
h � �1�u1, 1�v2, 1�w3�� �3�1�9�10�
That is, the covariant components of h are given by the reciprocals
of the intercepts of the plane on the axes. The vector h is normal to
the plane it describes (Sands, 1982a) and the length of h is the
reciprocal of the distance d of the plane from the origin; i.e.,

h � 1�d� �3�1�9�11�
If the indices hi are relatively prime integers, the theory of

numbers tells us that the Diophantine equation (3.1.9.8) has
solutions xi that are integers. Points whose contravariant compo-
nents are integers are lattice points, and such a plane passes through
an infinite number of lattice points and is called a lattice plane.
Thus, the hi for lattice planes are the familiar Miller indices of
crystallography.

Calculations involving planes become quite manageable when
the normal vector h is introduced. Thus, the distance l from a point
P with coordinates pi to a plane characterized by h is

l � �1� p � h��h, �3�1�9�12�
where a negative sign indicates that the point is on the opposite side
of the plane from the origin.

The dihedral angle � between planes with normals h and h� is

� � cos�1��h � h���hh���� �3�1�9�13�
A variation of (3.1.9.13) expresses � in terms of vector u in the first
plane, vector w in the second plane, and vector v, the intersection of
the planes, as (Shmueli, 1974)

� � cos�1��u 	 v� � �v 	 w��
u 	 v

v 	 w
�� �3�1�9�14�
A similar calculation gives angles of torsion. Let th and uh be,

respectively, the projections of vectors t and u onto the plane with
normal h.

th � t� �t � h�h�h2 �3�1�9�15�
uh � u� �u � h�h�h2� �3�1�9�16�

The angle between th and uh represents a torsion about h (Sands,
1982b). Another approach to the torsion angle, which gives
equivalent results (Shmueli, 1974), is to compute the angle between
t 	 h and u 	 h using (3.1.8.3).

3.1.10. Variance–covariance matrices

Refinement of a crystal structure yields both the parameters that
describe the structure and estimates of the uncertainties of those
parameters. Refinement by the method of least squares minimizes a
weighted sum of squares of residuals. In the matrix notation of
Hamilton’s classic book (Hamilton, 1964), values of the m
parameters to be determined are expressed by the m� 1 column
vector X given by

X � �AT PA��1AT PF, �3�1�10�1�
where F is an n� 1 matrix representing the observations (structure
factors or squares of structure factors), P is an n� n weight matrix
that is proportional to the variance–covariance matrix of the
observed F, A is an n� m design matrix consisting of the
derivatives of each element of F with respect to each of the
parameters and AT is the transpose of A. The variance–covariance
matrix of the parameters is then given by

M � V T PV �AT PA��1��n� m�� �3�1�10�2�
Here, V is the n� 1 matrix of residuals, consisting of the
differences between the observed and calculated values of the
elements of F. Since V T PV��n� m� is just a single number, M is
proportional to the inverse least-squares matrix �AT PA��1.

Once the variance–covariance matrix of the parameters is known,
the variances and covariances of any quantities derived from these
parameters can be computed. The variance of a single function f is
given by

�2� f � � �f
�xi

�f
�x j

cov�xi, x j�, �3�1�10�3�

where, as usual, we are using the summation convention and
summing over all parameters included in f. A generalization of
(3.1.10.3) for two functions is

cov� f1, f2� � �f1
�xi

�f2

�x j
cov�xi, x j�� �3�1�10�4�

[The covariance of two quantities is, of course, just the variance if
the two quantities are the same. For an elementary discussion of
statistical covariance and correlation, see Sands (1977).] Equation
(3.1.10.4) may now be extended to any number of functions (Sands,
1966); the k � k variance–covariance matrix C of k functions of m
parameters is given in terms of the m� m variance–covariance
matrix of the parameters by

C � DMDT , �3�1�10�5�
in which the ijth element of the k � m matrix D is the derivative of
function fi with respect to parameter j. Element CII (no summation
implied over I) is the variance of function fI , and CIJ is the
covariance of functions fI and fJ .

