
�at�r� � 1
2�2

�
feT �s� sin sr

sr
s2 ds �2�5�4�31�

are more ‘blurred’ and exhibit a larger half-width than the electron-
density peaks �at�r�. On average, this half-width corresponds to the
‘resolution’ of an electron-diffraction pattern – about 0.5 Å or
better. The potential in the maximum (‘peak height’) does not
depend as strongly on the atomic number as in X-ray analysis:

��0� � 1
2�2

�
feT �s�s2 ds � Z0�75, �2�5�4�32�

while in X-ray diffraction ��0� � Z1�2. In such a way, in EDSA the
light atoms are more easily revealed in the presence of heavy atoms
than in X-ray diffraction, permitting, in particular, hydrogen atoms
to be revealed directly without resorting to difference syntheses as
in X-ray diffraction. Typical values of the atomic potential ��0�
(which depend on thermal motion) in organic crystals are:
H � 35, C � 165, O 215 V; in Al crystals 330 V, in Cu crystals
750 V.

The EDSA method may be used for crystal structure determina-
tion, depending on the types of electron-diffraction patterns, for
crystals containing up to several tens of atoms in the unit cell. The
accuracy in determination of atomic coordinates in EDSA is about
0.01–0.005 Å on average. The precision of EDSA makes it possible
to determine accurately the potential distribution, to investigate
atomic ionization, to obtain values for the potential between the
atoms and, thereby, to obtain data on the nature of the chemical
bond.

If the positions in the cell are occupied only partly, then the
measurement of �i�0� gives information on population percentage.

There is a relationship between the nuclear distribution, electron
density and the potential as given by the Poisson equation

�2��r� � �4�e����r� � ���r�	� �2�5�4�33�
This makes it possible to interrelate X-ray diffraction, EDSA and
neutron-diffraction data. Thus for the atomic amplitudes

fe�s� � 4�Ke�Z � fx�s�	s�2, �2�5�4�34�
where Z is the nuclear charge and fx the X-ray atomic scattering
amplitude, and for structure amplitudes

�hkl � �Ke�Zhkl � Fhkl	
h
�2, �2�5�4�35�
where Fhkl is the X-ray structure amplitude of the electron density of
a crystal and Zhkl is the amplitude of scattering from charges of
nuclei in the cell taking into account their thermal motion. The
values Zhkl can be calculated easily from neutron-diffraction data,
since the charges of the nuclei are known and the experiment gives
the parameters of their thermal motion.

In connection with the development of high-resolution electron-
microscopy methods (HREM) it has been found possible to
combine the data from direct observations with EDSA methods.
However, EDSA permits one to determine the atomic positions to a
greater accuracy, since practically the whole of reciprocal space
with 1.0–0.4 Å resolution is used and the three-dimensional
arrangement of atoms is calculated. At the same time, in electron
microscopy, owing to the peculiarities of electron optics and the
necessity for an objective aperture, the image of the atoms in a
crystal ���x� � A�x� is a convolution, with the aperture function
blurring the image up to 1.5–2 Å resolution. In practice, in TEM one
obtains only the images of the heaviest atoms of an object.
However, the possibility of obtaining a direct image of a structure
with all the defects in the atomic arrangement is the undoubted
merit of TEM.

2.5.5. Image reconstruction* (B. K. VAINSHTEIN)

2.5.5.1. Introduction

In many fields of physical measurements, instrumental and
informative techniques, including electron microscopy and compu-
tational or analogue methods for processing and transforming
signals from objects investigated, find a wide application in
obtaining the most accurate structural data. The signal may be
radiation from an object, or radiation transmitted through the object,
or reflected by it, which is transformed and recorded by a detector.

The image is the two-dimensional signal I�xy� on the observation
plane recorded from the whole three-dimensional volume of the
object, or from its surface, which provides information on its
structure. In an object this information may change owing to
transformation of the scattered wave inside an instrument. The real
image J�xy� is composed of I�xy� and noise N�xy� from signal
disturbances:

J�xy� � I�xy� � N�xy�� �2�5�5�1�
Image-reconstruction methods are aimed at obtaining the most

accurate information on the structure of the object; they are
subdivided into two types (Picture Processing and Digital
Filtering, 1975; Rozenfeld, 1969):

(a) Image restoration – separation of I�xy� from the image by
means of compensation of distortions introduced in it by an image-
forming system as well as by an account of the available
quantitative data reflecting its structure.

