 00l GS h00, 00l a�� h00 a��

hk0
G

h0l G
a

n� 21 a 21 n 00l
S

n

21

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)
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Incident-beam direction

Space group [100] [010] [001] [uv0] [0vw] [u0w]

54 P 21�c 2�c 2�a 00l c��

h00
GS

h00 a�� hk0 G

0kl
G

h0l G
a� 21 c

c 00l
c�� 21 a h00

S
c

c 21

55 P 21�b 21�a 2�m 0k0 b�� h00 a�� 0k0, h00 GS

0kl
G

h0l
G

b a

21 21 b� 21, a� 21 h00
S

0k0
S21 21

56 P 21�c 21�c 2�n

0k0
GS

h00
GS

0k0, h00 n�� hk0 G

0kl
G

h0l
G

n� 21 n� 21 c c

00l
c�� 00l

c�� 21 n h00
S

0k0
S

c c 21 21

57 P 2�b 21�c 21�m

00l
GS

00l c�� 0k0 GS 00l S 0kl G

h0l
G

c � 21 c

0k0
b�� 21 b� 21 21 b 0k0

S
21 21

58 P 21�n 21�n 2�m 00l, 0k0 n�� 00l, h00 n�� 0k0, h00 GS

0kl
G

h0l
G

n n

n 21 n 21 n� 21 h00
S

0k0
S

21 21

59 P 21�m 21�m 2�n
0k0

GS
h00

GS
0k0, h00

n�� hk0
G

h00
S

0k0
S

n� 21 n� 21 21 n 21 21

60 P 21�b 2�c 21�n

00l
GS

h00
GS

0k0, h00 n��

hk0
G

0kl
G

h0l G
c � 21 n� 21 n b

0k0
b�� 00l

c�� b 21 00l
S

h00
S

c

n 21 21 21

61 P 21�b 21�c 21�a

00l
GS

h00
GS

0k0
GS

hk0
G

0kl
G

h0l
G

c � 21 a� 21 b� 21 a b c

0k0
b�� 00l

c�� h00
a�� 00l

S
h00

S
0k0 S

21 21 21 21 21 21

62 P 21�n 21�m 21�a 0k0, 00l n��

00l

GS

0k0
GS

hk0
G

0kl
G

0k0 S
n� 21 n� 21 a n

21 h00 h00
a�� 00l

S
h00

S
21

a� 21 21 21 21

63 C 2�m 2�c 21�m
00l

GS
00l

c�� 00l
S

h0l
G

c � 21 21 21 c

64 C 2�m 2�c 21�a 00l GS 00l c��

hk0
G

h0l G
a

c � 21 21 00l
S

c

21

66 C 2�c 2�c 2�m
00l

c�� 00l
c�� 0kl

G
h0l

G
c c c c

67 C 2�m 2�m 2�a
hk0

G
a

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)
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Incident-beam direction

Space group [100] [010] [001] [uv0] [0vw] [u0w]

68 C 2�c 2�c 2�a
00l

c�� 00l
c�� hk0

G
0kl

G
h0l

G
c c a c c

70 F 2�d 2�d 2�d
00l, 0k0

d �� h00, 00l
d �� 0k0, h00

d �� hk0
G

0kl
G

h0l
G

d d d d d d

72 I 2�b 2�a 2�m b�� a�� 0kl
G

h0l
G

b a

73 I 2�b 2�c 2�a b�� c�� a�� hk0
G

0kl
G

h0l
G

a b c

74 I 2�m 2�m 2�a
hk0

Ga

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)

Point groups 4, �4, 4�m

Incident-beam
direction

Space group [uv0]

76 P41

00l
S41

78 P43

00l
S

43

85 P4�n
hk0

G
n

86 P42�n
hk0

G
n

88 I41�a
hk0

Ga

Point group 422

Incident-beam direction

Space group [uv0] [0vw]

90 P4212
h00

S
21

91 P4122
00l

S41

92 P41212
00l

S
h00

S41 21

94 P42212
h00

S
21

95 P4322
00l

S43

96 P43212
00l

S
h00

S43 21

Point group 4mm

Incident-beam direction

Space group [100] [001] [110] [u0w] and [0vw]* �u�uw�

100 P4bm
h00, 0k0

G
h0l, 0kl

G
a b a b

101 P42cm
00l

c�� h0l, 0kl
G

c c

102 P42nm
00l

n�� h00, 0k0
G

h0l, 0kl
G

n n n

103 P4cc
00l

c�� 00l
c�� h0l, 0kl

G
hhl

G
c c c c

104 P4nc
00l

n�� h00, 0k0
G

00l
c�� h0l, 0kl

G
hhl

G
n n c n c

105 P42mc
00l

c�� hhl
G

c c
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Incident-beam direction

Space group [100] [001] [110] [u0w] and [0vw]* �u�uw�

106 P42bc
h00, 0k0

G
00l

c�� h0l, 0kl
G

hhl
G

a b c a b c

108 I4cm
h0l, 0kl

G
c

109 I31md

hh0

G
00l

d ��
hhl

G�hh0

d d d

110 I41cd

hh0

G

00l

d ��
h0l, 0kl

G

hhl

G�hh0

d d c d

* Conditions in this column are cyclic on h and k.

Point groups �42m, 4/mmm

Incident-beam direction

Space group [100] [001] [110] [u0w] and [0vw]* [uuw] [uv0]

112 P�42c
00l

c�� hhl
G

c c

113 P�421m
0k0

S
h00, 0k0

S
0k0, h00

S
21 21 21

114 P�421c
0k0

S
h00, 0k0

S
00l

c�� 0k0, h00
S

hhl
G21 21 c 21 c

116 P�4c2
00l

c�� h0l, 0kl
G

c c

117 P�4b2
h00, 0k0

G
h0l, 0kl

G
a b a b

118 P�4n2
00l

n�� h00, 0k0
G

h0l, 0kl
G

n n n

120 I�4c2
h0l, 0kl

G
c

122 I�42d

hh0

G
00l

d ��
hhl

G�hh0

d d d

124 P 4�m 2�c 2�c
00l

c�� 00l
c�� h0l, 0kl

G
hhl

G
c c c c

125 P 4�n 2�b 2�m
0k0

b�� h00, 0k0
n�� h0l, 0kl

G
hk0

G
n a b a b n

126 P 4�n 2�n 2�c

0k0

n�� h00, 0k0
n�� 00l

c�� h0l, 0kl
G

hhl
G

hk0
G

n

00l n c n c n

n

127 P 4�m 21�b 2�m 0k0 b��

h00

GS

h0l, 0kl
G

a� 21 a b

21 0k0 0k0, h00 S

b� 21 21

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)
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Incident-beam direction

Space group [100] [001] [110] [u0w] and [0vw]* [uuw] [uv0]

128 P 4�m 21�n 2�c 00l, 0k0 n�� h00, 0k0 GS 00l c��

h0l, 0kl
G

hhl G
n

n 21 n� 21 c 0k0, h00
S

c

21

129 P 4�n 21�m 2�m
0k0

GS
h00, 0k0

n�� 0k0, h00
S

hk0
G

n� 21 21 21 n

130 P 4�n 21�c 2�c

0k0
GS

h00, 0k0 n�� 00l c��

h0l, 0kl
G

hhl G hk0 G
n� 21 c

00l
c�� 21 c 0k0, h00

S
c n

c 21

131 P 42�m 2�m 2�c
00l

c� hhl
G

c c

132 P 42�m 2�c 2�m
00l

c�� h0l, 0kl G

c c

133 P 42�n 2�b 2�c
0k0

b�� h00, 0k0
n�� 00l

c�� h0l, 0kl G hhl
G

hk0
G

n a b c a b c n

134 P 42�n 2�n 2�m
0k0, 00l

n�� h00, 0k0
n�� h0l, 0kl G hk0

G
n n n n

135 P 42�m 21�b 2�c 0k0 b�� h00, 0k0 GS 00l c��

h0l, 0kl
G

hhl G
a b

21 a� 21 b� 21 c 0k0, h00
S

c

21

136 P 42�m 21�n 2�m 00l, 0k0 n�� h00, 0k0 GS

h0l, 0kl G

n

n 2 n� 21 0k0, h00
S

21

137 P 42�n 21�m 2�c
0k0

GS
h00, 0k0

n�� 00l
c�� 0k0, h00 S hhl

G
hk0

G
n� 21 21 c 21 c n

138 P 42�n 21�c 2�m

0k0
GS

h00, 0k0 n��

h0l, 0kl G

hk0 G
n� 21 c

00l
c�� 21 0k0, h00

S
n

c 21

140 I 4�m 2�c 2�m
h0l, 0kl

G
c

141 I 41�a 2�m 2�d

hh0

a��
00l, �hh0

d ��
hhl

G

hk0

G�hh0

d d a d a

142 I 41�a 2�c 2�d

hh0

a��
00l, �hh0

d ��
h0l, 0kl

G

hhl

G

hk0

G�hh0

d d a c d a

* Conditions in this column are cyclic on h and k.

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)

303

2.5. ELECTRON DIFFRACTION AND ELECTRON MICROSCOPY IN STRUCTURE DETERMINATION



Point groups 3m, �3m, 6, 6/m, 622, 6mm, �6m2, 6/mmm

Space group

Incident-beam direction

[100] [210] [2u u w] [v0w]

158 P3c1
000l

G
hh2�hl

G
c c

159 P31c
000l

G
h�h0l

G
c c

161 R3c

000l

G

hh2�hl

Gl � 6n� 3

c c

163 P�31c
000l

G
h�h0l

G
c c

165 P�3c1
000l

G
hh2�hl

G
c c

167 R�3c

000l

G

hh2�hl

Gl � 6n� 3

c c

169 P61

000l
S

000l
S61 61

170 P65

00l
S

00l
S65 65

173 P63

000l
S

000l
S

63 63

176 P63�m
000l

S
000l

S63 63

178 P6122
000l

S
000l

S
61 61

179 P6522
000l

S
000l

S65 65

182 P6322
000l

S
000l

S63 63

184 P6cc
000l

c�� 000l
c�� hh2�hl

G
h�h0l

G
c c c c

185 P63cm
000l

c�� 000l
GS

hh2�hl
G63 c� 63 c

186 P63mc
000l

GS
000l

c�� h�h0l
G

c� 63 63 c

188 P�6c2
000l

G
hh2�hl

G
c c

190 P�6c2
000l

G
h�h0l

G
c c

192 P6�mcc
000l

c�� 000l
c�� hh2�hl

G
h�h0l

G
c c c c

193 P63�mcm
00l

c�� 000l
GS

hh2�hl
G63 c� 63 c

194 P63�mmc
000l

GS
000l

c��
h�h0l

Gc� 63 63 c

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)
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Point groups 23, m3, 432, m3m

Space group

Incident-beam direction

[100] [110] [uv0] [uuw]

(cyclic) (cyclic) (cyclic) (cyclic)

198 P213
00l, 0k0

S
00l

S
00l

S21 21 21

201
Pn�3 00l, 0k0

n��
�kh0

G
P2�n�3 n n

203
Pd�3 00l, 0k0

d ��
�kh0

G
F2�d�3 d d

205 Pa�3

00l
GS

00l
S

00l
S

c� 21 21 21

P21�a�3 0k0
b��

�hh0
G

�kh0
G

21 a a

206
Ia�3 �hh0

G
�kh0

G
I21�a�3 a a

212 P4332
00l

S
43

213 P4132
00l

S
41

218 P�43n
00l

n� hhl
G

c c

219 F�43c
hhl

G
c

220 I�43d

0kk

G

00l

d�
hhl

G0�kk

d d d

222 Pn�3n
00l, 0k0

n�� 00l
n� hk0

G
hhl

G
n c n c

223 Pm�3n
00l

n�� hhl
G

c c

224 Pn�3m
00l, 0k0

n�� hk0
G

n n

226 Fm�3c
hhl

G
c

227 Fd�3m
00l, 0k0

d �� hk0
G

d d

228 Fd�3c
00l, 0k0

d �� hk0
G

hhl
G

d d c

230 Ia�3d

0kk

b��
00l, �hh0

d ��
hk0

G

hhl

G0�kk

d d a a d

Table 2.5.3.5. Conditions for observation of GS bands for the 137 space groups exhibiting these extinctions (cont.)

305

2.5. ELECTRON DIFFRACTION AND ELECTRON MICROSCOPY IN STRUCTURE DETERMINATION



patterns]. Contact J. M. Zuo or J. C. H. Spence, Physics Department,
Arizona State University, Tempe, Arizona, USA.

(2) A package for CBED pattern simulation by both Bloch-wave
and multi-slice methods is available from P. Stadelmann
(pierre.stadelmann@cime.uhd.edfl.ch), Lausanne, Switzerland, in
UNIX for workstations [Silicon Graphics, Dec Alpha (OSF), IBM
RISC 6000, SUN and HP-9000].

(3) HOLZ line simulations: Listing for PC 8801 (NEC): Tanaka
& Terauchi (1985, pp. 174–175).

2.5.4. Electron-diffraction structure analysis (EDSA)
(B. K. VAINSHTEIN AND B. B. ZVYAGIN)

2.5.4.1. Introduction

Electron-diffraction structure analysis (EDSA) (Vainshtein,
1964) based on electron diffraction (Pinsker, 1953) is used for the
investigation of the atomic structure of matter together with X-ray
and neutron diffraction analysis. The peculiarities of EDSA, as
compared with X-ray structure analysis, are defined by a strong
interaction of electrons with the substance and by a short
wavelength �. According to the Schrödinger equation (see Section
5.2.2) the electrons are scattered by the electrostatic field of an
object. The values of the atomic scattering amplitudes, fe, are three
orders higher than those of X-rays, fx, and neutrons, fn. Therefore, a
very small quantity of a substance is sufficient to obtain a diffraction
pattern. EDSA is used for the investigation of very thin single-
crystal films, of �5–50 nm polycrystalline and textured films, and
of deposits of finely grained materials and surface layers of bulk
specimens. The structures of many ionic crystals, crystal hydrates
and hydro-oxides, various inorganic, organic, semiconducting and
metallo-organic compounds, of various minerals, especially layer
silicates, and of biological structures have been investigated by
means of EDSA; it has also been used in the study of polymers,
amorphous solids and liquids.

Special areas of EDSA application are: determination of unit
cells; establishing orientational and other geometrical relationships
between related crystalline phases; phase analysis on the basis of
dhkl and Ihkl sets; analysis of the distribution of crystallite
dimensions in a specimen and inner strains in crystallites as
determined from line profiles; investigation of the surface structure
of single crystals; structure analysis of crystals, including atomic
position determination; precise determination of lattice potential
distribution and chemical bonds between atoms; and investigation
of crystals of biological origin in combination with electron
microscopy (Vainshtein, 1964; Pinsker, 1953; Zvyagin, 1967;
Pinsker et al., 1981; Dorset, 1976; Zvyagin et al., 1979).

There are different kinds of electron diffraction (ED) depending
on the experimental conditions: high-energy (HEED) (above 30–
200 kV), low-energy (LEED) (10–600 V), transmission (THEED),
and reflection (RHEED). In electron-diffraction studies use is made
of special apparatus – electron-diffraction cameras in which the lens
system located between the electron source and the specimen forms
the primary electron beam, and the diffracted beams reach the
detector without aberration distortions. In this case, high-resolution
electron diffraction (HRED) is obtained. ED patterns may also be
observed in electron microscopes by a selected-area method (SAD).
Other types of electron diffraction are: MBD (microbeam), HDD
(high-dispersion), CBD (convergent-beam), SMBD (scanning-
beam) and RMBD (rocking-beam) diffraction (see Sections 2.5.2
and 2.5.3). The recent development of electron diffractometry,
based on direct intensity registration and measurement by scanning
the diffraction pattern against a fixed detector (scintillator followed
by photomultiplier), presents a new improved level of EDSA which

provides higher precision and reliability of structural data (Avilov et
al., 1999; Tsipursky & Drits, 1977; Zhukhlistov et al., 1997, 1998;
Zvyagin et al., 1996).

Electron-diffraction studies of the structure of molecules in
vapours and gases is a large special field of research (Vilkov et al.,
1978). See also Stereochemical Applications of Gas-Phase Electron
Diffraction (1988).