The calculation of C must, of course, include the contributions of
all sources of error, so M in (3.1.10.5) should include the variances
and covariances of the unit-cell dimensions and of any other
relevant parameters with non-negligible uncertainties.

It may be easier, in some cases, to carry out calculations of
variances and covariances in steps. For example, the variance–
covariance matrix of a set of distances may be computed and then
other quantities may be determined as functions of the distances. It
is imperative that all non-vanishing covariances be included in
every stage of the calculation; only in special cases are the
covariances negligible, and often they are large enough to affect
the results seriously (Sands, 1977).

These principles may be used to explore the effects of symmetry
or of transformations on the variance–covariance matrices of
atomic parameters and derived quantities. Using the notation of
Sands (1966), with xi

A and xi
B the positional parameters i of atoms A

and B, respectively, we define MAA, MAB, MBA and MBB as 3� 3
matrices with ijth elements cov�xi

A, x j
A�, cov�xi

A, x j
B�, cov�xi

B, x j
A� and

cov�xi
B, x j

B�, respectively. If atom B� is generated from atom B by
symmetry operator S, such that

xB� � SxB �3�1�10�6�
xi

B� � Si
jx

j
B, �3�1�10�7�

it is shown in Sands (1966) that the variance–covariance matrices
involving atom B� are

MAB� � MABST �3�1�10�8�
MB�A � SMBA �3�1�10�9�
MB�B� � SMBBST � �3�1�10�10�

If symmetry operator S is applied to both atoms A and B to generate
atoms A� and B�, the corresponding matrices may be expressed by
the matrix equation

MA�A� MA�B�

MB�A� MB�B�

� �
� SMAAST SMABST

SMBAST SMBBST

� �
� �3�1�10�11�
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If G is a matrix that transforms to a new set of axes,

a� � Ga, �3�1�10�12�
the transformed variance–covariance matrix of the atomic para-
meters is

M � � �GT��1MG�1� �3�1�10�13�
To apply these formulae to calculations of the errors and

covariances of interatomic distances and angles, consider the
triangle of atoms A, B, C with edges l1 � AB, l2 � BC, l3 � CA,
and angles �1, �2, �3 at A, B, C, respectively. If the atoms are not
related by symmetry,

�2�l1� � lT
1 g�MAA �MAB �MBA �MBB�gl1�l2

1 �3�1�10�14�
cov�l1, l2� � lT

1 g�MAB �MAC �MBB �MBC�gl2�l1l2� �3�1�10�15�
If atom B is generated from atom A by symmetry matrix S, the
results, as derived in Sands (1966), are

�2�l1� � lT
1 g�MAA � SMAA �MAAST

� SMAAST�gl1�l2
1 �3�1�10�16�

�2�l2� � lT
2 g�SMAAST �MACST

� SMAC �MCC�gl2�l2
2 �3�1�10�17�

�2�l3� � lT
3 g�MAA �MAC �MCA

�MCC�gl3�l2
3 �3�1�10�18�

cov�l1, l2� � lT
1 g�MAAST � SMAAST

�MAC � SMAC�gl2�l1l2 �3�1�10�19�
cov�l1, l3� � lT

1 g��MAA � SMAA

�MAC � SMAC�gl3�l1l3 �3�1�10�20�
cov�l2, l3� � lT

2 g��SMAA �MCA

� SMAC �MCC�gl3�l2l3� �3�1�10�21�
In equations (3.1.10.14)–(3.1.10.21), li is a column vector with
components the differences of the coordinates of the atoms
connected by the vector. Representative formulae involving the
angles �1, �2, �3 are