(b) Image enhancement – maximum exclusion from the observed
image J�xy� (2.5.5.1) of all its imperfections N�xy� from both
accidental distortions in objects and various ‘noise’ in signals and
detector, and obtaining I�xy� as the result.

These two methods may be used separately or in combination.
The image should be represented in the form convenient for

perception and analysis, e.g. in digital form, in lines of equal
density, in points of different density, in half-tones or colour form
and using, if necessary, a change or reversal of contrast.

Reconstructed images may be used for the three-dimensional
reconstruction of the spatial structure of an object, e.g. of the
density distribution in it (see Section 2.5.6).

This section is connected with an application of the methods of
image processing in transmission electron microscopy (TEM). In
TEM (see Section 2.5.2), the source-emitted electrons are
transmitted through an object and, with the aid of a system of
lenses, form a two-dimensional image subject to processing.

Another possibility for obtaining information on the structure of
an object is structural analysis with the aid of electron diffraction –
EDSA. This method makes use of information in reciprocal space –
observation and measurement of electron-diffraction patterns and
calculation from them of a two-dimensional projection or three-
dimensional structure of an object using the Fourier synthesis. To
do this, one has to find the relative phases of the scattered beams.

The wavefunction of an electron-microscopic image is written as

�I � � �1T� q�0� �2�5�5�2�
Here �0 is the incident plane wave. When the wave is transmitted
through an object, it interacts with the electrostatic potential ��r�
[r�xyz� is the three-dimensional vector in the space of the object];
this process is described by the Schrödinger equation (Section
2.5.2.1). As a result, on the exit surface of an object the wave takes
the form q�0�x� where q is the transmission function and x is the
two-dimensional vector x�xy�. The diffraction of the wave q�0 is

� Questions related to this section may be addressed to Dr D. L. Dorset (see list of
contributing authors). Dr Dorset kindly checked the proofs of this section.
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described by the two-dimensional Fourier operator:

� q � Q�u� � �
q�x� exp�2�i�xu�	 dx� �2�5�5�3�

Here, we assume the initial wave amplitude to be equal to unity
and the initial phase to be zero, so that q�0 � q, which defines, in
this case, the wavefunction in the back focal plane of an objective
lens with the reciprocal-space coordinates u�u, v�. The function Q is
modified in reciprocal space by the lens transfer function T�u�. The
scattered wave transformation into an image is described by the
inverse Fourier operator � �1TQ.

The process of the diffraction � q�0 � Q, as seen from (2.5.5.1),
is the same in both TEM and EDSA. Thus, in TEM under the lens
actions � �1TQ the image formation from a diffraction pattern takes
place with an account of the phases, but these phases are modified
by the objective-lens transfer function. In EDSA, on the other hand,
there is no distorting action of the transfer function and the ‘image’
is obtained by computing the operation � �1Q.

The computation of projections, images and Fourier transforma-
tion is made by discretization of two-dimensional functions on a
two-dimensional network of points – pixels in real space x�xj, yk�
and in reciprocal space u�um, vn�.

2.5.5.2. Thin weak phase objects at optimal defocus

The intensity distribution I�xy� � 
�I 
2 of an electron wave in the
image plane depends not only on the coherent and inelastic
scattering, but also on the instrumental functions. The electron
wave transmitted through an object interacts with the electrostatic
potential ��r� which is produced by the nuclei charges and the
electronic shells of the atoms. The scattering and absorption of
electrons depend on the structure and thickness of a specimen, and
the atomic numbers of the atoms of which it is composed. If an
object with the three-dimensional distribution of potential ��r� is
sufficiently thin, then the interaction of a plane electron wave �0
with it can be described as the interaction with a two-dimensional
distribution of potential projection ��x�,

��x� � �b
0
��r� dz, �2�5�5�4�

where b is the specimen thickness. It should be noted that, unlike the
three-dimensional function of potential ��r� with dimension
�M1�2L3�2T�1	, the two-dimensional function of potential projection
��x� has the potential-length dimension �M1�2L1�2T�1	 which,
formally, coincides with the charge dimension. The transmission
function, in the general case, has the form q�x� � exp��i���x�	
(2.5.2.42), and for weak phase objects the approximation ��� 1	

q�x� � 1� i���x� �2�5�5�5�
is valid.