2.5.4.2. The geometry of ED patterns

In HEED, the electron wavelength � is about 0.05 Å or less. The
Ewald sphere with radius ��1 has a very small curvature and is
approximated by a plane. The ED patterns are, therefore, considered
as plane cross sections of the reciprocal lattice (RL) passing normal
to the incident beam through the point 000, to scale L� (Fig.
2.5.4.1). The basic formula is

r � �h�L�, or rd � L�, �2�5�4�1�
where r is the distance from the pattern centre to the reflection, h is
the reciprocal-space vector, d is the appropriate interplanar distance
and L is the specimen-to-screen distance. The deviation of the
Ewald sphere from a plane at distance h from the origin of the
coordinates is �h � h2��2. Owing to the small values of � and to the
rapid decrease of fe depending on �sin ����, the diffracted beams are
concentrated in a small angular interval (� 0�1 rad).

Single-crystal ED patterns image one plane of the RL. They can
be obtained from thin ideal crystalline plates, mosaic single-crystal
films, or, in the RHEED case, from the faces of bulk single crystals.
Point ED patterns can be obtained more easily owing to the
following factors: the small size of the crystals (increase in the
dimension of RL nodes) and mosaicity – the small spread of
crystallite orientations in a specimen (tangential tension of the RL
nodes). The crystal system, the parameters of the unit cell and the
Laue symmetry are determined from point ED patterns; the
probable space group is found from extinctions. Point ED patterns
may be used for intensity measurements if the kinematic
approximation holds true or if the contributions of the dynamic
and secondary scattering are not too large.

The indexing of reflections and the unit-cell determination are
carried out according to the formulae relating the RL to the DL
(direct lattice) (Vainshtein, 1964; Pinsker, 1953; Zvyagin, 1967).

Fig. 2.5.4.1. Ewald spheres in reciprocal space. Dotted line: electrons, solid
line: X-rays.
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Under electron-diffraction conditions crystals usually show a
tendency to lie down on the substrate plane on the most developed
face. Let us take this as (001). The vectors a and b are then parallel,
while vector c� is normal to this plane, and the RL points are
considered as being disposed along direct lines parallel to the axis c�
with constant hk and variable l.

The interpretation of the point patterns as respective RL planes is
quite simple in the case of orthogonal lattices. If the lattice is
triclinic or monoclinic the pattern of the crystal in the position with
the face (001) normal to the incident beam does not have to contain
hk0 reflections with non-zero h and k because, in general, the planes
ab and a�b� do not coincide. However, the intersection traces of
direct lines hk with the plane normal to them (plane ab) always form
a net with periods

�a sin ���1, �b sin ���1, and angle �� � �� � �2�5�4�2a�
(Fig. 2.5.4.2). The points hkl along these directions hk are at
distances

� � ha� cos � � kb� cos�� � lc� �2�5�4�3�
from the ab plane.

By changing the crystal orientation it is possible to obtain an
image of the a�b� plane containing hk0 reflections, or of other RL
planes, with the exception of planes making a small angle with the
axis c�.

In the general case of an arbitrary crystal orientation, the pattern
is considered as a plane section of the system of directions hk which
makes an angle � with the plane ab, intersecting it along a direction
[uv]. It is described by two periods along directions 0h, 0k;

�a sin � cos�h��1, �b sin � cos�k��1, �2�5�4�2b�
with an angle ��� between them satisfying the relation

cos ��� � sin�h sin�k � cos�h cos�k cos �, �2�5�4�2c�
and by a system of parallel directions

phh� pkk � l; l � 0, � 1, � 2, � � � � �2�5�4�4�
The angles �h,�k are formed by directions 0h, 0k in the plane of the
pattern with the plane ab. The coefficients ph, pk depend on the unit-
cell parameters, angle � and direction [uv]. These relations are used
for the indexing of reflections revealed near the integer positions hkl
in the pattern and for unit-cell calculations (Vainshtein, 1964;
Zvyagin, 1967; Zvyagin et al., 1979).

In RED patterns obtained with an incident beam nearly parallel to
the plane ab one can reveal all the RL planes passing through c�
which become normal to the beam at different azimuthal
orientations of the crystal.

With the increase of the thickness of crystals (see below, Chapter
5.1) the scattering becomes dynamical and Kikuchi lines and bands
appear. Kikuchi ED patterns are used for the estimation of the
degree of perfection of the structure of the surface layers of single
crystals for specimen orientation in HREM (IT C, 1999, Section
4.3.8). Patterns obtained with a convergent beam contain Kossel
lines and are used for determining the symmetry of objects under
investigation (see Section 5.1.2).

Texture ED patterns are a widely used kind of ED pattern
(Pinsker, 1953; Vainshtein, 1964; Zvyagin, 1967). Textured
specimens are prepared by substance precipitation on the substrate,
from solutions and suspensions, or from gas phase in vacuum. The
microcrystals are found to be oriented with a common (developed)
face parallel to the substrate, but they have random azimuthal
orientations. Correspondingly, the RL also takes random azimuthal
orientations, having c� as the common axis, i.e. it is a rotational
body of the point RL of a single crystal. Thus, the ED patterns from
textures bear a resemblance, from the viewpoint of their geometry,
to X-ray rotation patterns, but they are less complicated, since they
represent a plane cross section of reciprocal space.

If the crystallites are oriented by the plane (hkl), then the axis
�hkl�� is the texture axis. For the sake of simplicity, let us assume
that the basic plane is the plane (001) containing the axes a and b, so
that the texture axis is �001��, i.e. the axis c�. The matrices of
appropriate transformations will define a transition to the general
case (see IT A, 1995). The RL directions hk � constant, parallel to
the texture axis, transform to cylindrical surfaces, the points with
�hkl � constant are in planes perpendicular to the texture axis, while
any ‘tilted’ lines transform to cones or hyperboloids of rotation.
Each point hkl transforms to a ring lying on these surfaces. In
practice, owing to a certain spread of c� axes of single crystals, the
rings are blurred into small band sections of a spherical surface with
the centre at the point 000; the oblique cross section of such bands
produces reflections in the form of arcs. The main interference
curves for texture patterns are ellipses imaging oblique plane cross
sections of the cylinders hk (Fig. 2.5.4.3).

At the normal electron-beam incidence (tilting angle � � 0�) the
ED pattern represents a cross section of cylinders perpendicular to
the axis c�, i.e. a system of rings.

On tilting the specimen to an angle � with respect to its normal
position (usually � 
 60�) the patterns image an oblique cross
section of the cylindrical RL, and are called oblique-texture (OT)

Fig. 2.5.4.2. Triclinic reciprocal lattice. Points: open circles, projection net:
black circles.

Fig. 2.5.4.3. Formation of ellipses on an electron-diffraction pattern from
an oblique texture.
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ED patterns. The ellipses �hk � constant� and layer lines �l �
constant� for orthogonal lattices are the main characteristic lines of
ED patterns along which the reflections are arranged. The
shortcoming of oblique-texture ED patterns is the absence of
reflections lying inside the cone formed by rotation of the straight
line coming from the point 000 at an angle �90� � �� around the
axis c� and, in particular, of reflections 00l. However, at �� 60–
70° the set of reflections is usually sufficient for structural
determination.

For unit-cell determination and reflection indexing the values d
(i.e. �h�) are used, and the reflection positions defined by the ellipses
hk to which they belong and the values � are considered. The
periods a�, b� are obtained directly from h100 and h010 values. The
period c�, if it is normal to the plane a�b� (�� being arbitrary), is
calculated as

c� � ��l � �h2
hkl � h2

hk0�1�2�l� �2�5�4�5a�
For oblique-angled lattices

c� � ��h2
l1�l � h2

l1�l � 2h2
l ��2�1�2�l� �2�5�4�5b�

In the general case of oblique-angled lattices the coaxial cylinders
hk have radii

bhk � �1� sin ����h2�a2� � �k2�b2�
� �2hk cos ��ab��1�2 �2�5�4�6�

and it is always possible to use the measured or calculated values
bhk in (2.5.4.5a) instead of hhk0, since

� � �h2
hkl � b2

hk�1�2� �2�5�4�7�
In OT patterns the bhk and � values are represented by the lengths of
the small axes of the ellipses Bhk � L�bhk and the distances of the
reflections hkl from the line of small axes (equatorial line of the
pattern)

Dhkl � L��� sin� � hp� ks� lq� �2�5�4�8�
Analysis of the Bhk values gives a, b, �, while p, s and q are

calculated from the Dhkl values. It is essential that the components
of the normal projections cn of the axis c on the plane ab measured
in the units of a and b are

xn � �c�a��cos � cos� cos ��� sin2 �

� �p�q,

yn � �c�b��cos�� cos  cos ��� sin2 �

� �s�q�

�2�5�4�9�

Obtaining xn, yn one can calculate

cn � ��xna�2 � �ynb�2 � 2xnynab cos ��1�2�

Since

d001 � L��q sin�,

c � �c2
n � d2

001�1�2�
�2�5�4�10�

The �,  values are then defined by the relations

cos� � �xna cos � � ynb��c,

cos  � �xna� ynb cos ���c�
�2�5�4�11�

Because of the small particle dimensions in textured specimens,
the kinematic approximation is more reliable for OT patterns,
enabling a more precise calculation of the structure amplitudes from
the intensities of reflections.

Polycrystal ED patterns. In this case, the RL is a set of concentric
spheres with radii hhkl. The ED pattern, like an X-ray powder
pattern, is a set of rings with radii

rhkl � hhklL�� �2�5�4�12�

2.5.4.3. Intensities of diffraction beams

The intensities of scattering by a crystal are determined by the
scattering amplitudes of atoms in the crystal, given by (see also
Section 5.2.1)

f abs
e �s� � 4�K

�
��r�r2 sin sr

sr
dr;

K � 2�me
h2

; fe � K�1f abs
e ,

�2�5�4�13�

where ��r� is the potential of an atom and s � 4��sin ����. The
absolute values of f abs

e have the dimensionality of length L. In
EDSA it is convenient to use fe without K. The dimensionality of fe
is [potential L3]. With the expression of fe in V A

� 3 the value K�1 in
(2.5.4.13) is 47.87 V A

� 2.
The scattering atomic amplitudes fe�s� differ from the respective

fx�s� X-ray values in the following: while fx�0� � Z (electron shell
charge), the atomic amplitude at s � 0

fe�0� � 4�
�
��r�r2 dr �2�5�4�14�

is the ‘full potential’ of the atom. On average, fe�0� 
 Z1�3, but for
small atomic numbers Z, owing to the peculiarities in the filling of
the electron shells, fe�0� exhibits within periods of the periodic table
of elements ‘reverse motion’, i.e. they decrease with Z increasing
(Vainshtein, 1952, 1964). At large �sin ����, fe 
 Z. The atomic
amplitudes and, consequently, the reflection intensities, are
recorded, in practice, up to values of �sin ���� 
 0�8---1�2 A

� �1,
i.e. up to dmin 
 0�4---0�6 A

�
.

The structure amplitude �hkl of a crystal is determined by the
Fourier integral of the unit-cell potential (see Chapter 1.2),

�hkl �
�

�

��r� exp�2�i�r  h�	 dvr, �2�5�4�15�

where � is the unit-cell volume. The potential of the unit cell can be
expressed by the potentials of the atoms of which it is composed:

��r� � �

cell� i
�at i�r� ri�� �2�5�4�16�

The thermal motion of atoms in a crystal is taken into account by the
convolution of the potential of an atom at rest with the probability
function w�r� describing the thermal motion:

�at � �at�r� � w�r�� �2�5�4�17�
Accordingly, the atomic temperature factor of the atom in a crystal
is

feT ��sin ����� � fefT � fe��sin ����� exp��B��sin �����2	,
�2�5�4�18�

where the Debye temperature factor is written for the case of
isotropic thermal vibrations. Consequently, the structure amplitude
is

�hkl �
�

cell� i
feTi exp�2�i�hxi � kyi � lzi�	� �2�5�4�19�

This general expression is transformed (see IT I, 1952) according to
the space group of a given crystal.

To determine the structure amplitudes in EDSA experimentally,
one has to use specimens satisfying the kinematic scattering
condition, i.e. those consisting of extremely thin crystallites. The
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limit of the applicability of the kinematic approximation (Black-
man, 1939; Vainshtein, 1964) can be estimated from the formula

A � �
��h�
�

�
�
�
�

�
�
�
�t �� 1, �2�5�4�20�

where ��h� is the averaged absolute value of �h (see also Section
5.2.1). Since ��h� are proportional to Z0�8, condition (2.5.4.20) is
better fulfilled for crystals with light and medium atoms. Condition
(2.5.4.20) is usually satisfied for textured and polycrystalline
specimens. But for mosaic single crystals as well, the kinematic
approximation limit is, in view of their real structure, substantially
wider than estimated by (2.5.4.20) for ideal crystals. The fulfillment
of the kinematic law for scattering can be, to a greater or lesser
extent, estimated by comparing the decrease of experimental
intensity Ih��sin ����� averaged over definite angular intervals,
and sums

�
f 2
obs��sin ����� calculated for the same angular

intervals.
For mosaic single-crystal films the integral intensity of reflection

is

Ih � j0S�2 �h

�

�
�
�
�

�
�
�
�

2tdh

�

 �2

hdh; �2�5�4�21�

for textures

Ih � j0S�2 �h

�

�
�
�
�

�
�
�
�

2 tL�p
2�R� sin�


 �2
hp�R�� �2�5�4�22�

Here j0 is the incident electron-beam density, S is the irradiated
specimen area, t is the thickness of the specimen, � is the average
angular spread of mosaic blocks, R� is the horizontal coordinate of
the reflection in the diffraction pattern and p is the multiplicity
factor. In the case of polycrystalline specimens the local intensity in
the maximum of the ring reflection

Ih � j0S�2 �h

�

�
�
�
�

�
�
�
�

2td2
hp�S

4�L�

 �2

hd2
hp �2�5�4�23�

is measured, where �S is the measured area of the ring.
The transition from kinematic to dynamic scattering occurs at

critical thicknesses of crystals when A � 1 (2.5.4.20). Mosaic or
polycrystalline specimens then result in an uneven contribution of
various crystallites to the intensity of the reflections. It is possible to
introduce corrections to the experimental structure amplitudes of
the first strong reflections most influenced by dynamic scattering by
applying in simple cases the two-wave approximation (Blackman,
1939) or by taking into account multibeam theories (Fujimoto,
1959; Cowley, 1981; Avilov et al. 1984; see also Chapter 5.2).

The application of kinematic scattering formulae to specimens of
thin crystals (5–20 nm) or dynamic corrections to thicker specimens
(20–50 nm) permits one to obtain reliability factors between the
calculated �calc and observed �obs structure amplitudes of
R � 5---15�, which is sufficient for structural determinations.

With the use of electron diffractometry techniques, reliability
factors as small as R � 2–3% have been reached and more detailed
data on the distribution of the inner-crystalline potential field have
been obtained, characterizing the state and bonds of atoms,
including hydrogen (Zhukhlistov et al., 1997, 1998; Avilov et al.,
1999).

The applicability of kinematics formulae becomes poorer in the
case of structures with many heavy atoms for which the atomic
amplitudes also contain an imaginary component (Shoemaker &
Glauber, 1952). The experimental intensity measurement is made
by a photo method or by direct recording (Avilov, 1979). In some
cases the amplitudes �hkl can be determined from dynamic

scattering patterns – the bands of equal thickness from a wedge-
shaped crystal (Cowley, 1981), or from rocking curves.

2.5.4.4. Structure analysis

The unit cell is defined on the basis of the geometric theory of
electron-diffraction patterns, and the space group from extinctions.
It is also possible to use the method of converging beams (Section
5.2.2). The structural determination is based on experimental sets of
values ��hkl�2 or ��hkl� (Vainshtein, 1964).

