
The inverse transformation has the form

��r,�, z� ��

n

�
gn�r, Z� exp�in�� exp�2�izZ� dZ, �2�5�6�21�

so that gn and Gn are the mutual Bessel transforms

Gn�R, Z� � ��

0
gn�rZ�Jn�2�rR�2�r dr �2�5�6�22�

gn�r, Z� � ��

0
Gn�R, Z�Jn�2�rR�2�R dR� �2�5�6�23�

Owing to helical symmetry, (2.5.6.22), (2.5.6.23) contain only
those of the Bessel functions which satisfy the selection rule
(Cochran et al., 1952)

l � mp� �nq�N�, �2�5�6�24�
where N, q and p are the helix symmetry parameters,
m � 0, � 1, � 2, � � �. Each layer l is practically determined by
the single function Jn with the lowest n; the contribution of other
functions is neglected. Thus, the Fourier transformation of one
projection of a helical structure, with an account of symmetry and
phases, gives the three-dimensional transform (2.5.6.23). We can
introduce into this transform the function of temperature-factor type
filtering the ‘noise’ from large spatial frequencies.

2.5.6.8. Three-dimensional reconstruction in the general
case

In the general case of 3D reconstruction �3�r� from projections
�2�x� � the projection vector � occupies arbitrary positions on the
projection sphere (Fig. 2.5.6.2). Then, as in (2.5.6.15), we can
construct the three-dimensional spatial synthesis. To do this, let us
transform the two-dimensional projections �2i�x, ���,��i� by
extending them along � as in (2.5.6.13) into three-dimensional
projection functions �3�r�i�.

Analogously to (2.5.6.15), such a three-dimensional synthesis is
the integral over the hemisphere (Fig. 2.5.6.2)

�3�r� �
�

	

�3�r, � i� d	� � ��r� 	 
r
�2

� ��3i�r���
 ��i � � �3�r� � B; �2�5�6�25�
this is the convolution of the initial function with 
r
�2 (Vainshtein,
1971b).

To obtain the exact reconstruction of �3�r� we find, from each
�2�x� �, the modified projection (Vainshtein & Orlov, 1974; Orlov,
1975)

��2�x� � �
�

�2�x� � � �2�x
� �

x� � x
� 
3

dsx
 � �2�5�6�26�

By extending �2�x� � along � we transform them into ��3�r� �.
Now the synthesis over the angles 	� � ��,�,��� gives the three-
dimensional function

�3�r� � 1
4�3

�

��3�r� � d	� �
�

i

��3i�r���
 �
 ��i
�� �2�5�6�27�

The approximation for a discrete set of angles is written on the
right. In this case we are not bound by the coaxial projection
condition which endows the experiment with greater possibilities;
the use of object symmetry also profits from this. To carry out the
3D reconstruction (2.5.6.25) or (2.5.6.27) one should know all three
Euler’s angles �, �, � (Fig. 2.5.6.2).

The projection vectors � i should be distributed more or less
uniformly over the sphere (Fig. 2.5.6.2). This can be achieved by
using special goniometric devices.

Another possibility is the investigation of particles which, during
the specimen preparation, are randomly oriented on the substrate.
This, in particular, refers to asymmetric ribosomal particles. In this
case the problem of determining these orientations arises.

The method of spatial correlation functions may be applied if a
large number of projections with uniformly distributed projection
directions is available (Kam, 1980). The space correlation function
is the averaged characteristic of projections over all possible
directions which is calculated from the initial projections or the
corresponding sections of the Fourier transform. It can be used to
find the coefficients of the object density function expansion over
spherical harmonics, as well as to carry out the 3D reconstruction in
spherical coordinates.

Another method (Van Heel, 1984) involves the statistical
analysis of image types, subdivision of images into several classes
and image averaging inside the classes. Then, if the object is rotated
around some axis, the 3D reconstruction is carried out by the
iteration method.

If such a specimen is inclined at a certain angle with respect to
the beam, then the images of particles in the preferred orientation
make a series of projections inclined at an angle � and having a
random azimuth. The azimuthal rotation is determined from the
image having zero inclination.

If particles on the substrate have a characteristic shape, they may
acquire a preferable orientation with respect to the substrate, their
azimuthal orientation � being random (Radermacher et al., 1987).

In the general case, the problem of determining the spatial
orientations of randomly distributed identical three-dimensional
particles �3�r� with an unknown structure may be solved by
measuring their two-dimensional projections p�x�� (Fig. 2.5.6.1)

p�x�i� � �2�x�i� �
�
�3�r� d�i x � � i; �2�5�6�1a�

if the number i of such projections is not less than three, i � 3
(Vainshtein & Goncharov, 1986a,b; Goncharov et al. 1987;
Goncharov, 1987). The direction of the vector � i along which the
projection p�� i� is obtained is set by the angle 	i��i,�i� (Fig.
2.5.6.2).

The method is based on the analysis of one-dimensional
projections q� of two-dimensional projections p�x�i�

q�x��� �
�

p�x�i� dx��, �2�5�6�28�
where � is the angle of the rotation about vector � in the p plane.