In the back focal plane of the objective lens the wave has the
form

Q�uv� � T�U� �2�5�5�6�

T � A�U� exp�i�U� �2�5�5�7a�

��U� � ��f 	U2 � �

2
Cs	

3U4, �2�5�5�7b�

where U � �u2 � v2�1�2; exp�i��U�	 is the Scherzer phase function
(Scherzer, 1949) of an objective lens (Fig. 2.5.5.1), A�U� is the
aperture function, Cs the spherical aberration coefficient, and �f the
defocus value [(2.5.2.32)–(2.5.2.35)].

The bright-field image intensity (in object coordinates) is

I�xy� � 
�I�xy� � t�xy�
2, �2�5�5�8�

where t � � �1�T 	. The phase function (2.5.5.7) depends on
defocus, and for a weak phase object (Cowley, 1981)

I�xy� � 1� 2���xy� � s�xy�, �2�5�5�9�

where s � � �1�A�U�	 sin�	, which includes only an imaginary part
of function (2.5.5.6). While selecting defocus in such a way that
under the Scherzer defocus conditions [(2.5.2.44), (2.5.2.45)]

 sin�
 � 1, one could obtain

I�xy� � 1� 2���xy� � a�xy�� �2�5�5�10�

In this very simple case the image reflects directly the structure of
the object – the two-dimensional distribution of the projection of the
potential convoluted with the spread function a � � �1A. In this
case, no image restoration is necessary. Contrast reversal may be
achieved by a change of defocus.

At high resolution, this method enables one to obtain an image of
projections of the atomic structure of crystals and defects in the
atomic arrangement – vacancies, replacements by foreign atoms,
amorphous structures and so on; at resolution worse than atomic one
obtains images of dislocations as continuous lines, inserted phases,
inclusions etc. (Cowley, 1981). It is also possible to obtain images
of thin biological crystals, individual molecules, biological
macromolecules and their associations.

Image restoration. In the case just considered (2.5.5.10), the
projection of potential ��xy�, convoluted with the spread function,
can be directly observed. In the general case (2.5.5.9), when the
aperture becomes larger, the contribution to image formation is
made by large values of spatial frequencies U, in which the function
sin � oscillates, changing its sign. Naturally, this distorts the image
just in the region of appropriate high resolution. However, if one
knows the form of the function sin � (2.5.5.7), the true function
��xy� can be restored.

This could be carried out experimentally if one were to place in
the back focal plane of an objective lens a zone plate transmitting
only one-sign regions of sin � (Hoppe, 1971). In this case, the
information on ��xy� is partly lost, but not distorted. To perform
such a filtration in an electron microscope is a rather complicated
task.

Another method is used (Erickson & Klug, 1971). It consists of a
Fourier transformation � �1 of the measured intensity distribution
TQ (2.5.5.6) and division of this transform, according to
(2.5.5.7a,b), by the phase function sin �. This gives

Fig. 2.5.5.1. The � function and two components of the Scherzer phase
function sin ��U� and cos ��U�.
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TQ
sin�

� Q�uv�A�U�� �2�5�5�11a�

Then, the new Fourier transformation � QA yields (in the weak-
phase-object approximation) the true distribution

��xy� � a�xy�� �2�5�5�11b�
The function sin � depending on defocus �f should be known to
perform this procedure. The transfer function can also be found
from an electron micrograph (Thon, 1966). It manifests itself in a
circular image intensity modulation of an amorphous substrate or, if
the specimen is crystalline, in the ‘noise’ component of the image.
The analogue method (optical Fourier transformation for obtaining
the image sin�) can be used (optical diffraction, see below);
digitization and Fourier transformation can also be applied (Hoppe
et al., 1973).

The thin crystalline specimen implies that in the back focal
objective lens plane the discrete kinematic amplitudes �hk are
arranged and, by the above method, they are corrected and released
from phase distortions introduced by the function sin � (see below)
(Unwin & Henderson, 1975).

For the three-dimensional reconstruction (see Section 2.5.6) it is
necessary to have the projections of potential of the specimen tilted
at different angles 
 to the beam direction (normal beam incidence
corresponds to 
 � 0). In this case, the defocus �f changes linearly
with increase of the distance l of specimen points from the rotation
axis �f
 � �f0�1� l sin
�. Following the above procedure for
passing on to reciprocal space and correction of sin �, one can find
�
�xy� (Henderson & Unwin, 1975).