The trial-and-error method may be used for the simplest
structures. The main method of determination is the construction
of the Patterson functions

P�xyz� � 1
�

�2
000 � 2

�hkl���

hkl���
��hkl�2 cos 2��hx� ky� lz�

� �

�2�5�4�24�
and their analysis on the basis of heavy-atom methods, super-
position methods and so on (see Chapter 2.3). Direct methods are
also used (Dorset et al., 1979). Thus the phases of structure factors
are calculated and assigned to the observed moduli

�h � ��h� obs� exp�i�calc	� �2�5�4�25�
The distribution of the potential in the unit cell, and, thereby, the

arrangement in it of atoms (peaks of the potential) are revealed by
the construction of three-dimensional Fourier series of the potential
(see also Chapter 1.3)

��xyz� � 1
�

�

h

�hkl exp��2�i�hx� ky� lz�	 �2�5�4�26a�

or projections

���xy� � 1
S

�

h

�hk0 exp��2�i�hx� ky�	� �2�5�4�26b�

The general formulae (2.5.4.26a) and (2.5.4.26b) transform,
according to known rules, to the expressions for each space group
(see IT I, 1952). If �hkl are expressed in V A

� 3 and the volume � or
the cell area S in A

� 3 and A
� 2, respectively, then the potential � is

obtained directly in volts, while the projection of the potential �� is
in V Å . The amplitudes ��hkl� are reduced to an absolute scale either
according to a group of strong reflections

���h�calc ����h�obs �2�5�4�27�
or using the Parseval equality

���

h���
��h�2 � �2��2� � �

�

i�cell�

1
2�2

��

0

f 2
eTi
�s�s2 ds �2�5�4�28�

or Wilson’s statistical method

��2��sin ������ ��

i
f 2
eTi
��sin ������ �2�5�4�29�

The term �000 defines the mean inner potential of a crystal, and is
calculated from fe�0� [(2.5.4.13), (2.5.4.19)]

��cr� � �000�� � 1
�

�
fe�0�� �2�5�4�30�

The Fourier series of the potential in EDSA possess some
peculiarities (Vainshtein, 1954, 1964) which make them different
from the electron-density Fourier series in X-ray analysis. Owing to
the peculiarities in the behaviour of the atomic amplitudes
(2.5.4.13), which decrease more rapidly with increasing �sin ����
compared with fx, the peaks of the atomic potential
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�at�r� � 1
2�2

�
feT �s� sin sr

sr
s2 ds �2�5�4�31�

are more ‘blurred’ and exhibit a larger half-width than the electron-
density peaks �at�r�. On average, this half-width corresponds to the
‘resolution’ of an electron-diffraction pattern – about 0.5 Å or
better. The potential in the maximum (‘peak height’) does not
depend as strongly on the atomic number as in X-ray analysis:

��0� � 1
2�2

�
feT �s�s2 ds � Z0�75, �2�5�4�32�

while in X-ray diffraction ��0� � Z1�2. In such a way, in EDSA the
light atoms are more easily revealed in the presence of heavy atoms
than in X-ray diffraction, permitting, in particular, hydrogen atoms
to be revealed directly without resorting to difference syntheses as
in X-ray diffraction. Typical values of the atomic potential ��0�
(which depend on thermal motion) in organic crystals are:
H � 35, C � 165, O 215 V; in Al crystals 330 V, in Cu crystals
750 V.

The EDSA method may be used for crystal structure determina-
tion, depending on the types of electron-diffraction patterns, for
crystals containing up to several tens of atoms in the unit cell. The
accuracy in determination of atomic coordinates in EDSA is about
0.01–0.005 Å on average. The precision of EDSA makes it possible
to determine accurately the potential distribution, to investigate
atomic ionization, to obtain values for the potential between the
atoms and, thereby, to obtain data on the nature of the chemical
bond.

If the positions in the cell are occupied only partly, then the
measurement of �i�0� gives information on population percentage.

There is a relationship between the nuclear distribution, electron
density and the potential as given by the Poisson equation

�2��r� � �4�e����r� � ���r��� �2�5�4�33�
This makes it possible to interrelate X-ray diffraction, EDSA and
neutron-diffraction data. Thus for the atomic amplitudes

fe�s� � 4�Ke�Z � fx�s��s�2, �2�5�4�34�
where Z is the nuclear charge and fx the X-ray atomic scattering
amplitude, and for structure amplitudes

�hkl � �Ke�Zhkl � Fhkl��h��2, �2�5�4�35�
where Fhkl is the X-ray structure amplitude of the electron density of
a crystal and Zhkl is the amplitude of scattering from charges of
nuclei in the cell taking into account their thermal motion. The
values Zhkl can be calculated easily from neutron-diffraction data,
since the charges of the nuclei are known and the experiment gives
the parameters of their thermal motion.

In connection with the development of high-resolution electron-
microscopy methods (HREM) it has been found possible to
combine the data from direct observations with EDSA methods.
However, EDSA permits one to determine the atomic positions to a
greater accuracy, since practically the whole of reciprocal space
with 1.0–0.4 Å resolution is used and the three-dimensional
arrangement of atoms is calculated. At the same time, in electron
microscopy, owing to the peculiarities of electron optics and the
necessity for an objective aperture, the image of the atoms in a
crystal ���x� � A�x� is a convolution, with the aperture function
blurring the image up to 1.5–2 Å resolution. In practice, in TEM one
obtains only the images of the heaviest atoms of an object.
However, the possibility of obtaining a direct image of a structure
with all the defects in the atomic arrangement is the undoubted
merit of TEM.

2.5.5. Image reconstruction* (B. K. VAINSHTEIN)

2.5.5.1. Introduction

In many fields of physical measurements, instrumental and
informative techniques, including electron microscopy and compu-
tational or analogue methods for processing and transforming
signals from objects investigated, find a wide application in
obtaining the most accurate structural data. The signal may be
radiation from an object, or radiation transmitted through the object,
or reflected by it, which is transformed and recorded by a detector.

The image is the two-dimensional signal I�xy� on the observation
plane recorded from the whole three-dimensional volume of the
object, or from its surface, which provides information on its
structure. In an object this information may change owing to
transformation of the scattered wave inside an instrument. The real
image J�xy� is composed of I�xy� and noise N�xy� from signal
disturbances:

J�xy� � I�xy� � N�xy�� �2�5�5�1�
Image-reconstruction methods are aimed at obtaining the most

accurate information on the structure of the object; they are
subdivided into two types (Picture Processing and Digital
Filtering, 1975; Rozenfeld, 1969):

(a) Image restoration – separation of I�xy� from the image by
means of compensation of distortions introduced in it by an image-
forming system as well as by an account of the available
quantitative data reflecting its structure.

(b) Image enhancement – maximum exclusion from the observed
image J�xy� (2.5.5.1) of all its imperfections N�xy� from both
accidental distortions in objects and various ‘noise’ in signals and
detector, and obtaining I�xy� as the result.

These two methods may be used separately or in combination.
The image should be represented in the form convenient for

perception and analysis, e.g. in digital form, in lines of equal
density, in points of different density, in half-tones or colour form
and using, if necessary, a change or reversal of contrast.

Reconstructed images may be used for the three-dimensional
reconstruction of the spatial structure of an object, e.g. of the
density distribution in it (see Section 2.5.6).

This section is connected with an application of the methods of
image processing in transmission electron microscopy (TEM). In
TEM (see Section 2.5.2), the source-emitted electrons are
transmitted through an object and, with the aid of a system of
lenses, form a two-dimensional image subject to processing.

Another possibility for obtaining information on the structure of
an object is structural analysis with the aid of electron diffraction –
EDSA. This method makes use of information in reciprocal space –
observation and measurement of electron-diffraction patterns and
calculation from them of a two-dimensional projection or three-
dimensional structure of an object using the Fourier synthesis. To
do this, one has to find the relative phases of the scattered beams.

The wavefunction of an electron-microscopic image is written as

�I � � �1T� q�0� �2�5�5�2�
Here �0 is the incident plane wave. When the wave is transmitted
through an object, it interacts with the electrostatic potential ��r�
[r�xyz� is the three-dimensional vector in the space of the object];
this process is described by the Schrödinger equation (Section
2.5.2.1). As a result, on the exit surface of an object the wave takes
the form q�0�x� where q is the transmission function and x is the
two-dimensional vector x�xy�. The diffraction of the wave q�0 is

� Questions related to this section may be addressed to Dr D. L. Dorset (see list of
contributing authors). Dr Dorset kindly checked the proofs of this section.
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described by the two-dimensional Fourier operator:

� q � Q�u� � �
q�x� exp�2�i�xu�� dx� �2�5�5�3�

Here, we assume the initial wave amplitude to be equal to unity
and the initial phase to be zero, so that q�0 � q, which defines, in
this case, the wavefunction in the back focal plane of an objective
lens with the reciprocal-space coordinates u�u, v�. The function Q is
modified in reciprocal space by the lens transfer function T�u�. The
scattered wave transformation into an image is described by the
inverse Fourier operator � �1TQ.

The process of the diffraction � q�0 � Q, as seen from (2.5.5.1),
is the same in both TEM and EDSA. Thus, in TEM under the lens
actions � �1TQ the image formation from a diffraction pattern takes
place with an account of the phases, but these phases are modified
by the objective-lens transfer function. In EDSA, on the other hand,
there is no distorting action of the transfer function and the ‘image’
is obtained by computing the operation � �1Q.

The computation of projections, images and Fourier transforma-
tion is made by discretization of two-dimensional functions on a
two-dimensional network of points – pixels in real space x�xj, yk�
and in reciprocal space u�um, vn�.

2.5.5.2. Thin weak phase objects at optimal defocus

The intensity distribution I�xy� � ��I �2 of an electron wave in the
image plane depends not only on the coherent and inelastic
scattering, but also on the instrumental functions. The electron
wave transmitted through an object interacts with the electrostatic
potential ��r� which is produced by the nuclei charges and the
electronic shells of the atoms. The scattering and absorption of
electrons depend on the structure and thickness of a specimen, and
the atomic numbers of the atoms of which it is composed. If an
object with the three-dimensional distribution of potential ��r� is
sufficiently thin, then the interaction of a plane electron wave �0
with it can be described as the interaction with a two-dimensional
distribution of potential projection ��x�,

��x� � �b

0
��r� dz, �2�5�5�4�

where b is the specimen thickness. It should be noted that, unlike the
three-dimensional function of potential ��r� with dimension
�M1�2L3�2T�1�, the two-dimensional function of potential projection
��x� has the potential-length dimension �M1�2L1�2T�1� which,
formally, coincides with the charge dimension. The transmission
function, in the general case, has the form q�x� � exp��i	��x��
(2.5.2.42), and for weak phase objects the approximation �	�� 1�

q�x� � 1� i	��x� �2�5�5�5�
is valid.

In the back focal plane of the objective lens the wave has the
form

Q�uv�  T�U� �2�5�5�6�

T � A�U� exp�i�U� �2�5�5�7a�

��U� � ��f �U2 � �

2
Cs�

3U4, �2�5�5�7b�

where U � �u2 � v2�1�2; exp�i��U�� is the Scherzer phase function
(Scherzer, 1949) of an objective lens (Fig. 2.5.5.1), A�U� is the
aperture function, Cs the spherical aberration coefficient, and �f the
defocus value [(2.5.2.32)–(2.5.2.35)].

The bright-field image intensity (in object coordinates) is

I�xy� � ��I�xy� � t�xy��2, �2�5�5�8�

where t � � �1�T �. The phase function (2.5.5.7) depends on
defocus, and for a weak phase object (Cowley, 1981)

I�xy� � 1� 2	��xy� � s�xy�, �2�5�5�9�

where s � � �1�A�U�� sin��, which includes only an imaginary part
of function (2.5.5.6). While selecting defocus in such a way that
under the Scherzer defocus conditions [(2.5.2.44), (2.5.2.45)]
� sin�� 
 1, one could obtain

I�xy� � 1� 2	��xy� � a�xy�� �2�5�5�10�

In this very simple case the image reflects directly the structure of
the object – the two-dimensional distribution of the projection of the
potential convoluted with the spread function a � � �1A. In this
case, no image restoration is necessary. Contrast reversal may be
achieved by a change of defocus.

At high resolution, this method enables one to obtain an image of
projections of the atomic structure of crystals and defects in the
atomic arrangement – vacancies, replacements by foreign atoms,
amorphous structures and so on; at resolution worse than atomic one
obtains images of dislocations as continuous lines, inserted phases,
inclusions etc. (Cowley, 1981). It is also possible to obtain images
of thin biological crystals, individual molecules, biological
macromolecules and their associations.

Image restoration. In the case just considered (2.5.5.10), the
projection of potential ��xy�, convoluted with the spread function,
can be directly observed. In the general case (2.5.5.9), when the
aperture becomes larger, the contribution to image formation is
made by large values of spatial frequencies U, in which the function
sin � oscillates, changing its sign. Naturally, this distorts the image
just in the region of appropriate high resolution. However, if one
knows the form of the function sin � (2.5.5.7), the true function
��xy� can be restored.

This could be carried out experimentally if one were to place in
the back focal plane of an objective lens a zone plate transmitting
only one-sign regions of sin � (Hoppe, 1971). In this case, the
information on ��xy� is partly lost, but not distorted. To perform
such a filtration in an electron microscope is a rather complicated
task.

Another method is used (Erickson & Klug, 1971). It consists of a
Fourier transformation � �1 of the measured intensity distribution
TQ (2.5.5.6) and division of this transform, according to
(2.5.5.7a,b), by the phase function sin �. This gives

Fig. 2.5.5.1. The � function and two components of the Scherzer phase
function sin ��U� and cos ��U�.
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TQ
sin�

� Q�uv�A�U�� �2�5�5�11a�

Then, the new Fourier transformation � QA yields (in the weak-
phase-object approximation) the true distribution

��xy� � a�xy�� �2�5�5�11b�
The function sin � depending on defocus �f should be known to
perform this procedure. The transfer function can also be found
from an electron micrograph (Thon, 1966). It manifests itself in a
circular image intensity modulation of an amorphous substrate or, if
the specimen is crystalline, in the ‘noise’ component of the image.
The analogue method (optical Fourier transformation for obtaining
the image sin�) can be used (optical diffraction, see below);
digitization and Fourier transformation can also be applied (Hoppe
et al., 1973).

The thin crystalline specimen implies that in the back focal
objective lens plane the discrete kinematic amplitudes �hk are
arranged and, by the above method, they are corrected and released
from phase distortions introduced by the function sin � (see below)
(Unwin & Henderson, 1975).

For the three-dimensional reconstruction (see Section 2.5.6) it is
necessary to have the projections of potential of the specimen tilted
at different angles � to the beam direction (normal beam incidence
corresponds to � � 0). In this case, the defocus �f changes linearly
with increase of the distance l of specimen points from the rotation
axis �f� � �f0�1� l sin��. Following the above procedure for
passing on to reciprocal space and correction of sin �, one can find
���xy� (Henderson & Unwin, 1975).

2.5.5.3. An account of absorption

Elastic interaction of an incident wave with a weak phase object
is defined on its exit surface by the distribution of potential
projection ��xy�; however, in the general case, the electron
scattering amplitude is a complex one (Glauber & Schomaker,
1953). In such a way, the image itself has the phase and amplitude
contrast. This may be taken into account if one considers not only
the potential projection ��xy�, but also the ‘imaginary potential’
��xy� which describes phenomenologically the absorption in thin
specimens. Then, instead of (2.5.5.5), the wave on the exit surface
of a specimen can be written as

q�xy� � 1� i	��xy� � ��xy� �2�5�5�12�
and in the back focal plane if � � � � and M � � �

Q�uv� � ��uv� � i	��uv� �M�uv�� �2�5�5�13�
Usually, � is small, but it can, nevertheless, make a certain
contribution to an image. In a sufficiently good linear approxima-
tion, it may be assumed that the real part cos � of the phase function
(2.5.5.7a) affects M�uv�, while ��xy�, as we know, is under the
action of the imaginary part sin �.

Thus, instead of (2.5.5.6), one can write

Q�exp i�� � ��u� � i	��u� sin��M�u� cos�, �2�5�5�14�
and as the result, instead of (2.5.5.10),

I�xy� � 1� 2	��xy� � � �1�sin�� � a�U�
� 2��xy� � � �1�cos�� � a�U�� �2�5�5�15�

The functions ��xy� and ��xy� can be separated by object
imaging using the through-focus series method. In this case, using
the Fourier transformation, one passes from the intensity distribu-
tion (2.5.5.15) in real space to reciprocal space. Now, at two
different defocus values �f1 and �f2 [(2.5.5.6), (2.5.5.7a,b)] the

values ��u� and M�u� can be found from the two linear equations
(2.5.5.14). Using the inverse Fourier transformation, one can pass
on again to real space which gives ��x� and ��x� (Schiske, 1968). In
practice, it is possible to use several through-focus series and to
solve a set of equations by the least-squares method.