Lemma 1. Any two projections p1�x�i� and p2�x�2� (Fig. 2.5.6.6)
have common (identical) one-dimensional projections q12�x12�:

q12�x12� � q1
 �1j�x��1j� � q2
 �2k�x��2k�� �2�5�6�29�
Vectors �1 and �2 (Fig. 2.5.6.3) determine plane h in which they are
both lying. Vector m12 � ��1�2� is normal to plane h and parallel to
axis x12 of the one-dimensional projection q12; both x��1j and x��2j
axes along which the projections q1 and q2 are constructed are
perpendicular to x12.

The corresponding lemma in the Fourier space states:
Lemma 2. Any two plane transforms, �2�u�1� � � 2p1 and

�2�u�2� � � 2p2 intersect along the straight line v12 (Fig. 2.5.6.7);
the one-dimensional transform Q�v12� is the transform of
q12 � Q�v12� � � 1g12.

Thus in order to determine the orientations 	i��i,�i,�i� of a
three-dimensional particle �3
 	i�r� it is necessary either to use
projections pi in real space or else to pass to the Fourier space
(2.5.6.5).

Now consider real space. The projections pi are known and can
be measured but angles �ij of their rotation about vector � i (Fig.
2.5.6.8) are unknown and should be determined. Let us choose any
two projections p1 and p2 and construct a set of one-dimensional
projections q1
 �1j and q2
 �2k by varying angles �1j and �2k . In
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accordance with Lemma 1, there exists a one-dimensional
projection, common for both p1 and p2, which determines angles
�1j and �2k along which p1 and p2 should be projected for obtaining
the identical projection q12 (Fig. 2.5.6.5). Comparing q1
 �1j and
q2
 �2k and using the minimizing function

D�1, 2� � 
q1
 �1j � q2
 �2k 
2 �2�5�6�30�
it is possible to find such a common projection q12. (A similar
consideration in Fourier space yields Q12.)

The mutual spatial orientations of any three non-coplanar
projection vectors �1, �2, �3 can be found from three different
two-dimensional projections p1, p2 and p3 by comparing the
following pairs of projections: p1 and p2, p1 and p3, and p2 and

p3, and by determining the corresponding q12, q13 and q23. The
determination of angles 	1, 	2 and 	3 reduces to the construction of
a trihedral angle formed by planes h12, h13 and h23. Then the
projections pi�	i� with the known 	i �i � 1, 2, 3� can be com-
plemented with other projections �i � 4, 5, � � �� and the correspond-
ing values of 	 can be determined. Having a sufficient number of
projections and knowing the orientations 	i, it is possible to carry
out the 3D reconstruction of the object [see (2.5.6.27); Orlov, 1975;
Vainshtein & Goncharov, 1986a; Goncharov et al., 1987].

2.5.7. Direct phase determination in electron
crystallography (D. L. DORSET)

2.5.7.1. Problems with ‘traditional’ phasing techniques

The concept of using experimental electron-diffraction inten-
sities for quantitative crystal structure analyses has already been
presented in Section 2.5.4. Another aspect of quantitative structure
analysis, employing high-resolution images, has been presented in
Sections 2.5.5 and 2.5.6. That is to say, electron micrographs can be
regarded as an independent source of crystallographic phases.

Before direct methods (Chapter 2.2) were developed as the
standard technique for structure determination in small-molecule
X-ray crystallography, there were two principal approaches to
solving the crystallographic phase problem. First, ‘trial and error’
was used, finding some means to construct a reasonable model for
the crystal structure a priori, e.g. by matching symmetry properties
shared by the point group of the molecule or atomic cluster and the
unit-cell space group. Secondly, the autocorrelation function of the
crystal, known as the Patterson function (Chapter 2.3), was
calculated (by the direct Fourier transform of the available intensity
data) to locate salient interatomic vectors within the unit cell.

The same techniques had been used for electron-diffraction
structure analysis (nowadays known as electron crystallography).
In fact, advocacy of the first method persists. Because of the
perturbations of diffracted intensities by multiple-beam dynamical
scattering (Chapter 5.2), it has often been suggested that trial and
error be used to construct the scattering model for the unit crystal in
order to test its convergence to observed data after simulation of the
scattering events through the crystal. This indirect approach
assumes that no information about the crystal structure can be
obtained directly from observed intensity data. Under more
favourable scattering conditions nearer to the kinematical approx-
imation, i.e. for experimental data from thin crystals made up of
light atoms, trial and error modelling, simultaneously minimizing
an atom–atom nonbonded potential function with the crystal-

Fig. 2.5.6.7. Section of a three-dimensional Fourier transform of the
density of the particles, corresponding to plane projections of this
density.

Fig. 2.5.6.8. Plane projections of a three-dimensional body. The systems of
coordinates in planes (a) and (b) are chosen independently of one
another.

Fig. 2.5.6.6. Relative position of the particle and planes of projection.
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