2.5.5.3. An account of absorption

Elastic interaction of an incident wave with a weak phase object
is defined on its exit surface by the distribution of potential
projection ��xy�; however, in the general case, the electron
scattering amplitude is a complex one (Glauber & Schomaker,
1953). In such a way, the image itself has the phase and amplitude
contrast. This may be taken into account if one considers not only
the potential projection ��xy�, but also the ‘imaginary potential’
��xy� which describes phenomenologically the absorption in thin
specimens. Then, instead of (2.5.5.5), the wave on the exit surface
of a specimen can be written as

q�xy� � 1� i���xy� � ��xy� �2�5�5�12�
and in the back focal plane if � � � � and M � � �

Q�uv� � ��uv� � i���uv� �M�uv�� �2�5�5�13�
Usually, � is small, but it can, nevertheless, make a certain
contribution to an image. In a sufficiently good linear approxima-
tion, it may be assumed that the real part cos � of the phase function
(2.5.5.7a) affects M�uv�, while ��xy�, as we know, is under the
action of the imaginary part sin �.

Thus, instead of (2.5.5.6), one can write

Q�exp i�� � ��u� � i���u� sin��M�u� cos�, �2�5�5�14�
and as the result, instead of (2.5.5.10),

I�xy� � 1� 2���xy� � � �1�sin�� � a�U�
� 2��xy� � � �1�cos�� � a�U�� �2�5�5�15�

The functions ��xy� and ��xy� can be separated by object
imaging using the through-focus series method. In this case, using
the Fourier transformation, one passes from the intensity distribu-
tion (2.5.5.15) in real space to reciprocal space. Now, at two
different defocus values �f1 and �f2 [(2.5.5.6), (2.5.5.7a,b)] the

values ��u� and M�u� can be found from the two linear equations
(2.5.5.14). Using the inverse Fourier transformation, one can pass
on again to real space which gives ��x� and ��x� (Schiske, 1968). In
practice, it is possible to use several through-focus series and to
solve a set of equations by the least-squares method.

Another method for processing takes into account the simulta-
neous presence of noise N�x� and transfer function zeros (Kirkland
et al., 1980). In this method the space frequencies corresponding to
small values of the transfer function modulus are suppressed, while
the regions where such a modulus is large are found to be
reinforced.

2.5.5.4. Thick crystals

When the specimen thickness exceeds a certain critical value
(�50–100 Å), the kinematic approximation does not hold true and
the scattering is dynamic. This means that on the exit surface of a
specimen the wave is not defined as yet by the projection of
potential ��xy� � �

��r� dz (2.5.5.3), but one has to take into
account the interaction of the incident wave �0 and of all the
secondary waves arising in the whole volume of a specimen.

The dynamic scattering calculation can be made by various
methods. One is the multi-slice (or phase-grating) method based on
a recurrent application of formulae (2.5.5.3) for n thin layers �zi
thick, and successive construction of the transmission functions qi
(2.5.5.4), phase functions Qi � � qi, and propagation function pk �
�k�2�i�z	 exp�ik�x2 � y2��2�z	 (Cowley & Moodie, 1957).

Another method – the scattering matrix method – is based on the
solution of equations of the dynamic theory (Chapter 5.2). The
emerging wave on the exit surface of a crystal is then found to
diffract and experience the transfer function action [(2.5.5.6),
(2.5.5.7a,b)].

The dynamic scattering in crystals may be interpreted using
Bloch waves:

� j�r� ��
H

C j
H exp��2�ik j

H � r�� �2�5�5�16�

It turns out that only a few (bound and valence Bloch waves) have
strong excitation amplitudes. Depending on the thickness of a
crystal, only one of these waves or their linear combinations
(Kambe, 1982) emerges on the exit surface. An electron-
microscopic image can be interpreted, at certain thicknesses, as
an image of one of these waves [with a correction for the transfer
function action (2.5.5.6), (2.5.5.7a,b)]; in this case, the identical
images repeat with increasing thickness, while, at a certain
thickness, the contrast reversal can be observed. Only the first
Bloch wave which arises at small thickness, and also repeats with
increasing thickness, corresponds to the projection of potential
��xy�, i.e. the atom projection distribution in a thin crystal layer.