Another method for processing takes into account the simulta-
neous presence of noise N�x� and transfer function zeros (Kirkland
et al., 1980). In this method the space frequencies corresponding to
small values of the transfer function modulus are suppressed, while
the regions where such a modulus is large are found to be
reinforced.

2.5.5.4. Thick crystals

When the specimen thickness exceeds a certain critical value
(�50–100 Å), the kinematic approximation does not hold true and
the scattering is dynamic. This means that on the exit surface of a
specimen the wave is not defined as yet by the projection of
potential ��xy� � �

��r� dz (2.5.5.3), but one has to take into
account the interaction of the incident wave �0 and of all the
secondary waves arising in the whole volume of a specimen.

The dynamic scattering calculation can be made by various
methods. One is the multi-slice (or phase-grating) method based on
a recurrent application of formulae (2.5.5.3) for n thin layers �zi
thick, and successive construction of the transmission functions qi
(2.5.5.4), phase functions Qi � � qi, and propagation function pk �
�k�2�i�z� exp�ik�x2 � y2��2�z� (Cowley & Moodie, 1957).

Another method – the scattering matrix method – is based on the
solution of equations of the dynamic theory (Chapter 5.2). The
emerging wave on the exit surface of a crystal is then found to
diffract and experience the transfer function action [(2.5.5.6),
(2.5.5.7a,b)].

The dynamic scattering in crystals may be interpreted using
Bloch waves:

� j�r� ��

H
C j

H exp��2�ik j
H  r�� �2�5�5�16�

It turns out that only a few (bound and valence Bloch waves) have
strong excitation amplitudes. Depending on the thickness of a
crystal, only one of these waves or their linear combinations
(Kambe, 1982) emerges on the exit surface. An electron-
microscopic image can be interpreted, at certain thicknesses, as
an image of one of these waves [with a correction for the transfer
function action (2.5.5.6), (2.5.5.7a,b)]; in this case, the identical
images repeat with increasing thickness, while, at a certain
thickness, the contrast reversal can be observed. Only the first
Bloch wave which arises at small thickness, and also repeats with
increasing thickness, corresponds to the projection of potential
��xy�, i.e. the atom projection distribution in a thin crystal layer.

An image of other Bloch waves is defined by the function ��r�,
but their maxima or minima do not coincide, in the general case,
with the atomic positions and cannot be interpreted as the projection
of potential. It is difficult to reconstruct ��xy� from these images,
especially when the crystal is not ideal and contains imperfections.
In these cases one resorts to computer modelling of images at
different thicknesses and defocus values, and to comparison with an
experimentally observed pattern.

The imaging can be performed directly in an electron microscope
not by a photo plate, but using fast-response detectors with digitized
intensity output on line. The computer contains the necessary
algorithms for Fourier transformation, image calculation, transfer
function computing, averaging, and correction for the observed and
calculated data. This makes possible the interpretation of the pattern
observed directly in experiment (Herrmann et al., 1980).
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2.5.5.5. Image enhancement

The real electron-microscope image is subdivided into two
components:

J�xy� � I�xy� � N�xy�� �2�5�5�17�
The main of these, I�xy�, is a two-dimensional image of the ‘ideal’
object obtained in an electron microscope with instrumental
functions inherent to it. However, in the process of object imaging
and transfer of this information to the detector there are various
sources of noise. In an electron microscope, these arise owing to
emission-current and accelerating-voltage fluctuations, lens-
supplying current (temporal fluctuations), or mechanical instabil-
ities in a device, specimen or detector (spatial shifts). The two-
dimensional detector (e.g. a photographic plate) has structural
inhomogeneities affecting a response to the signal. In addition, the
specimen is also unstable; during preparation or imaging it may
change owing to chemical or some other transformations in its
structure, thermal effects and so on. Biological specimens scatter
electrons very weakly and their natural state is moist, while in the
electron-microscope column they are under vacuum conditions. The
methods of staining (negative or positive), e.g. of introducing into
specimens substances containing heavy atoms, as well as the freeze-
etching method, somewhat distort the structure of a specimen.
Another source of structure perturbation is radiation damage, which
can be eliminated at small radiation doses or by using the cryogenic
technique. The structure of stained specimens is affected by stain
graininess. We assume that all the deviations �Ik�xy� of a specimen
image from the ‘ideal’ image Ik�xy� are included in the noise term
Nk�xy�. The substrate may also be inhomogeneous. All kinds of
perturbations cannot be separated and they appear on an electron
microscope image as the full noise content N�xy�.

The image enhancement involves maximum noise suppression
N�xy� and hence the most accurate separation of a useful signal
I�xy� from the real image J�xy� (2.5.5.1). At the signal/noise ratio
I�N 
 1 such a separation appears to be rather complicated. But in
some cases the real image reflects the structure sufficiently well, e.g.
during the atomic structure imaging of some crystals �I�N � 10�.
In other cases, especially of biological specimen imaging, the noise
N distorts substantially the image, �I�N� � 5---10. Here one should
use the methods of enhancement. This problem is usually solved by
the methods of statistical processing of sets of images Jk
�k � 1, � � � , n�. If one assumes that the informative signal Ik�xy�
is always the same, then the noise error N�xy� may be reduced.

The image enhancement methods are subdivided into two
classes:

(a) image averaging in real space xy;
(b) Fourier analysis and filtration in reciprocal space.

These methods can be used separately or in combination. The
enhancement can be applied to both the original and the restored
images; there are also methods of simultaneous restoration and
enhancement.

The image can be enhanced by analogue (mainly optical and
photographic) methods or by computational methods for processing
digitized functions in real and reciprocal space.

The cases where the image has translational symmetry, rotational
symmetry, and where the image is asymmetric will be considered.

Periodic images. An image of the crystal structure with atomic or
molecular resolution may be brought to self-alignment by a shift by
a and b periods in a structure projection. This can be performed
photographically by printing the shifted image on the same
photographic paper or, vice versa, by shifting the paper (Mc-
Lachlan, 1958).

The Fourier filtration method for a periodic image Ip with noise N
is based on the fact that in Fourier space the components � Ip and
� N are separated. Let us carry out the Fourier transformation of the

periodic signal Ip with the periods a, b and noise N:

� J � � �Ip�xy� � N�xy��
� �

Ip�xy� exp�2�i�hx� ky�� dx dy� � N

��
�hk��u� uhk� � � N ; �2�5�5�18�

uhk � ha� � kb��

The left part of (2.5.5.18) represents the Fourier coefficients �hk
distributed discretely with periods a� and b� in the plane u�uv�. This
is the two-dimensional reciprocal lattice. The right-hand side of
(2.5.5.18) is the Fourier transform � N distributed continuously in
the plane. Thus these parts are separated. Let us ‘cut out’ from
distribution (2.5.5.18) only �hk values using the ‘window’ function
w�uv�. The window should match each of the real peaks �hk which,
owing to the finite dimensions of the initial periodic image, are not
points, as this is written in an idealized form in (2.5.5.18) with the
aid of � functions. In reality, the ‘windows’ may be squares of about
a��10, b��10 in size, or a circle. Performing the Fourier
transformation of product (2.5.5.18) without � N , and set of
windows w�u� � w�uv� ��h� k��u� ha� � kb��, we obtain:

J�xy� � � �1�w�u��
h� k

�h� k��u� uh� k�	

� W�xy� � Ip�x�, �2�5�5�19�
the periodic component without the background, W �xy� �
� �1w�u�. The zero coefficient �00 in (2.5.5.19) should be
decreased, since it is due, in part, to the noise. When the window
w is sufficiently small, Ip in (2.5.5.19) represents the periodic
distribution �I� (average over all the unit cells of the projection)
included in Ip (2.5.5.18). Nevertheless, some error from noise in an
image does exist, since with �hk we also introduced into the inverse
Fourier transformation the background transform values � �1Nhk
which are within the ‘windows’.

This approach is realized by an analogue method [optical
diffraction and filtering of electron micrographs in a laser beam
(Klug & Berger, 1964)] and can also be carried out by computing.

As an example, Fig. 2.5.5.2(b) shows an electron micrograph of
the periodic structure of a two-dimensional protein crystal, while
Fig. 2.5.5.2(c) represents optical diffraction from this layer. In order
to dissect the aperiodic component � N in a diffraction plane,
according to the scheme in Fig. 2.5.5.2(a), one places a mask with
windows covering reciprocal-lattice points. After such a filtration,
only the Ip component makes a contribution during the image
formation by means of a lens, while the component � N diffracted
by the background is delayed. As a result, an optical pattern of the
periodic structure is obtained (Fig. 2.5.5.2d).

Optical diffractometry also assists in determining the parameters
of a two-dimensional lattice and its symmetry.

Using the same method, one can separate the superimposed
images of two-dimensional structures with different periodicity and
in different orientation, the images of the ‘near’ and ‘far’ sides of
tubular periodic structures with monomolecular walls (Klug &
DeRosier, 1966; Kiselev et al., 1971), and so on.

Computer filtering involves measuring the image optical density
Jobs, digitization, and Fourier transformation (Crowther & Amos,
1971). The sampling distance usually corresponds to one-third of
the image resolution. When periodic weak phase objects are
investigated, the transformation (2.5.5.18) yields the Fourier
coefficients. If necessary, we can immediately make corrections
in them using the microscope transfer function according to
(2.5.5.6), (2.5.5.7a,b) and (2.5.5.11a), and thereby obtain the true
kinematic amplitudes �hk . The inverse transformation (2.5.5.16)
gives a projection of the structure (Unwin & Henderson, 1975;
Henderson & Unwin, 1975).
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Sometimes, an observed image J�x� is ‘noised’ by the N�x� to a
great extent. Then, one may combine data on real and reciprocal
space to construct a sufficiently accurate image. In this case, the
electron-diffraction pattern is measured and structure-factor moduli
from diffraction reflection intensities Ihk� obs are obtained:

��hk� obs� �
������������
Ihk� obs

�
� �2�5�5�20�

At the same time, the structure factors

�hk� calc � ��hk� calc� exp�i�hk� calc� �2�5�5�21�
are calculated from the processed structure projection image by
means of the Fourier transformation. However, owing to poor image
quality we take from these data only the values of phases �hk since
they are less sensitive to scattering density distortions than the
moduli, and construct the Fourier synthesis

I�xy� ��

hk
��hk� obs� exp�i�hk� calc�

� exp�2�i�hx� ky��� �2�5�5�22�
Here the possibilities of combining various methods open up, e.g.

for obtaining the structure-factor moduli from X-ray diffraction,
and phases from electron microscopy, and so on (Gurskaya et al.,
1971).

Images with point symmetry. If a projection of an object (and
consequently, the object itself) has a rotational N-fold axis of
symmetry, the structure coincides with itself on rotation through the
angle 2��N . If the image is rotated through arbitrary angles and is
aligned photographically with the initial image, then the best
density coincidence will take place at a rotation through � �
�k2��N� �k � 1, � � � , N� which defines N. The pattern averaging
over all the rotations will give the enhanced structure image with an
�N�1�2 times reduced background (Markham et al., 1963).

Rotational filtering can be performed on the basis of the Fourier
expansion of an image in polar coordinates over the angles
(Crowther & Amos, 1971).

I�r,�� � ���

n���
gn�r� exp�in��� �2�5�5�23�

The integral over the radius from azimuthal components gn gives
their power

pn �
�a

0
�gn�2r dr, �2�5�5�24�

where a is the maximum radius of the particle. A set pn forms a
spectrum, the least common multiple N of strong peaks defining the
N-fold symmetry. The two-dimensional reconstructed image of a
particle with rotational symmetry is defined by the synthesis
(2.5.5.24) with n � 0, N , 2N , 3N .

Asymmetric images. In this case, a set of images is processed by
computational or analogue methods. The initial selection of images
involves the fulfillment of the maximum similarity condition.

The averaging of n images in real space gives

Ienh � �1�n��
n

k�1
Jk�xy� � �Ik��xy� � �1�n��Nk�xy�� �2�5�5�25�

The signal/noise ratio on an average image is �n�1�2 times enhanced.
The degree of similarity and accuracy of superposition of two

images with an account both of translational and angular shifts is
estimated by a cross-correlation function* of two selected images
J1 and J2 (Frank, 1975, 1980).

Fig. 2.5.5.2. (a) Diagram of an optical diffractometer. D is the object (an electron micrograph), Mp is the diffraction plane and a mask that transmits only
�hk , Dp is the plane of the (filtered) image; (b) an electron micrograph of a crystalline layer of the protein phosphorylase b; (c) its optical diffraction
pattern (the circles correspond to the windows in the mask that transmits only the �hk diffracted beams from the periodic component of the image); (d)
the filtered image. Parts (b)–(d) are based on the article by Kiselev et al. (1971).

� At Ij � Ik this is the autocorrelation function, an analogue of the Patterson
function used in crystallography.
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k�x�� � J1 � J2 �
�

J1�x�J2�x� x�� dx

� kI1I2 � kI1N2 � kI2N1 � kN1N2 � �2�5�5�26�
The value k�x�� is the measure of image similarity, the x�
coordinate of the maximum indicates the shift of the images
relative to each other. The first term of the resultant expression
(2.5.5.26) is the cross-correlation function of noise-corrected
images being compared, the second and third terms are
approximately equal to zero, since the noise does not correlate
with the signal; the last term is the autocorrelation function of
the noise (Cramér, 1954; Frank, 1975, 1980).

The calculation of a correlation function is performed by means
of Fourier transformation on the basis of the convolution theorem,
since the Fourier transformation of the product of the Fourier
transform of function J1 and the conjugated Fourier transform
function J2 gives the cross-correlation function of the initial
functions:

k � � �1�� J1  � �J2�� �2�5�5�27�
The probability density of samples for images has the form

p�J1J2 � � � Jn� � 1

�	 ������
2�

� �n

� exp
�1
2	2

�n �
�Jk�x� xk� � J�x��2 dx

� �

�

�2�5�5�28�
Here J is the tentative image (as such, a certain ‘best’ image can

first be selected, while at the repeated cycle an average image is
obtained), Jk�x� is the image investigated, 	 is the standard
deviation of the normal distribution of noises and xk the relative
shift of the image. This function is called a likelihood function; it
has maxima relative to the parameters J�x�, xk , 	. The average
image and dispersion are

J�x� � �1�n��
n
�Jk�x� xk��,

	2 � �1�n��
n
�Jk�x� xk� � J�x��2� �2�5�5�29�

This method is called the maximum-likelihood method (Cramér,
1954; Kosykh et al., 1983).

It is convenient to carry out the image alignment, in turn, with
respect to translational and angular coordinates. If we start with an
angular alignment we first use autocorrelation functions or power
spectra, which have the maximum and the symmetry centre at the
origin of the coordinates. The angular correlation maximum

f ���� � �
fk��� ���fe��� d� �2�5�5�30�

gives the mutual angle of rotation of two images.
Then we carry out the translational alignment of rotationally

aligned images using the translational correlation function
(2.5.5.26) (Langer et al., 1970).

In the iteration alignment method, the images are first
translationally aligned and then an angular shift is determined in
image space in polar coordinates with the centre at the point of the
best translational alignment. After the angular alignment the whole
procedure may be repeated (Steinkilberg & Schramm, 1980).

The average image obtained may have false high-frequency
components. They can be excluded by multiplying its Fourier
components by some function and suppressing high-space
frequencies, for instance by an ‘artificial temperature factor’
exp��B�u�2	.

For a set of similar images the Fourier filtration method can also
be used (Ottensmeyer et al., 1977). To do this, one should prepare
from these images an artificial ‘two-dimensional crystal’, i.e. place

them in the same orientation at the points of the two-dimensional
lattice with periods a, b.

J � �n

k�1
Jk�x� tp�; t � p1a� p2b� �2�5�5�31�

The processing is then performed according to (2.5.5.18),
(2.5.5.19); as a result one obtains �I�xy�� with reduced background.
Some translational and angular errors in the arrangement of the
images at the artificial lattice points act as an artificial temperature
factor. The method can be realized by computing or by optical
diffraction.