�2��1� � �cos2 �2�
2�l1� � 2 cos�2 cov�l1, l2�

� 2 cos�2 cos�3 cov�l1, l3� � �2�l2�
� 2 cos�3 cov�l2, l3�
� cos2 �3�

2�l3���l2�l1l3 sin�1�2 �3�1�10�22�
cov��1,�2� � �cos�1 cos�2�

2�l1�
� �cos�2 cos�3 � cos�1� cov�l1, l2�
� �cos�1 cos�3 � cos�2� cov�l1, l3�
� cos�3�

2�l2� � �1� cos2 �3� cov�l2, l3�
� cos�3�

2�l3����l2
1 sin�1 sin�2� �3�1�10�23�

cov��1, l1� � �� cos�2�
2�l1� � cov�l1, l2�

� cos�3 cov�l1, l3���l2�l1l3 sin�1� �3�1�10�24�
cov��1, l2� � �� cos�2 cov�l1, l2� � �2�l2�

� cos�3 cov�l2, l3���l2�l1l3 sin�1�� �3�1�10�25�
If any of the angles approach 0 or 180, the denominators in
(3.1.10.22)–(3.1.10.25) will become very small, necessitating high-
precision arithmetic. Indeterminacies resulting from special
relationships between atomic positions may require rederivation

of the equations for variances and covariances, to take the
relationships into account explicitly and avoid the indeterminacies.
A true symmetry condition requiring, for example, a linear bond
should cause little problem, and the corresponding variance will be
zero. It is the indeterminacies not originating from crystal symmetry
that demand caution, in recognizing them and in coping with them
correctly.

A general expression for the variance of a dihedral angle, in
terms of the variances and covariances of the coordinates of the four
atoms, is (Shmueli, 1974)

�2��� �
�

k

�
n

��

�xi
�k�

��

�x j
�n�

cov�xi
�k�, x j

�n��, �3�1�10�26�

where, in addition to the usual tensor summation over i and j from 1
to 3, summation must be carried out over the four atoms (i.e., k and
n vary from 1 to 4). Special cases of (3.1.10.26), corresponding to
various levels of approximation of diagonal matrices and isotropic
errors, are given in Shmueli (1974). Formulae in dyadic notation are
given in Waser (1973) for the variances and covariances of dihedral
angles, of best planes, of torsion angles, and of other molecular
parameters.

3.1.11. Mean values

The weighted mean of a set of quantities Xi is

�X � ��
wiXi�

�
wi, �3�1�11�1�

where the weights are typically chosen to minimize the variance of
�X �. The variance may be computed from the variance–covariance
matrix M of the Xi by

�2��X �� � wT Mw���wi�2� �3�1�11�2�
Minimization of �2��X �� leads to weights given by

w � M�1v, �3�1�11�3�
where the components of vector v are all equal (vi � vj for all i and
j); since (3.1.11.1) and (3.1.11.2) require only relative weights, we
can assign vi � 1 for all i. Placing these weights in (3.1.11.2) yields

�2��X �� � 1�
�

wi� �3�1�11�4�
For the case of uncorrelated Xi, the weights are inversely
proportional to the corresponding variances

wi � 1��2�Xi�� �3�1�11�5�
For the case of two correlated variables,

wi � 1���2�Xi� � cov�X1, X2��� �3�1�11�6�
Derivation and discussion of these equations may be found in Sands
(1966, 1982b).

The presence of systematic errors in the experimental data often
results in these formulae producing estimates of the standard
uncertainties of molecular dimensions that are too small; it has been
suggested that such error estimates should be multiplied by 1.5 to
make them more realistic (Taylor & Kennard, 1983). It is essential
also that averages be computed only of similar quantities, and
interatomic distances corresponding to different bond orders or
different environments may not represent the same physical
quantities; that is, there are reasons for the discrepancies, and
averaging may obscure important information. Another source of
error in molecular geometry parameters determined from crystal-
lographic measurements is thermal motion, and distances should be
corrected for such effects before making comparisons (Busing &
Levy, 1964; Johnson, 1970, 1980).
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