An image of other Bloch waves is defined by the function ��r�,
but their maxima or minima do not coincide, in the general case,
with the atomic positions and cannot be interpreted as the projection
of potential. It is difficult to reconstruct ��xy� from these images,
especially when the crystal is not ideal and contains imperfections.
In these cases one resorts to computer modelling of images at
different thicknesses and defocus values, and to comparison with an
experimentally observed pattern.

The imaging can be performed directly in an electron microscope
not by a photo plate, but using fast-response detectors with digitized
intensity output on line. The computer contains the necessary
algorithms for Fourier transformation, image calculation, transfer
function computing, averaging, and correction for the observed and
calculated data. This makes possible the interpretation of the pattern
observed directly in experiment (Herrmann et al., 1980).
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2.5.5.5. Image enhancement

The real electron-microscope image is subdivided into two
components:

J�xy� � I�xy� � N�xy�� �2�5�5�17�
The main of these, I�xy�, is a two-dimensional image of the ‘ideal’
object obtained in an electron microscope with instrumental
functions inherent to it. However, in the process of object imaging
and transfer of this information to the detector there are various
sources of noise. In an electron microscope, these arise owing to
emission-current and accelerating-voltage fluctuations, lens-
supplying current (temporal fluctuations), or mechanical instabil-
ities in a device, specimen or detector (spatial shifts). The two-
dimensional detector (e.g. a photographic plate) has structural
inhomogeneities affecting a response to the signal. In addition, the
specimen is also unstable; during preparation or imaging it may
change owing to chemical or some other transformations in its
structure, thermal effects and so on. Biological specimens scatter
electrons very weakly and their natural state is moist, while in the
electron-microscope column they are under vacuum conditions. The
methods of staining (negative or positive), e.g. of introducing into
specimens substances containing heavy atoms, as well as the freeze-
etching method, somewhat distort the structure of a specimen.
Another source of structure perturbation is radiation damage, which
can be eliminated at small radiation doses or by using the cryogenic
technique. The structure of stained specimens is affected by stain
graininess. We assume that all the deviations �Ik�xy� of a specimen
image from the ‘ideal’ image Ik�xy� are included in the noise term
Nk�xy�. The substrate may also be inhomogeneous. All kinds of
perturbations cannot be separated and they appear on an electron
microscope image as the full noise content N�xy�.

The image enhancement involves maximum noise suppression
N�xy� and hence the most accurate separation of a useful signal
I�xy� from the real image J�xy� (2.5.5.1). At the signal/noise ratio
I�N � 1 such a separation appears to be rather complicated. But in
some cases the real image reflects the structure sufficiently well, e.g.
during the atomic structure imaging of some crystals �I�N  10�.
In other cases, especially of biological specimen imaging, the noise
N distorts substantially the image, �I�N� � 5---10. Here one should
use the methods of enhancement. This problem is usually solved by
the methods of statistical processing of sets of images Jk
�k � 1, � � � , n�. If one assumes that the informative signal Ik�xy�
is always the same, then the noise error N�xy� may be reduced.

The image enhancement methods are subdivided into two
classes:

(a) image averaging in real space xy;
(b) Fourier analysis and filtration in reciprocal space.

These methods can be used separately or in combination. The
enhancement can be applied to both the original and the restored
images; there are also methods of simultaneous restoration and
enhancement.

The image can be enhanced by analogue (mainly optical and
photographic) methods or by computational methods for processing
digitized functions in real and reciprocal space.

The cases where the image has translational symmetry, rotational
symmetry, and where the image is asymmetric will be considered.

Periodic images. An image of the crystal structure with atomic or
molecular resolution may be brought to self-alignment by a shift by
a and b periods in a structure projection. This can be performed
photographically by printing the shifted image on the same
photographic paper or, vice versa, by shifting the paper (Mc-
Lachlan, 1958).