2.5.6. Three-dimensional reconstruction*
(B. K. VAINSHTEIN)

2.5.6.1. The object and its projection

In electron microscopy we obtain a two-dimensional image
�2�x�� – a projection of a three-dimensional object �3�r� (Fig.
2.5.6.1):

�2�x�� �
�
�3�r� d� �  x� �2�5�6�1�

The projection direction is defined by a unit vector ���,�� and the
projection is formed on the plane x perpendicular to � � The set of
various projections �2�x�i� � �2i�xi� may be assigned by a discrete
or continuous set of points � i��i,�i� on a unit sphere �� � � 1 (Fig.
2.5.6.2). The function ��x�� reflects the structure of an object, but
gives information only on x� coordinates of points of its projected
density. However, a set of projections makes it possible to
reconstruct from them the three-dimensional (3D) distribution
�3�xyz� (Radon, 1917; DeRosier & Klug, 1968; Vainshtein et al.,
1968; Crowther, DeRosier & Klug, 1970; Gordon et al., 1970;
Vainshtein, 1971a; Ramachandran & Lakshminarayanan, 1971;
Vainshtein & Orlov, 1972, 1974; Gilbert, 1972a; Herman, 1980).
This is the task of the three-dimensional reconstruction of the
structure of an object:

set �2�xi� � �3�r�� �2�5�6�2�
Besides electron microscopy, the methods of reconstruction of a

structure from its projections are also widely used in various fields,
e.g. in X-ray and NMR tomography, in radioastronomy, and in
various other investigations of objects with the aid of penetrating,
back-scattered or their own radiations (Bracewell, 1956; Deans,
1983; Mersereau & Oppenheim, 1974).

In the general case, the function �3�r� (2.5.6.1) (the subscript
indicates dimension) means the distribution of a certain scattering
density in the object. The function �2�x� is the two-dimensional
projection density; one can also consider one-dimensional projec-
tions �1�x� of two- (or three-) dimensional distributions. In electron
microscopy, under certain experimental conditions, by functions
�3�r� and �2�x� we mean the potential and the projection of the
potential, respectively [the electron absorption function � (see
Section 2.5.4) may also be considered as ‘density’]. Owing to a very
large depth of focus and practical parallelism of the electron beam
passing through an object, in electron microscopy the vector � is the
same over the whole area of the irradiated specimen – this is the
case of parallel projection.

The 3D reconstruction (2.5.6.2) can be made in the real space of
an object – the corresponding methods are called the methods of
direct three-dimensional reconstruction (Radon, 1917; Vainshtein

� Questions related to this section may be addressed to Professor J. M. Cowley (see
list of contributing authors). Professor Cowley kindly checked the proofs for this
section.
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et al., 1968; Gordon et al., 1970; Vainshtein, 1971a; Ramachandran
& Lakshminarayanan, 1971; Vainshtein & Orlov, 1972, 1974;
Gilbert, 1972a).

On the other hand, three-dimensional reconstruction can be
carried out using the Fourier transformation, i.e. by transition to
reciprocal space. The Fourier reconstruction is based on the well
known theorem: the Fourier transformation of projection �2 of a
three-dimensional object �3 is the central (i.e. passing through the
origin of reciprocal space) two-dimensional plane cross section of a
three-dimensional transform perpendicular to the projection vector
(DeRosier & Klug, 1968; Crowther, DeRosier & Klug, 1970;
Bracewell, 1956). In Cartesian coordinates a three-dimensional
transform is

� 3��3�r�� � �3�uvw� � ���
�3�xyz�

� exp�2�i�ux� vy� wz�	 dx dy dz� �2�5�6�3�
The transform of projection �2�xy� along z is

� 2��2�xy�� � �3�uv0� � ���
�3�xyz�

� exp�2�i�ux� vy� 0z�	 dx dy dz

� ���
�3�xyz� dz exp�2�i�ux� vy�	 dx dy

� ��
�2�xy� exp�2�i�ux� vy�	 dx dy

� �2�uv�� �2�5�6�4�

In the general case (2.5.6.1) of projecting the plane x�xy��u�uv�  
� along the vector �

� 2��2�x��� � �2�u� �� �2�5�6�5�
Reconstruction with Fourier transformation involves transition
from projections �2i at various � i to cross sections �2i, then to
construction of the three-dimensional transform �3�u� by means of
interpolation between �2i in reciprocal space, and transition by the
inverse Fourier transformation to the three-dimensional distribution
�3�r�:

set �2i�x� i� � set � 2��2�
! set �2i � �3 � � �1

3 ��3� ! �3�r�� �2�5�6�6�
Transition (2.5.6.2) or (2.5.6.6) from two-dimensional electron-
microscope images (projections) to a three-dimensional structure
allows one to consider the complex of methods of 3D reconstruction
as three-dimensional electron microscopy. In this sense, electron
microscopy is an analogue of methods of structure analysis of
crystals and molecules providing their three-dimensional spatial
structure. But in structure analysis with the use of X-rays, electrons,
or neutrons the initial data are the data in reciprocal space ��2i� in
(2.5.6.6), while in electron microscopy this role is played by two-
dimensional images �2i�x� [(2.5.6.2), (2.5.6.6)] in real space.

In electron microscopy the 3D reconstruction methods are,
mainly, used for studying biological structures (symmetric or
asymmetric associations of biomacromolecules), the quaternary
structure of proteins, the structures of muscles, spherical and rod-
like viruses, bacteriophages, and ribosomes.

An exact reconstruction is possible if there is a continuous set of
projections �� corresponding to the motion of the vector ���,��
over any continuous line connecting the opposite points on the unit
sphere (Fig. 2.5.6.2). This is evidenced by the fact that, in this case,
the cross sections � 2 which are perpendicular to � in Fourier space
(2.5.6.4) continuously fill the whole of its volume, i.e. give � 3��3�
(2.5.6.3) and thereby determine �3�r� � � �1��3�.

In reality, we always have a discrete (but not continuous) set of
projections �2i. The set of �2i is, practically, obtained by the
rotation of the specimen under the beam through various angles
(Hoppe & Typke, 1979) or by imaging of the objects which are
randomly oriented on the substrate at different angles (Kam, 1980;
Van Heel, 1984). If the object has symmetry, one of its projections
is equivalent to a certain number of different projections.

The object �3�r� is finite in space. For function �3�r� and any of
its projections there holds the normalization condition

� � �
�3�r� dvr �

�
�2�x� dx � �

�1�x� dx, �2�5�6�7�
where � is the total ‘weight’ of the object described by the density
distribution �3. If one assumes that the density of an object is
constant and that inside the object � � constant � 1, and outside it
� � 0, then � is the volume of an object. The volume of an object,
say, of molecules, viruses and so on, is usually known from data on
the density or molecular mass.

2.5.6.2. Orthoaxial projection

In practice, an important case is where all the projection
directions are orthogonal to a certain straight line: �  z (Fig.
2.5.6.3). Here the axis of rotation or the axis of symmetry of an
object is perpendicular to an electron beam. Then the three-
dimensional problem is reduced to the two-dimensional one, since
each cross section �2i�x, z � constant� is represented by its one-
dimensional projections. The direction of vector � is defined by the
rotational angle � of a specimen:

�1�x�i� ! Li��i� �
�
�2�x� d��; xi  ��� �2�5�6�8�

Fig. 2.5.6.1. A three-dimensional object �3 and its two-dimensional
projection �2.

Fig. 2.5.6.2. The projection sphere and projection �2 of �3 along � onto the
plane x  � . The case �  z represents orthoaxial projection. Points
indicate a random distribution of �.
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In this case, the reconstruction is carried out separately for each
level zl:

set �1� zl�x�� ! set Li
zl
� �2i�xyzl� �2�5�6�9�

and the three-dimensional structure is obtained by superposition of
layers �2zl�xy��z (Vainshtein et al., 1968; Vainshtein, 1978).

2.5.6.3. Discretization

In direct methods of reconstruction as well as in Fourier methods
the space is represented as a discrete set of points ��xjk� on a two-
dimensional net or ��rjkl� on a three-dimensional lattice. It is
sometimes expedient to use cylindrical or spherical coordinates. In
two-dimensional reconstruction the one-dimensional projections
are represented as a set of discrete values Li, at a certain spacing in
x�. The reconstruction (2.5.6.9) is carried out over the discrete net
with m2 nodes �jk . The net side A should exceed the diameter of an
object D, A � D; the spacing a � A�m. Then (2.5.6.8) transforms
into the sum

Li ��

k
�jk � �2�5�6�10�

For oblique projections the above sum is taken over all the points
within the strips of width a along the axis ��i (Fig. 2.5.6.4).

The resolution � of the reconstructed function depends on the
number h of the available projections. At approximately uniform
angular distribution of projections, and diameter equal to D, the
resolution at reconstruction is estimated as

� 
 2D�h� �2�5�6�11�
The reconstruction resolution � should be equal to or somewhat
better than the instrumental resolution d of electron micrographs
�� � d�, the real resolution of the reconstructed structure being d.
If the number of projections h is not sufficient, i.e. � � d, then the
resolution of the reconstructed structure is � (Crowther, DeRosier &
Klug, 1970; Vainshtein, 1978).

In electron microscopy the typical instrumental resolution d of
biological macromolecules for stained specimens is about 20 Å; at
the object with diameter D 
 200 Å the sufficient number h of
projections is about 20. If the projections are not uniformly

distributed in projection angles, the resolution decreases towards
x  � for such � in which the number of projections is small.

Properties of projections of symmetric objects. If the object has
an N-fold axis of rotation, its projection has the same symmetry. At
orthoaxial projection perpendicular to the N-fold axis the
projections which differ in angle at j�2��N� are identical:

�2�x�� � �2�x��j�2��N�� �j � 1, 2, � � � , N�� �2�5�6�12�

This means that one of its projections is equivalent to N projections.
If we have h independent projections of such a structure, the real
number of projections is hN (Vainshtein, 1978). For a structure with
cylindrical symmetry �N � �� one of its projections fully
determines the three-dimensional structure.

Many biological objects possess helical symmetry – they
transform into themselves by the screw displacement operation
sp�q, where p is the number of packing units in the helical structure
per q turns of the continuous helix. In addition, the helical structures
may also have the axis of symmetry N defining the pitch of the
helix. In this case, a single projection is equivalent to h � pN
projections (Cochran et al., 1952).

Individual protein molecules are described by point groups of
symmetry of type N or N�2. Spherical viruses have icosahedral
symmetry 532 with two-, three- and fivefold axes of symmetry. The
relationship between vectors � of projections is determined by the
transformation matrix of the corresponding point group (Crowther,
Amos et al., 1970).

2.5.6.4. Methods of direct reconstruction

Modelling. If several projections are available, and, especially, if
the object is symmetric, one can, on the basis of spatial imagination,
recreate approximately the three-dimensional model of the object
under investigation. Then one can compare the projections of such a
model with the observed projections, trying to draw them as near as
possible. In early works on electron microscopy of biomolecules the
tentative models of spatial structure were constructed in just this
way; these models provide, in the case of the quaternary structure of
protein molecules or the structure of viruses, schemes for the
arrangement of protein subunits. Useful subsidiary information in
this case can be obtained by the method of optical diffraction and
filtration.

Fig. 2.5.6.3. Orthoaxial projection.

Fig. 2.5.6.4. Discretization and oblique projection.
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2.5.6.5. The method of back-projection

This method is also called the synthesis of projection functions.
Let us consider a two-dimensional case and stretch along ��i each
one-dimensional projection Li (Fig. 2.5.6.5) by a certain length b;
thus, we obtain the projection function

Li�x� � 1
b

Li�xi�  1��i�� �2�5�6�13�

Let us now superimpose h functions Li

�h

i�1
Li�x� � �2�x�� �2�5�6�14�

The continuous sum over the angles of projection synthesis is

�2�x� �
��

0
L��, x� d� � �2�x� � �x��1


�h

i�1
Li � �2�x� � B�1�; �2�5�6�15�

this is the convolution of the initial function with a rapidly falling
function �x��1 (Vainshtein, 1971b). In (2.5.6.15), the approximation
for a discrete set of h projections is also written. Since the function
�x��1 approaches infinity at x � 0, the convolution with it will
reproduce the initial function ��x�, but with some background B
decreasing around each point according to the law �x��1. At
orthoaxial projection the superposition of cross sections �2�x, zk�
arranged in a pile gives the three-dimensional structure �3.

Radon operator. Radon (1917; see also Deans, 1983) gave the
exact solution of the problem of reconstruction. However, his
mathematical work was for a long time unknown to investigators
engaged in reconstruction of a structure from images; only in the
early 1970s did some authors obtain results analogous to Radon’s
(Ramachandran & Lakshminarayanan, 1971; Vainshtein & Orlov,
1972, 1974; Gilbert, 1972a).

The convolution in (2.5.6.15) may be eliminated using the Radon
integral operator, which modifies projections by introducing around
each point the negative values which annihilate on superposition the
positive background values. The one-dimensional projection
modified with the aid of the Radon operator has the form

	L�x�� � 1
2�2

��

0

2L�x�� � L�x� � x��� � L�x� � x���
x�2�

dx���

�2�5�6�16�
Now �2�x� is calculated analogously to (2.5.6.14), not from the
initial projections L but from the modified projection 	L:

�2�x� �
��

0

	L��, x� d� 
�k

i�1

	Li��i, x�� �2�5�6�17�

The reconstruction of high-symmetry structures, in particular
helical ones, by the direct method is carried out from one projection
making use of its equivalence to many projections. The Radon
formula in discrete form can be obtained using the double Fourier
transformation and convolution (Ramachandran & Lakshminar-
ayanan, 1971).

2.5.6.6. The algebraic and iteration methods

These methods have been derived for the two-dimensional case;
consequently, they can also be applied to three-dimensional
reconstruction in the case of orthoaxial projection.

Let us discretize �2�x� by a net m2 of points �jk; then we can
construct the system of equations (2.5.6.10).

When h projections are available the condition of unambiguous
solution of system (2.5.6.10) is: h � m. At m 
 �3---5�h we can, in
practice, obtain sufficiently good results (Vainshtein, 1978).

Methods of reconstruction by iteration have also been derived
that cause some initial distribution to approach one �2�x� satisfying
the condition that its projection will resemble the set Li. Let us
assign on a discrete net �jk as a zero-order approximation the
uniform distribution of mean values (2.5.6.7)

�0
jk � ��� � ��m2� �2�5�6�18�

The projection of the qth approximation �q
jk at the angle �i (used to

account for discreteness) is Liq
n .

The next approximation �q�1 for each point jk is given in the
method of ‘summation’ by the formula

�q�1
jk � max��q

jk � �Li
n � Li� q

n ��Ni
Ln

; 0�, �2�5�6�19�
where NLi is the number of points in a strip of the projection Li

n. One
cycle of iterations involves running �q

jk around all of the angles �j
(Gordon et al., 1970).

When carrying out iterations, we may take into account the
contribution not only of the given projection, but also of all others.
In this method the process of convergence improves. Some other
iteration methods have been elaborated (Gordon & Herman, 1971;
Gilbert, 1972b; Crowther & Klug, 1974; Gordon, 1974).

2.5.6.7. Reconstruction using Fourier transformation

This method is based on the Fourier projection theorem
[(2.5.6.3)–(2.5.6.5)]. The reconstruction is carried out according
to scheme (2.5.6.6) (DeRosier & Klug, 1968; Crowther, DeRosier
& Klug, 1970; Crowther, Amos et al. 1970; DeRosier & Moore,
1970; Orlov, 1975). The three-dimensional Fourier transform
� 3�u� is found from a set of two-dimensional cross sections
� 2�u� on the basis of the Whittaker–Shannon interpolation. If the
object has helical symmetry (which often occurs in electron
microscopy of biological objects, e.g. on investigating bacterio-
phage tails, muscle proteins) cylindrical coordinates are used.
Diffraction from such structures with c periodicity and scattering
density ��r,�, z� is defined by the Fourier–Bessel transform:

��R,�, Z� �
���

n���
exp in �� �

2

� �� � ��

0

�2�

0

� l

0

��r,�, z�

� Jn�2�rR� exp��i�n�� 2�zZ��r dr d� dz

�
�

n

Gn�R, Z� exp in �� �

2

� �� �
� �2�5�6�20�

Fig. 2.5.6.5. (a) Formation of a projection function; (b) superposition of
these functions.
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The inverse transformation has the form

��r,�, z� ��

n

�
gn�r, Z� exp�in�� exp�2�izZ� dZ, �2�5�6�21�

so that gn and Gn are the mutual Bessel transforms

Gn�R, Z� � ��

0
gn�rZ�Jn�2�rR�2�r dr �2�5�6�22�

gn�r, Z� � ��

0
Gn�R, Z�Jn�2�rR�2�R dR� �2�5�6�23�

Owing to helical symmetry, (2.5.6.22), (2.5.6.23) contain only
those of the Bessel functions which satisfy the selection rule
(Cochran et al., 1952)

l � mp� �nq�N�, �2�5�6�24�
where N, q and p are the helix symmetry parameters,
m � 0, � 1, � 2, � � �. Each layer l is practically determined by
the single function Jn with the lowest n; the contribution of other
functions is neglected. Thus, the Fourier transformation of one
projection of a helical structure, with an account of symmetry and
phases, gives the three-dimensional transform (2.5.6.23). We can
introduce into this transform the function of temperature-factor type
filtering the ‘noise’ from large spatial frequencies.

2.5.6.8. Three-dimensional reconstruction in the general
case

In the general case of 3D reconstruction �3�r� from projections
�2�x� � the projection vector � occupies arbitrary positions on the
projection sphere (Fig. 2.5.6.2). Then, as in (2.5.6.15), we can
construct the three-dimensional spatial synthesis. To do this, let us
transform the two-dimensional projections �2i�x, ���,��i� by
extending them along � as in (2.5.6.13) into three-dimensional
projection functions �3�r�i�.

Analogously to (2.5.6.15), such a three-dimensional synthesis is
the integral over the hemisphere (Fig. 2.5.6.2)

�3�r� �
�

�

�3�r, � i� d�� � ��r� � �r��2


 ��3i�r���� ��i � 
 �3�r� � B; �2�5�6�25�
this is the convolution of the initial function with �r��2 (Vainshtein,
1971b).

To obtain the exact reconstruction of �3�r� we find, from each
�2�x� �, the modified projection (Vainshtein & Orlov, 1974; Orlov,
1975)

	�2�x� � �
�

�2�x� � � �2�x�� �
�x� � x�� �3

dsx� � �2�5�6�26�

By extending �2�x� � along � we transform them into 	�3�r� �.
Now the synthesis over the angles �� � ��,�,��� gives the three-
dimensional function

�3�r� � 1
4�3

�
	�3�r� � d�� 


�

i

	�3i�r���� �� ��i �� �2�5�6�27�

The approximation for a discrete set of angles is written on the
right. In this case we are not bound by the coaxial projection
condition which endows the experiment with greater possibilities;
the use of object symmetry also profits from this. To carry out the
3D reconstruction (2.5.6.25) or (2.5.6.27) one should know all three
Euler’s angles �, �, � (Fig. 2.5.6.2).

The projection vectors � i should be distributed more or less
uniformly over the sphere (Fig. 2.5.6.2). This can be achieved by
using special goniometric devices.

Another possibility is the investigation of particles which, during
the specimen preparation, are randomly oriented on the substrate.
This, in particular, refers to asymmetric ribosomal particles. In this
case the problem of determining these orientations arises.

The method of spatial correlation functions may be applied if a
large number of projections with uniformly distributed projection
directions is available (Kam, 1980). The space correlation function
is the averaged characteristic of projections over all possible
directions which is calculated from the initial projections or the
corresponding sections of the Fourier transform. It can be used to
find the coefficients of the object density function expansion over
spherical harmonics, as well as to carry out the 3D reconstruction in
spherical coordinates.

Another method (Van Heel, 1984) involves the statistical
analysis of image types, subdivision of images into several classes
and image averaging inside the classes. Then, if the object is rotated
around some axis, the 3D reconstruction is carried out by the
iteration method.

If such a specimen is inclined at a certain angle with respect to
the beam, then the images of particles in the preferred orientation
make a series of projections inclined at an angle  and having a
random azimuth. The azimuthal rotation is determined from the
image having zero inclination.

If particles on the substrate have a characteristic shape, they may
acquire a preferable orientation with respect to the substrate, their
azimuthal orientation � being random (Radermacher et al., 1987).

In the general case, the problem of determining the spatial
orientations of randomly distributed identical three-dimensional
particles �3�r� with an unknown structure may be solved by
measuring their two-dimensional projections p�x�� (Fig. 2.5.6.1)

p�x�i� ! �2�x�i� 

�
�3�r� d�i x  � i; �2�5�6�1a�

if the number i of such projections is not less than three, i � 3
(Vainshtein & Goncharov, 1986a,b; Goncharov et al. 1987;
Goncharov, 1987). The direction of the vector � i along which the
projection p�� i� is obtained is set by the angle �i��i,�i� (Fig.
2.5.6.2).

The method is based on the analysis of one-dimensional
projections q� of two-dimensional projections p�x�i�

q�x �� �
�

p�x�i� dx��, �2�5�6�28�
where � is the angle of the rotation about vector � in the p plane.

Lemma 1. Any two projections p1�x�i� and p2�x�2� (Fig. 2.5.6.6)
have common (identical) one-dimensional projections q12�x12�:

q12�x12� � q1� �1j�x �1j� � q2� �2k�x �2k�� �2�5�6�29�
Vectors �1 and �2 (Fig. 2.5.6.3) determine plane h in which they are
both lying. Vector m12 � ��1�2� is normal to plane h and parallel to
axis x12 of the one-dimensional projection q12; both x �1j and x �2j
axes along which the projections q1 and q2 are constructed are
perpendicular to x12.

The corresponding lemma in the Fourier space states:
Lemma 2. Any two plane transforms, �2�u�1� � � 2p1 and

�2�u�2� � � 2p2 intersect along the straight line v12 (Fig. 2.5.6.7);
the one-dimensional transform Q�v12� is the transform of
q12 
 Q�v12� � � 1g12.

Thus in order to determine the orientations �i��i,�i,�i� of a
three-dimensional particle �3� �i�r� it is necessary either to use
projections pi in real space or else to pass to the Fourier space
(2.5.6.5).

Now consider real space. The projections pi are known and can
be measured but angles �ij of their rotation about vector � i (Fig.
2.5.6.8) are unknown and should be determined. Let us choose any
two projections p1 and p2 and construct a set of one-dimensional
projections q1� �1j and q2� �2k by varying angles �1j and �2k . In
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accordance with Lemma 1, there exists a one-dimensional
projection, common for both p1 and p2, which determines angles
�1j and �2k along which p1 and p2 should be projected for obtaining
the identical projection q12 (Fig. 2.5.6.5). Comparing q1� �1j and
q2� �2k and using the minimizing function

D�1, 2� � �q1� �1j � q2� �2k �2 �2�5�6�30�
it is possible to find such a common projection q12. (A similar
consideration in Fourier space yields Q12.)

The mutual spatial orientations of any three non-coplanar
projection vectors �1, �2, �3 can be found from three different
two-dimensional projections p1, p2 and p3 by comparing the
following pairs of projections: p1 and p2, p1 and p3, and p2 and

p3, and by determining the corresponding q12, q13 and q23. The
determination of angles �1, �2 and �3 reduces to the construction of
a trihedral angle formed by planes h12, h13 and h23. Then the
projections pi��i� with the known �i �i � 1, 2, 3� can be com-
plemented with other projections �i � 4, 5, � � �� and the correspond-
ing values of � can be determined. Having a sufficient number of
projections and knowing the orientations �i, it is possible to carry
out the 3D reconstruction of the object [see (2.5.6.27); Orlov, 1975;
Vainshtein & Goncharov, 1986a; Goncharov et al., 1987].

2.5.7. Direct phase determination in electron
crystallography (D. L. DORSET)

2.5.7.1. Problems with ‘traditional’ phasing techniques

The concept of using experimental electron-diffraction inten-
sities for quantitative crystal structure analyses has already been
presented in Section 2.5.4. Another aspect of quantitative structure
analysis, employing high-resolution images, has been presented in
Sections 2.5.5 and 2.5.6. That is to say, electron micrographs can be
regarded as an independent source of crystallographic phases.

Before direct methods (Chapter 2.2) were developed as the
standard technique for structure determination in small-molecule
X-ray crystallography, there were two principal approaches to
solving the crystallographic phase problem. First, ‘trial and error’
was used, finding some means to construct a reasonable model for
the crystal structure a priori, e.g. by matching symmetry properties
shared by the point group of the molecule or atomic cluster and the
unit-cell space group. Secondly, the autocorrelation function of the
crystal, known as the Patterson function (Chapter 2.3), was
calculated (by the direct Fourier transform of the available intensity
data) to locate salient interatomic vectors within the unit cell.

The same techniques had been used for electron-diffraction
structure analysis (nowadays known as electron crystallography).
In fact, advocacy of the first method persists. Because of the
perturbations of diffracted intensities by multiple-beam dynamical
scattering (Chapter 5.2), it has often been suggested that trial and
error be used to construct the scattering model for the unit crystal in
order to test its convergence to observed data after simulation of the
scattering events through the crystal. This indirect approach
assumes that no information about the crystal structure can be
obtained directly from observed intensity data. Under more
favourable scattering conditions nearer to the kinematical approx-
imation, i.e. for experimental data from thin crystals made up of
light atoms, trial and error modelling, simultaneously minimizing
an atom–atom nonbonded potential function with the crystal-

Fig. 2.5.6.7. Section of a three-dimensional Fourier transform of the
density of the particles, corresponding to plane projections of this
density.

Fig. 2.5.6.8. Plane projections of a three-dimensional body. The systems of
coordinates in planes (a) and (b) are chosen independently of one
another.

Fig. 2.5.6.6. Relative position of the particle and planes of projection.
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lographic residual, has enjoyed widespread use in electron crystal-
lography, especially for the determination of linear polymer
structures (Brisse, 1989; Pérez & Chanzy, 1989).

Interpretation of Patterson maps has also been important for
structure analysis in electron crystallography. Applications have
been discussed by Vainshtein (1964), Zvyagin (1967) and Dorset
(1994a). In face of the dynamical scattering effects for electron
scattering from heavy-atom crystals realized later (e.g. Cowley &
Moodie, 1959), attempts had also been made to modify this
autocorrelation function by using a power series in �Fh� to sharpen
the peaks (Cowley, 1956). (Here Fh ! �h, replacing the notation
for the kinematical electron-diffraction structure factor employed in
Section 2.5.4.) More recently, Vincent and co-workers have
selected first-order-Laue-zone data from inorganics to minimize
the effect of dynamical scattering on the interpretability of their
Patterson maps (Vincent & Exelby, 1991, 1993; Vincent &
Midgley, 1994). Vainshtein & Klechkovskaya (1993) have also
reported use of the Patterson function to solve the crystal structure
of a lead soap from texture electron-diffraction intensity data.

It is apparent that trial-and-error techniques are most appropriate
for ab initio structure analysis when the underlying crystal
structures are reasonably easy to model. The requisite positioning
of molecular (or atomic) groups within the unit cell may be
facilitated by finding atoms that fit a special symmetry position [see
IT A (1995)]. Alternatively, it is helpful to know the molecular
orientation within the unit cell (e.g. provided by the Patterson
function) to allow the model to be positioned for a conformational
or translational search. [Examples would include the polymer-
structure analyses cited above, as well as the layer-packing analysis
of some phospholipids (Dorset, 1987).] While attempts at ab initio
modelling of three-dimensional crystal structures, by searching an
n-dimensional parameter space and seeking a global internal energy
minimum, has remained an active research area, most success so far
seems to have been realized with the prediction of two-dimensional
layers (Scaringe, 1992). In general, for complicated unit cells,
determination of a structure by trial and error is very difficult unless
adequate constraints can be placed on the search.

Although Patterson techniques have been very useful in electron
crystallography, there are also inherent difficulties in their use,
particularly for locating heavy atoms. As will be appreciated from
comparison of scattering-factor tables for X-rays [IT C (1999)
Chapter 6.1] with those for electrons, [IT C (1999) Chapter 4.3] the
relative values of the electron form factors are more compressed
with respect to atomic number than are those for X-ray scattering.
As discussed in Chapter 2.3, it is desirable that the ratio of summed
scattering factor terms, r ��

heavyZ2�
�

lightZ
2, where Z is the

scattering factor value at sin ��� � 0, be near unity. A practical
comparison would be the value of r for copper (DL-alaninate) solved
from electron-diffraction data by Vainshtein et al. (1971). For
electron diffraction, r � 0�47 compared to the value 2.36 for X-ray
diffraction. Orientation of salient structural features, such as chains
and rings, would be equally useful for light-atom moieties in
electron or X-ray crystallography with Patterson techniques. As
structures become more complicated, interpretation of Patterson
maps becomes more and more difficult unless an automated search
can be carried out against a known structural fragment (Chapter
2.3).

2.5.7.2. Direct phase determination from electron
micrographs

The ‘direct method’ most familiar to the electron microscopist is
the high-resolution electron micrograph of a crystalline lattice.
Retrieval of an average structure from such a micrograph assumes
that the experimental image conforms adequately to the ‘weak
phase object’ approximation, as discussed in Section 2.5.5. If this is

so, the use of image-averaging techniques, e.g. Fourier filtration or
correlational alignment, will allow the unit-cell contents to be
visualized after the electron-microscope phase contrast transfer
function is deconvoluted from the average image, also discussed in
Section 2.5.5. Image analyses can also be extended to three
dimensions, as discussed in Section 2.5.6, basically by employing
tomographic reconstruction techniques to combine information
from the several tilt projections taken from the crystalline object.
The potential distribution of the unit cell to the resolution of the
imaging experiment can then be used, via the Fourier transform, to
obtain crystallographic phases for the electron-diffraction ampli-
tudes recorded at the same resolution. This method for phase
determination has been the mainstay of protein electron crystal-
lography.

Once a set of phases is obtained from the Fourier transform of the
deconvoluted image, they must, however, be referred to an allowed
crystallographic origin. For many crystallographic space groups,
this choice of origin may coincide with the location of a major
symmetry element in the unit cell [see IT A (1995)]. Hence, since
the Fourier transform of translation is a phase term, if an image shift
���r� r0�� is required to translate the origin of the repeating mass
unit ��r� from the arbitrary position in the image to a specific site
allowed by the space group,

g�r� � ��r� " ��r� r0� � ��r� r0�,
where the operation ‘"’ denotes convolution. The Fourier transform
of this shifted density function will be

G�s� � F�s� exp�2�is  r0� � �F�s�� exp�i��s � 2�is  r0���
In addition to the crystallographic phases �s, it will, therefore, be
necessary to find the additional phase-shift term 2�is  r0 that will
access an allowed unit-cell origin. Such origin searches are carried
out automatically by some commercial image-averaging computer-
software packages.

In addition to applications to thin protein crystals (e.g. Henderson
et al., 1990; Jap et al., 1991; Kühlbrandt et al., 1994), there are
numerous examples of molecular crystals that have been imaged to
a resolution of 3–4 Å, many of which have been discussed by Fryer
(1993). For �-delocalized compounds, which are the most stable in
the electron beam against radiation damage, the best results (2 Å
resolution) have been obtained at 500 kV from copper perchloro-
phthalocyanine epitaxically crystallized onto KCl. As shown by
Uyeda et al. (1978–1979), the averaged images clearly depict the
positions of the heavy Cu and Cl atoms, while the positions of the
light atoms in the organic residue are not resolved. (The utility of
image-derived phases as a basis set for phase extension will be
discussed below.) A number of aromatic polymer crystals have also
been imaged to about 3 Å resolution, as reviewed recently (Tsuji,
1989; Dorset, 1994b).

Aliphatic molecular crystals are much more difficult to study
because of their increased radiation sensitivity. Nevertheless,
monolamellar crystals of the paraffin n-C44H90 have been imaged
to 2.5 Å resolution with a liquid-helium cryomicroscope (Zemlin et
al., 1985). Similar images have been obtained at room temperature
from polyethylene (Revol & Manley, 1986) and also a number of
other aliphatic polymer crystals (Revol, 1991).

As noted by J. M. Cowley in Section 2.5.1, dynamical scattering
can pose a significant barrier to the direct interpretation of high-
resolution images from many inorganic materials. Nevertheless,
with adequate control of experimental conditions (limiting crystal
thickness, use of high-voltage electrons) some progress has been
made. Pan & Crozier (1993) have described 2.0 Å images from
zeolites in terms of the phase-grating approximation. A three-
dimensional structural study has been carried out on an
aluminosilicate by Wenk et al. (1992) with thin samples that
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conform to the weak-phase-object approximation at the 800 kV
used for the imaging experiment. Heavy and light (e.g. oxygen)
atoms were located in the micrographs in good agreement with an
X-ray crystal structure. Heavy-atom positions from electron
microscopic and X-ray structure analyses have also been favourably
compared for two heavy-metal oxides (Hovmöller et al., 1984; Li &
Hovmöller, 1988).