The Fourier filtration method for a periodic image Ip with noise N
is based on the fact that in Fourier space the components � Ip and
� N are separated. Let us carry out the Fourier transformation of the

periodic signal Ip with the periods a, b and noise N:

� J � � �Ip�xy� � N�xy�	
� �

Ip�xy� exp�2�i�hx � ky�	 dx dy� � N

��
�hk��u� uhk� � � N ; �2�5�5�18�

uhk � ha� � kb��

The left part of (2.5.5.18) represents the Fourier coefficients �hk
distributed discretely with periods a� and b� in the plane u�uv�. This
is the two-dimensional reciprocal lattice. The right-hand side of
(2.5.5.18) is the Fourier transform � N distributed continuously in
the plane. Thus these parts are separated. Let us ‘cut out’ from
distribution (2.5.5.18) only �hk values using the ‘window’ function
w�uv�. The window should match each of the real peaks �hk which,
owing to the finite dimensions of the initial periodic image, are not
points, as this is written in an idealized form in (2.5.5.18) with the
aid of � functions. In reality, the ‘windows’ may be squares of about
a��10, b��10 in size, or a circle. Performing the Fourier
transformation of product (2.5.5.18) without � N , and set of
windows w�u� � w�uv� ��h� k��u� ha� � kb��, we obtain:

J�xy� � � �1�w�u��
h� k

�h� k��u� uh� k��

� W�xy� � Ip�x�, �2�5�5�19�
the periodic component without the background, W �xy� �
� �1w�u�. The zero coefficient �00 in (2.5.5.19) should be
decreased, since it is due, in part, to the noise. When the window
w is sufficiently small, Ip in (2.5.5.19) represents the periodic
distribution �I� (average over all the unit cells of the projection)
included in Ip (2.5.5.18). Nevertheless, some error from noise in an
image does exist, since with �hk we also introduced into the inverse
Fourier transformation the background transform values � �1Nhk
which are within the ‘windows’.

This approach is realized by an analogue method [optical
diffraction and filtering of electron micrographs in a laser beam
(Klug & Berger, 1964)] and can also be carried out by computing.

As an example, Fig. 2.5.5.2(b) shows an electron micrograph of
the periodic structure of a two-dimensional protein crystal, while
Fig. 2.5.5.2(c) represents optical diffraction from this layer. In order
to dissect the aperiodic component � N in a diffraction plane,
according to the scheme in Fig. 2.5.5.2(a), one places a mask with
windows covering reciprocal-lattice points. After such a filtration,
only the Ip component makes a contribution during the image
formation by means of a lens, while the component � N diffracted
by the background is delayed. As a result, an optical pattern of the
periodic structure is obtained (Fig. 2.5.5.2d).

Optical diffractometry also assists in determining the parameters
of a two-dimensional lattice and its symmetry.

Using the same method, one can separate the superimposed
images of two-dimensional structures with different periodicity and
in different orientation, the images of the ‘near’ and ‘far’ sides of
tubular periodic structures with monomolecular walls (Klug &
DeRosier, 1966; Kiselev et al., 1971), and so on.

Computer filtering involves measuring the image optical density
Jobs, digitization, and Fourier transformation (Crowther & Amos,
1971). The sampling distance usually corresponds to one-third of
the image resolution. When periodic weak phase objects are
investigated, the transformation (2.5.5.18) yields the Fourier
coefficients. If necessary, we can immediately make corrections
in them using the microscope transfer function according to
(2.5.5.6), (2.5.5.7a,b) and (2.5.5.11a), and thereby obtain the true
kinematic amplitudes �hk . The inverse transformation (2.5.5.16)
gives a projection of the structure (Unwin & Henderson, 1975;
Henderson & Unwin, 1975).
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Sometimes, an observed image J�x� is ‘noised’ by the N�x� to a
great extent. Then, one may combine data on real and reciprocal
space to construct a sufficiently accurate image. In this case, the
electron-diffraction pattern is measured and structure-factor moduli
from diffraction reflection intensities Ihk� obs are obtained:


�hk� obs
 �
������������
Ihk� obs

�
� �2�5�5�20�

At the same time, the structure factors

�hk� calc � 
�hk� calc
 exp�i
hk� calc� �2�5�5�21�
are calculated from the processed structure projection image by
means of the Fourier transformation. However, owing to poor image
quality we take from these data only the values of phases 
hk since
they are less sensitive to scattering density distortions than the
moduli, and construct the Fourier synthesis

I�xy� ��
hk

�hk� obs
 exp�i
hk� calc�

� exp�2�i�hx � ky�	� �2�5�5�22�
Here the possibilities of combining various methods open up, e.g.

for obtaining the structure-factor moduli from X-ray diffraction,
and phases from electron microscopy, and so on (Gurskaya et al.,
1971).

Images with point symmetry. If a projection of an object (and
consequently, the object itself) has a rotational N-fold axis of
symmetry, the structure coincides with itself on rotation through the
angle 2��N . If the image is rotated through arbitrary angles and is
aligned photographically with the initial image, then the best
density coincidence will take place at a rotation through 
 �
�k2��N� �k � 1, � � � , N� which defines N. The pattern averaging
over all the rotations will give the enhanced structure image with an
�N�1�2 times reduced background (Markham et al., 1963).

Rotational filtering can be performed on the basis of the Fourier
expansion of an image in polar coordinates over the angles
(Crowther & Amos, 1971).

I�r,�� � ���
n���

gn�r� exp�in��� �2�5�5�23�

The integral over the radius from azimuthal components gn gives
their power

pn �
�a
0

gn
2r dr, �2�5�5�24�

where a is the maximum radius of the particle. A set pn forms a
spectrum, the least common multiple N of strong peaks defining the
N-fold symmetry. The two-dimensional reconstructed image of a
particle with rotational symmetry is defined by the synthesis
(2.5.5.24) with n � 0, N , 2N , 3N .

Asymmetric images. In this case, a set of images is processed by
computational or analogue methods. The initial selection of images
involves the fulfillment of the maximum similarity condition.

The averaging of n images in real space gives

Ienh � �1�n��n
k�1

Jk�xy� � �Ik��xy� � �1�n��Nk�xy�� �2�5�5�25�

The signal/noise ratio on an average image is �n�1�2 times enhanced.
The degree of similarity and accuracy of superposition of two

images with an account both of translational and angular shifts is
estimated by a cross-correlation function* of two selected images
J1 and J2 (Frank, 1975, 1980).

Fig. 2.5.5.2. (a) Diagram of an optical diffractometer. D is the object (an electron micrograph), Mp is the diffraction plane and a mask that transmits only
�hk , Dp is the plane of the (filtered) image; (b) an electron micrograph of a crystalline layer of the protein phosphorylase b; (c) its optical diffraction
pattern (the circles correspond to the windows in the mask that transmits only the �hk diffracted beams from the periodic component of the image); (d)
the filtered image. Parts (b)–(d) are based on the article by Kiselev et al. (1971).

� At Ij � Ik this is the autocorrelation function, an analogue of the Patterson
function used in crystallography.
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k�x�� � J1 � J2 �
�

J1�x�J2�x� x�� dx

� kI1I2 � kI1N2 � kI2N1 � kN1N2 � �2�5�5�26�
The value k�x�� is the measure of image similarity, the x�
coordinate of the maximum indicates the shift of the images
relative to each other. The first term of the resultant expression
(2.5.5.26) is the cross-correlation function of noise-corrected
images being compared, the second and third terms are
approximately equal to zero, since the noise does not correlate
with the signal; the last term is the autocorrelation function of
the noise (Cramér, 1954; Frank, 1975, 1980).

The calculation of a correlation function is performed by means
of Fourier transformation on the basis of the convolution theorem,
since the Fourier transformation of the product of the Fourier
transform of function J1 and the conjugated Fourier transform
function J2 gives the cross-correlation function of the initial
functions:

k � � �1�� J1 � � �J2	� �2�5�5�27�
The probability density of samples for images has the form

p�J1J2 � � � Jn� � 1

�� ������
2�

� �n

� exp
�1
2�2

�n �
�Jk�x� xk� � J�x�	2 dx

� �
�

�2�5�5�28�
Here J is the tentative image (as such, a certain ‘best’ image can

first be selected, while at the repeated cycle an average image is
obtained), Jk�x� is the image investigated, � is the standard
deviation of the normal distribution of noises and xk the relative
shift of the image. This function is called a likelihood function; it
has maxima relative to the parameters J�x�, xk , �. The average
image and dispersion are

J�x� � �1�n��n �Jk�x� xk�	,
�2 � �1�n��n �Jk�x� xk� � J�x�	2� �2�5�5�29�

This method is called the maximum-likelihood method (Cramér,
1954; Kosykh et al., 1983).