2.5.7.3. Probabilistic estimate of phase invariant sums

Conventional direct phasing techniques, as commonly employed
in X-ray crystallography (e.g. see Chapter 2.2), have also been used
for ab initio electron-crystallographic analyses. As in X-ray
crystallography, probabilistic estimates of a linear combination of
phases (Hauptman & Karle, 1953; Hauptman, 1972) are made after
normalized structure factors are calculated via electron form
factors, i.e.

�E2
h� � Iobs��

�

i
f 2
i , where ��E�2� � 1�000�

(Here, an overall temperature factor can be found from a Wilson
plot. Because of multiple scattering, the value of B may be found
occasionally to lie close to 0.0 Å2.) The phase invariant sums

� � �h1 � �h2 � �h3 � � � �

can be particularly effective for structure analysis. Of particular
importance historically have been the �2-triple invariants
where h1 � h2 � h3 � 0 and h1 �� h2 �� h3. The probability of
predicting � � 0 is directly related to the value of

A � �2	3�	
3�2
2 ��Eh1Eh2 Eh3 �,

where 	h �
�N

j�1Zn
j and Z is the value of the scattering factor

at sin ��� � 0. Thus, the values of the phases are related to the
measured structure factors, just as they are found to be in X-ray
crystallography. The normalization described above imposes
the point-atom structure (compensating for the fall-off of an
approximately Gaussian form factor) often assumed in deriving
the joint probability distributions. Especially for van der Waals
structures, the constraint of positivity also holds in electron
crystallography. (It is also quite useful for charged atoms so
long as the reflections are not measured at very low angles.)
Other useful phase invariant sums are the �1 triples, where
h1 � h2 � �1�2h3, and the quartets, where h1 � h2 � h3 �
h4 � 0 and h1 �� h2 �� h3 �� h4. The prediction of a correct
phase for an invariant is related in each case to the normalized
structure-factor magnitudes.

The procedure for phase determination, therefore, is identical to
the one used in X-ray crystallography (see Chapter 2.2). Using
vectorial combinations of Miller indices, one generates triple and
quartet invariants from available measured data and ranks them
according to parameters such as A, defined above, which, as shown
in Chapter 2.2, are arguments of the Cochran formula. The
invariants are thus listed in order of their reliability. This, in fact,
generates a set of simultaneous equations in crystallographic phase.
In order to begin solving these equations, it is permissible to define
arbitrarily the phase values of a limited number of reflections (three
for a three-dimensional primitive unit cell) for reflections with
Miller-index parity hkl �� ggg and

�
ihikili �� ggg, where g is an

even number. This defines the origin of a unit cell. For
noncentrosymmetric unit cells, the condition for defining the origin,
which depends on the space group, is somewhat more complicated
and an enantiomorph-defining reflection must be added.

In the evaluation of phase-invariant sums above a certain
probability threshold, phase values are determined algebraically
after origin (and enantiomorph) definition until a large enough set is
obtained to permit calculation of an interpretable potential map (i.e.

where atomic positions can be seen). There may be a few invariant
phase sums above this threshold probability value which are
incorrectly predicted, leading either to false phase assignments or
at least to phase assignments inconsistent with those found from
other invariants. A small number of such errors can generally be
tolerated. Another problem arises when an insufficient quantity of
new phase values is assigned directly from the phase invariants after
the origin-defining phases are defined. This difficulty may occur for
small data sets, for example. If this is the case, it is possible that a
new reflection of proper index parity can be used to define the
origin. Alternatively, �n � a, b, c � � � algebraic unknowns can be
used to establish the phase linkage among certain reflections. If the
structure is centrosymmetric, and when enough reflections are given
at least symbolic phase assignments, 2n maps are calculated and the
correct structure is identified by inspection of the potential maps.
When all goes well in this so-called ‘symbolic addition’ procedure,
the symbols are uniquely determined and there is no need to
calculate more than a single map. If algebraic values are retained for
certain phases because of limited vectorial connections in the data
set, then a few maps may need to be generated so that the correct
structure can be identified using the chemical knowledge of the
investigator. The atomic positions identified can then be used to
calculate phases for all observed data (via the structure-factor
calculation) and the structure can be refined by Fourier (or,
sometimes, least-squares) techniques to minimize the crystal-
lographic R factor.

The first actual application of direct phasing techniques to
experimental electron-diffraction data, based on symbolic addition
procedures, was to two methylene subcell structures (an n-paraffin
and a phospholipid; Dorset & Hauptman, 1976). Since then,
evaluation of phase invariants has led to numerous other structures.
For example, early texture electron-diffraction data sets obtained in
Moscow (Vainshtein, 1964) were shown to be suitable for direct
analysis. The structure of diketopiperazine (Dorset, 1991a) was
determined from these electron-diffraction data (Vainshtein, 1955)
when directly determined phases allowed computation of potential
maps such as the one shown in Fig. 2.5.7.1. Bond distances and
angles are in good agreement with the X-ray structure, particularly
after least-squares refinement (Dorset & McCourt, 1994a). In
addition, the structures of urea (Dorset, 1991b), using data
published by Lobachev & Vainshtein (1961), paraelectric thiourea
(Dorset, 1991b), using data published by Dvoryankin & Vainshtein
(1960), and three mineral structures (Dorset, 1992a), from data
published by Zvyagin (1967), have been determined, all using the
original texture (or mosaic single-crystal) diffraction data. The most
recent determination based on such texture diffraction data is that of
basic copper chloride (Voronova & Vainshtein, 1958; Dorset,
1994c).

Symbolic addition has also been used to assign phases to
selected-area diffraction data. The crystal structure of boric acid
(Cowley, 1953) has been redetermined, adding an independent low-
temperature analysis (Dorset, 1992b). Additionally, a direct
structure analysis has been reported for graphite, based on high-
voltage intensity data (Ogawa et al., 1994). Two-dimensional data
from several polymer structures have also been analysed success-
fully (Dorset, 1992c) as have three-dimensional intensity data
(Dorset, 1991c,d; Dorset & McCourt, 1993).

Phase information from electron micrographs has also been used
to aid phase determination by symbolic addition. Examples include
the epitaxically oriented paraffins n-hexatriacontane (Dorset &
Zemlin, 1990), n-tritriacontane (Dorset & Zhang, 1991) and a 1:1
solid solution of n-C32H66�n-C36H74 (Dorset, 1990a). Similarly,
lamellar electron-diffraction data to ca 3 Å resolution from
epitaxically oriented phospholipids have been phased by analysis
of �1 and �2-triplet invariants (Dorset, 1990b, 1991e, f ), in one
case combined with values from a 6 Å resolution electron
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microscope image (Dorset et al., 1990, 1993). Most recently, such
data have been used to determine the layer packing of a
phospholipid binary solid solution (Dorset, 1994d).

An ab initio direct phase analysis was carried out with zonal
electron-diffraction data from copper perchlorophthalocyanine.
Using intensities from a ca 100 Å thick sample collected at
1.2 MeV, the best map from a phase set with symbolic unknowns
retrieves the positions of all the heavy atoms, equivalent to the
results of the best images (Uyeda et al., 1978–1979). Using these
positions to calculate an initial phase set, the positions of the
remaining light C, N atoms were found by Fourier refinement so
that the final bond distances and angles were in good agreement
with those from X-ray structures of similar compounds (Dorset et
al., 1991). A similar analysis has been carried out for the perbromo
analogue (Dorset et al., 1992). Although dynamical scattering and
secondary scattering significantly perturb the observed intensity
data, the total molecular structure can be visualized after a Fourier
refinement. Most recently, a three-dimensional structure determina-
tion was reported for C60 buckminsterfullerene based on symbolic
addition with results most in accord with a rotationally disordered
molecular packing (Dorset & McCourt, 1994b).

2.5.7.4. The tangent formula

Given a triple phase relationship

�h 
 �k � �h�k,

where h, k and h� k form a vector sum, it is often possible to find a
more reliable estimate of �h when all the possible vectorial
contributions to it within the observed data set kr are considered
as an average, viz:

�h 
 ��k � �h�k�kr
�

For actual phase determination, this can be formalized as follows.
After calculating normalized structure-factor magnitudes �Eh� from

the observed �Fh� to generate all possible phase triples within a
reasonably high Ah threshold, new phase values can be estimated
after origin definition by use of the tangent formula (Karle &
Hauptman, 1956):

tan�h �
�

kr
Wh�Ek��Eh�k� sin��k � �h�k�

�
kr

Wh�Ek��Eh�k� cos��k � �h�k� �

The reliability of the phase estimate depends on the variance V ��h�,
which is directly related to the magnitude of �h, i.e.

�2
h �

�
�

kr

Ah� k cos��k � �h�k�
�2

�
�
�

kr

Ah� k sin��k � �h�k�
�2

;

Ah� k is identical to the A value defined in the previous section. In the
initial stages of phase determination �h is replaced by an
expectation value �E until enough phases are available to permit
its calculation.

The phase solutions indicated by the tangent formula can thus be
ranked according to the phase variance and the determination of
phases can be made symbolically from the most probable triple-
product relationships. This procedure is equivalent to the one
described above for the evaluation of phase-invariant sums by
symbolic addition. This procedure may allow determination of a
large enough basis phase set to produce an interpretable map.

An alternative procedure is to use an automatic version of the
tangent formula in a multisolution process. This procedure is
described in Chapter 2.2. After origin definition, enough algebraic
unknowns are defined (two values if centrosymmetric and four
values, cycling through phase quadrants, if noncentrosymmetric) to
access as many of the unknown phases as possible. These are used
to generate a number of trial phase sets and the likelihood of
identifying the correct solution is based on the use of some figure of
merit.

Multisolution approaches employing the tangent formula include
MULTAN (Germain et al., 1971), QTAN (Langs & DeTitta, 1975)
and RANTAN (Yao, 1981). RANTAN is a version of MULTAN that
allows for a larger initial random phase set (with suitable control of
weights in the tangent formula). QTAN utilizes the �hest definition,
where

�hest �
�

k

A2
h� k � 2

�

k��

�

k�
Ah� kA�h� k

I1�Ah� k�I1�A�h� k�
I0�Ah� k�I0�A�h� k�

� �1�2

,

for evaluating the phase variance. (Here I0, I1 are modified Bessel
functions.) After multiple solutions are generated, it is desirable to
locate the structurally most relevant phase sets by some figure of
merit. There are many that have been suggested (Chapter 2.2). The
most useful figure of merit in QTAN has been the NQEST (De Titta
et al., 1975) estimate of negative quartet invariants (see Chapter
2.2). More recently, this has been superseded by the minimal
function (Hauptman, 1993):

R��� �
�

h� k Ah� k�cos�h� k � th� k�2
�

h� k Ah� k
,

where th� k � I1�Ah� k��I0�Ah� k� and �h� k � �h � �k � ��h�k.
In the first application (Dorset et al., 1979) of multisolution

phasing to electron-diffraction data (using the program QTAN),
n-beam dynamical structure factors generated for cytosine and
disodium 4-oxypyrimidine-2-sulfinate were used to assess the effect
of increasing crystal thickness and electron accelerating voltage on
the success of the structure determination. At 100 kV samples at
least 80 Å thickness were usable for data collection and at 1000 kV
this sample thickness limit could be pushed to 300 Å – or, perhaps,
610 Å if a partial structure were accepted for later Fourier

Fig. 2.5.7.1. Potential map for diketopiperazine ([001] projection) after a
direct phase determination with texture electron-diffraction intensity
data obtained originally by Vainshtein (1955).
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refinement. NQEST identified the best phase solutions. Later QTAN
was used to evaluate the effect of elastic crystal bend on the
structure analysis of cytosine (Moss & Dorset, 1982).

In actual experimental applications, two forms of thiourea were
investigated with QTAN (Dorset, 1992d), using published three-
dimensional electron-diffraction intensities (Dvoryankin & Vainsh-
tein, 1960, 1962). Analysis of the centrosymmetric paraelectric
structure yielded results equivalent to those found earlier by
symbolic addition (Dorset, 1991b). Analysis of the noncentrosym-
metric ferroelectric form was also quite successful (Dorset, 1992d).
In both cases, the correct structure was found at the lowest value of
NQEST. Re-analysis of the diketopiperazine structure with QTAN
also found the correct structure (Dorset & McCourt, 1994a) within
the four lowest values of NQEST, but not the one at the lowest
value. The effectiveness of this figure of merit became more
questionable when QTAN was used to solve the noncentrosym-
metric crystal structure of a polymer (Dorset, McCourt, Kopp et al.,
1994). The solution could not be found readily when NQEST was
used but was easily identified when the minimal function R��� was
employed instead.

MULTAN has been used to phase simulated data from copper
perchlorophthalocyanine (Fan et al., 1985). Within the 2 Å
resolution of the electron-microscope image, if one seeks phases
for diffraction data in reciprocal-space regions where the objective
lens phase contrast transfer function �C�s�� � 0�2, the method
proves to be successful. The method is also quite effective for phase
extension from 2 Å to 1 Å diffraction resolution, where the low-
angle data serve as a large initial phase set for the tangent formula.
However, no useful results were found from an ab initio phase
determination carried out solely with the electron-diffraction
structure-factor magnitudes. Similar results were obtained when
RANTAN was used to phase experimental data from this compound
(Fan et al., 1991), i.e. the multisolution approach worked well for
phase extension but not for ab initio phase determination.
Additional tests were subsequently carried out with QTAN on an
experimental hk0 electron-diffraction data set collected at 1200 kV
(Dorset, McCourt, Fryer et al., 1994). Again, ab initio phase
determination is not possible by this technique. However, if a basis
set was constructed from the Fourier transform of a 2.4 Å image, a
correct solution could be found, but not at the lowest value of
NQEST. This figure of merit was useful, however, when the basis
set was taken from the symbolic addition determination mentioned
in the previous section.

2.5.7.5. Density modification

Another method of phase determination, which is best suited to
refining or extending a partial phase set, is the Hoppe–Gassmann
density modification procedure (Hoppe & Gassmann, 1968;
Gassmann & Zechmeister, 1972; Gassmann, 1976). The procedure
is very simple but also very computer-intensive. Starting with a
small set of (phased) Fh, an initial potential map ��r� is calculated
by Fourier transformation. This map is then modified by some real-
space function, which restricts peak sizes to a maximum value and
removes all negative density regions. The modified map ���r� is
then Fourier-transformed to produce a set of phased structure
factors. Phase values are accepted via another modification function
in reciprocal space, e.g. Ecalc�Eobs � p, where p is a threshold
quantity. The new set is then transformed to obtain a new ��r� and
the phase refinement continues iteratively until the phase solution
converges (judged by lower crystallographic R values).

The application of density modification procedures to electron-
crystallographic problems was assessed by Ishizuka et al. (1982),
who used simulated data from copper perchlorophthalocyanine
within the resolution of the electron-microscope image. The method
was useful for finding phase values in reciprocal-space regions

where the transfer function �C�s�� � 0�2. As a technique for phase
extension, density modification was acceptable for test cases where
the resolution was extended from 1.67 to 1.0 Å, or 2.01 to 1.21 Å,
but it was not very satisfactory for a resolution enhancement from
2.5 to 1.67 Å. There appear to have been no tests of this method yet
with experimental data. However, the philosophy of this technique
will be met again below in the description of the the maximum
entropy and likelihood procedure.

2.5.7.6. Convolution techniques

One of the first relationships ever derived for phase determina-
tion is the Sayre (1952) equation:

Fh � �

V

�

k

FkFh�k,

which is a simple convolution of phased structure factors multiplied
by a function of the atomic scattering factors. For structures with
non-overlapping atoms, consisting of one atomic species, it is an
exact expression. Although the convolution term resembles part of
the tangent formula above, no statistical averaging is implied
(Sayre, 1980). In X-ray crystallography this relationship has not
been used very often, despite its accuracy. Part of the reason for this
is that it requires relatively high resolution data for it to be useful. It
can also fail for structures comprised of different atomic species.

Since, relative to X-ray scattering factors, electron scattering
factors span a narrower range of magnitudes at sin ��� � 0, it might
be thought that the Sayre equation would be particularly useful in
electron crystallography. In fact, Liu et al. (1988) were able to
extend phases for simulated data from copper perchlorophthalo-
cyanine starting at the image resolution of 2 Å and reaching the 1 Å
limit of an electron-diffraction data set. This analysis has been
improved with a 2.4 Å basis set obtained from the Fourier transform
of an electron micrograph of this material at 500 kV and extended to
the 1.0 Å limit of a 1200 kV electron-diffraction pattern (Dorset et
al., 1995). Using the partial phase sets for zonal diffraction data
from several polymers by symbolic addition (see above), the Sayre
equation has been useful for extending into the whole hk0 set, often
with great accuracy. The size of the basis set is critical but the
connectivity to access all reflections is more so. Fan and co-workers
have had considerable success with the analysis of incommensu-
rately modulated structures. The average structure (basis set) is
found by high-resolution electron microscopy and the ‘superlattice’
reflections, corresponding to the incommensurate modulation, are
assigned phases in hyperspace by the Sayre convolution. Examples
include a high Tc superconductor (Mo et al., 1992) and the mineral
ankangite (Xiang et al., 1990). Phases of regular inorganic crystals
have also been extended from the electron micrograph to the
electron-diffraction resolution by this technique (Hu et al., 1992).

In an investigation of how direct methods might be used for
phase extension in protein electron crystallography, low-resolution
phases from two proteins, bacteriorhodopsin (Henderson et al.,
1986) and halorhodopsin (Havelka et al., 1993) were extended to
higher resolution with the Sayre equation (Dorset et al., 1995). For
the noncentrosymmetric bacteriorhodopsin hk0 projection a 10 Å
basis set was used, whereas a 15 Å set was accepted for the
centrosymmetric halorhodopsin projection. In both cases, exten-
sions to 6 Å resolution were reasonably successful. For bacter-
iorhodopsin, for which data were available to 3.5 Å, problems with
the extension were encountered near 5 Å, corresponding to a
minimum in a plot of average intensity versus resolution.
Suggestions were made on how a multisolution procedure might
be successful beyond this point.
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2.5.7.7. Maximum entropy and likelihood

Maximum entropy has been applied to electron crystallography
in several ways. In the sense that images are optimized, the entropy
term

S � ��
i

Pi ln Pi,

where Pi � pi�
�

i pi and pi is a pixel density, has been evaluated
for various test electron-microscope images. For crystals, the true
projected potential distribution function is thought to have the
maximum value of S. If the phase contrast transfer function used to
obtain a micrograph is unknown, test images (i.e. trial potential
maps) can be calculated for different values of �ftrial. The value that
corresponds to the maximum entropy would be near the true
defocus. In this way, the actual objective lens transfer function can
be found for a single image (Li, 1991) in addition to the other
techniques suggested by this group.

Another use of the maximum-entropy concept is to guide the
progress of a direct phase determination (Bricogne & Gilmore,
1990; Gilmore et al., 1990). Suppose that there is a small set H of
known phases �h#H (corresponding either to origin definition, or the
Fourier transform of an electron micrograph, or both) with
associated unitary structure-factor amplitudes �Uh#H �. [The unitary
structure factor is defined as �Uh� � �Eh���N�1�2.] As usual, the task
is to expand into the unknown phase set K to solve the crystal
structure. From Bayes’ theorem, the procedure is based on an
operation where p�map�data� $ p�map�p�data�map�. This means
that the probability of successfully deriving a potential map, given
diffraction data, is estimated. This so-called posterior probability is
approximately proportional to the product of the probability of
generating the map (known as the prior) and the probability of
generating the data, given the map (known as the likelihood). The
latter probability consults the observed data and can be used as a
figure of merit.

Beginning with the basis set H, a trial map is generated from the
limited number of phased structure factors. As discussed above, the
map can be immediately improved by removing all negative
density. The map can be improved further if its entropy is
maximized using the equation given above for S. This produces
the so-called maximum-entropy prior qME�X �.

So far, it has been assumed that all �Uh#K � � 0. If large
reflections from the K set are now added and their phase values
are permuted, then a number of new maps can be generated and
their entropies can be maximized as before. This creates a phasing
‘tree’ with many possible solutions; individual branch points can
have further reflections added via permutations to produce further
sub-branches, and so on. Obviously, some figure of merit is needed
to ‘prune’ the tree, i.e. to find likely paths to a solution.

The desired figure of merit is the likelihood L�H�. First a quantity

�h � 2NR exp��N�r2 � R2��Io�2NrR�,
where r � �MEUh� (the calculated unitary structure factors) and R �
�oUh� (the observed unitary structure factors), is defined. From this
one can calculate

L�H� � �

h �#H
ln�h�

The null hypothesis L�Ho� can also be calculated from the above
when r � 0, so that the likelihood gain

LLg � L�H� � L�Ho�
ranks the nodes of the phasing tree in order of the best solutions.

Applications have been made to experimental electron-crystal-
lographic data. A small-molecule structure starting with phases
from an electron micrograph and extending to electron-diffraction

resolution has been reported (Dong et al., 1992). Other experi-
mental electron-diffraction data sets used in other direct phasing
approaches (see above) also have been assigned phases by this
technique (Gilmore, Shankland & Bricogne, 1993). These include
intensities from diketopiperazine and basic copper chloride. An
application of this procedure in protein structure analysis has been
published by Gilmore et al. (1992) and Gilmore, Shankland & Fryer
(1993). Starting with 15 Å phases, it was possible to extend phases
for bacteriorhodopsin to the limits of the electron-diffraction
pattern, apparently with greater accuracy than possible with the
Sayre equation (see above).

2.5.7.8. Influence of multiple scattering on direct electron
crystallographic structure analysis

The aim of electron-crystallographic data collection is to
minimize the effect of dynamical scattering, so that the unit-cell
potential distribution or its Fourier transform is represented
significantly in the recorded signal. It would be a mistake, however,
to presume that these data ever conform strictly to the kinematical
approximation, for there is always some deviation from this ideal
scattering condition that can affect the structure analysis. Despite
this fact, some direct phasing procedures have been particularly
‘robust’, even when multiple scattering perturbations to the data are
quite obvious (e.g. as evidenced by large crystallographic
residuals).

The most effective direct phasing procedures seem to be those
based on the �2 triple invariants. These phase relationships will not
only include the symbolic addition procedure, as it is normally
carried out, but also the tangent formula and the Sayre equation
(since it is well known that this convolution can be used to derive
the functional form of the three-phase invariant). The strict ordering
of �Eh� magnitudes is, therefore, not critically important so long as
there are no major changes from large to small values (or vice
versa). This was demonstrated in direct phase determinations of
simulated n-beam dynamical diffraction data from a sulfur-
containing polymer (Dorset & McCourt, 1992). Nevertheless,
there is a point where measured data cannot be used. For example,
intensities from ca 100 Å-thick epitaxically oriented copper
perchlorophthalocyanine crystals become less and less representa-
tive of the unit-cell transform at lower electron-beam energies
(Tivol et al., 1993) and, accordingly, the success of the phase
determination is compromised (Dorset, McCourt, Fryer et al.,
1994). The similarity between the Sayre convolution and the
interactions of structure-factor terms in, e.g., the multislice
formulation of n-beam dynamical scattering was noted by Moodie
(1965). It is interesting to note that dynamical scattering
interactions observed by direct excitation of �2 and �1 triples in
convergent-beam diffraction experiments can actually be exploited
to determine crystallographic phases to very high precision (Spence
& Zuo, 1992, pp. 56–63).

While the evaluation of positive quartet invariant sums (see
Chapter 2.2) seems to be almost as favourable in the electron
diffraction case as is the evaluation of �2 triples, negative quartet
invariants seem to be particularly sensitive to dynamical diffraction.
If dynamical scattering can be modelled crudely by a convolutional
smearing of the diffraction intensities, then the lowest structure-
factor amplitudes, and hence the estimates of lowest �Eh� values,
will be the ones most compromised. Since the negative-quartet
relationships require an accurate prediction of small ‘cross-term’
�Eh� values, multiple scattering can, therefore, limit the efficacy of
this invariant for phase determination. In initial work, negative
quartets have been mostly employed in the NQEST figure of merit,
and analyses (Dorset, McCourt, Fryer et al., 1994; Dorset &
McCourt, 1994a) have shown how the degradation of weak
kinematical �Eh� terms effectively reduced its effectiveness for

325

2.5. ELECTRON DIFFRACTION AND ELECTRON MICROSCOPY IN STRUCTURE DETERMINATION



locating correct structure solutions via the tangent formula, even
though the tangent formula itself (based on triple phase estimates)
was quite effective for phase determination. Substitution of the
minimal function R��� for NQEST seems to have overcome this
difficulty. [It should be pointed out, though, that only the �2-triple
contribution to R��� is considered.]

Structure refinement is another area where the effects of
dynamical scattering are also problematic. For example, in the
analysis of the paraelectric thiourea structure (Dorset, 1991b) from
published texture diffraction data (Dvoryankin & Vainshtein,
1960), it was virtually impossible to find a chemically reasonable
structure geometry by Fourier refinement, even though the direct
phase determination itself was quite successful. The best structure
was found only when higher-angle intensities (i.e. those least
affected by dynamical scattering) were used to generate the
potential map. Later analyses on heavy-atom-containing organics
(Dorset et al., 1992) found that the lowest kinematical R-factor
value did not correspond to the chemically correct structure
geometry. This observation was also made in the least-squares
refinement of diketopiperazine (Dorset & McCourt, 1994a). It is

obvious that, if a global minimum is sought for the crystallographic
residual, then dynamical structure factors, rather than kinematical
values, should be compared to the observed values (Dorset et al.,
1992). Ways of integrating such calculations into the refinement
process have been suggested (Sha et al., 1993). Otherwise one must
constrain the refinement to chemically reasonable bonding
geometry in a search for a local R-factor minimum.

Corrections for such deviations from the kinematical approxima-
tion are complicated by the presence of other possible data
perturbations, especially if microareas are being sampled, e.g. in
typical selected-area diffraction experiments. Significant complica-
tions can arise from the diffraction incoherence observed from
elastically deformed crystals (Cowley, 1961) as well as secondary
scattering (Cowley et al., 1951). These complications were also
considered for the larger (e.g. millimeter diameter) areas sampled in
an electron-diffraction camera when recording texture diffraction
patterns (Turner & Cowley, 1969), but, because of the crystallite
distributions, it is sometimes found that the two-beam dynamical
approximation is useful (accounting for a number of successful
structure analyses carried out in Moscow).
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and structures showing superstructure effects. IV. A new approach
for phase solution. Acta Cryst. A44, 183–188.

Cascarano, G., Giacovazzo, C., Luić, M., Pifferi, A. & Spagna, R.
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by determinantal methods. Acta Cryst. A41, 3–17.

Rango, C. de, Tsoucaris, G. & Zelwer, C. (1974). Phase determina-
tion from the Karle–Hauptman determinant. II. Connexion
between inequalities and probabilities. Acta Cryst. A30, 342–353.

Rogers, D., Stanley, E. & Wilson, A. J. C. (1955). The probability
distribution of intensities. VI. The influence of intensity errors on
the statistical tests. Acta Cryst. 8, 383–393.

2.2 (cont.)

331

REFERENCES



Rogers, D. & Wilson, A. J. C. (1953). The probability distribution of
X-ray intensities. V. A note on some hypersymmetric distributions.
Acta Cryst. 6, 439–449.

Rossmann, M. G., Blow, D. M., Harding, M. M. & Coller, E. (1964).
The relative positions of independent molecules within the same
asymmetric unit. Acta Cryst. 17, 338–342.

Sayre, D. (1952). The squaring method: a new method for phase
determination. Acta Cryst. 5, 60–65.

Sayre, D. (1953). Double Patterson function. Acta Cryst. 6, 430–431.
Sayre, D. (1972). On least-squares refinement of the phases of

crystallographic structure factors. Acta Cryst. A28, 210–212.
Sayre, D. & Toupin, R. (1975). Major increase in speed of least-

squares phase refinement. Acta Cryst. A31, S20.
Schenk, H. (1973a). Direct structure determination in P1 and other

non-centrosymmetric symmorphic space groups. Acta Cryst. A29,
480–481.

Schenk, H. (1973b). The use of phase relationships between quartets
of reflexions. Acta Cryst. A29, 77–82.

Sheldrick, G. M. (1990). Phase annealing in SHELX-90: direct
methods for larger structures. Acta Cryst. A46, 467–473.

Sheldrick, G. M. (1997). In Direct methods for solving macro-
molecular structures. NATO Advanced Study Institute, Erice,
Italy.

Sheldrick, G. M. (2000a). The SHELX home page. http://shelx.uni-
ac.gwdg.de/SHELX/.

Sheldrick, G. M. (2000b). SHELX. http://www.ucg.ie/cryst/
shelx.htm.

Sheldrick, G. M. & Gould, R. O. (1995). Structure solution by
iterative peaklist optimization and tangent expansion in space
group P1. Acta Cryst. B51, 423–431.

Sim, G. A. (1959). The distribution of phase angles for structures
containing heavy atoms. II. A modification of the normal heavy-
atoms method for non-centrosymmetrical structures. Acta Cryst.
12, 813–815.

Simerska, M. (1956). Czech. J. Phys. 6, 1.
Simonov, V. I. & Weissberg, A. M. (1970). Calculation of the signs

of structure amplitudes by a binary function section of interatomic
vectors. Sov. Phys. Dokl. 15, 321–323. [Translated from Dokl.
Akad. Nauk SSSR, 191, 1050–1052.]

Sint, L. & Schenk, H. (1975). Phase extension and refinement in
non-centrosymmetric structures containing large molecules. Acta
Cryst. A31, S22.

Smith, J. L. (1998). Multiwavelength anomalous diffraction in
macromolecular crystallography. In Direct methods for solving
macromolecular structures, edited by S. Fortier, pp. 221–225.
Dordrecht: Kluwer Academic Publishers.

Srinivasan, R. & Parthasarathy, S. (1976). Some statistical applica-
tions in X-ray crystallography. Oxford: Pergamon Press.

Taylor, D. J., Woolfson, M. M. & Main, P. (1978). On the
application of phase relationships to complex structures. XV.
Magic determinants. Acta Cryst. A34, 870–883.

Tsoucaris, G. (1970). A new method for phase determination. The
maximum determinant rule. Acta Cryst. A26, 492–499.

Van der Putten, N. & Schenk, H. (1977). On the conditional
probability of quintets. Acta Cryst. A33, 856–858.

Vaughan, P. A. (1958). A phase-determining procedure related to the
vector-coincidence method. Acta Cryst. 11, 111–115.

Vermin, W. J. & de Graaff, R. A. G. (1978). The use of Karle–
Hauptman determinants in small-structure determinations. Acta
Cryst. A34, 892–894.
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Åkervall, K., Strandberg, B., Rossmann, M. G., Bengtsson, U.,
Fridborg, K., Johannisen, H., Kannan, K. K., Lövgren, S., Petef,
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resolution. Science, 235, 182–191.

Luzzati, V. (1953). Résolution d’une structure cristalline lorsque les
positions d’une partie des atomes sont connues: traitement
statistique. Acta Cryst. 6, 142–152.

McLachlan, D. Jr & Harker, D. (1951). Finding the signs of the F’s
from the shifted Patterson product. Proc. Natl Acad. Sci. USA, 37,
846–849.

Main, P. (1967). Phase determination using non-crystallographic
symmetry. Acta Cryst. 23, 50–54.

Main, P. & Rossmann, M. G. (1966). Relationships among structure
factors due to identical molecules in different crystallographic
environments. Acta Cryst. 21, 67–72.

Matthews, B. W. (1966). The determination of the position of
anomalously scattering heavy atom groups in protein crystals.
Acta Cryst. 20, 230–239.

Matthews, B. W. & Czerwinski, E. W. (1975). Local scaling: a
method to reduce systematic errors in isomorphous replacement
and anomalous scattering measurements. Acta Cryst. A31, 480–
487.

Matthews, B. W., Sigler, P. B., Henderson, R. & Blow, D. M. (1967).
Three-dimensional structure of tosyl-�-chymotrypsin. Nature
(London), 214, 652–656.
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