It is convenient to carry out the image alignment, in turn, with
respect to translational and angular coordinates. If we start with an
angular alignment we first use autocorrelation functions or power
spectra, which have the maximum and the symmetry centre at the
origin of the coordinates. The angular correlation maximum

f ���� � �
fk��� ���fe��� d� �2�5�5�30�

gives the mutual angle of rotation of two images.
Then we carry out the translational alignment of rotationally

aligned images using the translational correlation function
(2.5.5.26) (Langer et al., 1970).

In the iteration alignment method, the images are first
translationally aligned and then an angular shift is determined in
image space in polar coordinates with the centre at the point of the
best translational alignment. After the angular alignment the whole
procedure may be repeated (Steinkilberg & Schramm, 1980).

The average image obtained may have false high-frequency
components. They can be excluded by multiplying its Fourier
components by some function and suppressing high-space
frequencies, for instance by an ‘artificial temperature factor’
exp��B
u
2�.

For a set of similar images the Fourier filtration method can also
be used (Ottensmeyer et al., 1977). To do this, one should prepare
from these images an artificial ‘two-dimensional crystal’, i.e. place

them in the same orientation at the points of the two-dimensional
lattice with periods a, b.

J � �n
k�1

Jk�x� tp�; t � p1a� p2b� �2�5�5�31�

The processing is then performed according to (2.5.5.18),
(2.5.5.19); as a result one obtains �I�xy�� with reduced background.
Some translational and angular errors in the arrangement of the
images at the artificial lattice points act as an artificial temperature
factor. The method can be realized by computing or by optical
diffraction.

2.5.6. Three-dimensional reconstruction*
(B. K. VAINSHTEIN)

2.5.6.1. The object and its projection

In electron microscopy we obtain a two-dimensional image
�2�x�� – a projection of a three-dimensional object �3�r� (Fig.
2.5.6.1):

�2�x�� �
�
�3�r� d� � � x� �2�5�6�1�

The projection direction is defined by a unit vector ���,�� and the
projection is formed on the plane x perpendicular to � � The set of
various projections �2�x�i� � �2i�xi� may be assigned by a discrete
or continuous set of points � i��i,�i� on a unit sphere 
� 
 � 1 (Fig.
2.5.6.2). The function ��x�� reflects the structure of an object, but
gives information only on x� coordinates of points of its projected
density. However, a set of projections makes it possible to
reconstruct from them the three-dimensional (3D) distribution
�3�xyz� (Radon, 1917; DeRosier & Klug, 1968; Vainshtein et al.,
1968; Crowther, DeRosier & Klug, 1970; Gordon et al., 1970;
Vainshtein, 1971a; Ramachandran & Lakshminarayanan, 1971;
Vainshtein & Orlov, 1972, 1974; Gilbert, 1972a; Herman, 1980).
This is the task of the three-dimensional reconstruction of the
structure of an object:

set �2�xi� � �3�r�� �2�5�6�2�
Besides electron microscopy, the methods of reconstruction of a

structure from its projections are also widely used in various fields,
e.g. in X-ray and NMR tomography, in radioastronomy, and in
various other investigations of objects with the aid of penetrating,
back-scattered or their own radiations (Bracewell, 1956; Deans,
1983; Mersereau & Oppenheim, 1974).

In the general case, the function �3�r� (2.5.6.1) (the subscript
indicates dimension) means the distribution of a certain scattering
density in the object. The function �2�x� is the two-dimensional
projection density; one can also consider one-dimensional projec-
tions �1�x� of two- (or three-) dimensional distributions. In electron
microscopy, under certain experimental conditions, by functions
�3�r� and �2�x� we mean the potential and the projection of the
potential, respectively [the electron absorption function � (see
Section 2.5.4) may also be considered as ‘density’]. Owing to a very
large depth of focus and practical parallelism of the electron beam
passing through an object, in electron microscopy the vector � is the
same over the whole area of the irradiated specimen – this is the
case of parallel projection.

The 3D reconstruction (2.5.6.2) can be made in the real space of
an object – the corresponding methods are called the methods of
direct three-dimensional reconstruction (Radon, 1917; Vainshtein

� Questions related to this section may be addressed to Professor J. M. Cowley (see
list of contributing authors). Professor Cowley kindly checked the proofs for this
section.
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