
3.3. Molecular modelling and graphics

BY R. DIAMOND

3.3.1. Graphics

3.3.1.1. Coordinate systems, notation and standards

3.3.1.1.1. Cartesian and crystallographic coordinates

It is usual, for purposes of molecular modelling and of computer
graphics, to adopt a Cartesian coordinate system using mutually
perpendicular axes in a right-handed system using the ångström unit
or the nanometre as the unit of distance along such axes, and largely
to ignore the existence of crystallographic coordinates expressed as
fractions of unit-cell edges. Transformations between the two are
thus associated, usually, with the input and output stages of any
software concerned with modelling and graphics, and it will be
assumed after this section that all coordinates are Cartesian using
the chosen unit of distance as the unit of coordinates. For a
discussion of coordinate transformations and rotations without
making this assumption see Chapter 1.1 in which formulations
using co- and contravariant forms are presented.

The relationship between these systems may be written

X � Mx x � M�1X

in which X and x are position vectors in direct space, written as
column vectors, with x expressed in crystallographic fractional
coordinates (dimensionless) and X in Cartesian coordinates
(dimension of length).

There are two forms of M in common use. The first of these sets
the first component of X parallel to a� and the third parallel to c and
is

M �
a�� sin� 0 0

a�cos � � cos� cos ��� sin� b sin� 0

a cos� b cos� c

�
��

�
��

M�1 �
sin��a� 0 0

�cos� cos� � cos ���b� sin� 1�b sin� 0

�cos� cos � � cos���c� sin� �1�c tan� 1�c

�
��

�
��

in which

� �
�������������������������������������������������������������������������������������������������
1� cos2 �� cos2 � � cos2 � � 2 cos� cos� cos �

�

� sin� sin� sin ���

� is equal to the volume of the unit cell divided by abc, and is
unchanged by cyclic permutation of �, � and � and of ��, �� and ��.
The Cartesian and crystallographic axes have the same chirality if
the positive square root is taken.

The second form sets the first component of X parallel to a and
the third component of X parallel to c� and is

M �
a b cos � c cos�

0 b sin � c�cos�� cos� cos ��� sin �

0 0 c�� sin �

�
��

�
��

M�1 �
1�a �1�a tan � �cos� cos � � cos ���a� sin �

0 1�b sin � �cos � cos � � cos���b� sin �

0 0 sin ��c�

�
��

�
���

A third form, suitable only for rhombohedral cells, is

M � a
3
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in which

p � � ����������������������
1� 2 cos�

�
q � �

�������������������
1� cos�

�
,

which preserves the equivalence of axes. Here the chiralities of the
Cartesian and crystallographic axes are the same if p is chosen
positive, and different otherwise, and the two sets of axes coincide
in projection along the triad if q is chosen positive and are � out of
phase otherwise.

3.3.1.1.2. Homogeneous coordinates

Homogeneous coordinates have found wide application in
computer graphics. For some equipment their use is essential, and
they are of value analytically even if the available hardware does
not require their use.

Homogeneous coordinates employ four quantities, X, Y, Z and W,
to define the position of a point, rather than three. The fourth
coordinate has a scaling function so that it is the quantity X�W (as
delivered to the display hardware) which controls the left–right
positioning of the point within the picture. A point with 	X�W 	 � 1
is in the picture, normally, and those with 	X�W 	 	 1 are outside it,
but see Section 3.3.1.3.5.

There are many reasons why homogeneous coordinates may be
adopted, among them the following:

(i) X, Y, Z and W may be held as integers, thus enabling fast
arithmetic whilst offering much of the flexibility of floating-point
working. A single W value may be common to a whole array of X, Y,
Z values.

(ii) Perspective transformations can be implemented without the
need for any division. Only high-speed matrix multiplication using
integer arithmetic is necessary, provided only that the drawing
hardware can provide displacements proportional to the ratio of two
signals, X and W or Y and W. Rotation, translation, scaling and the
application of perspective are all affected by operations of the same
form, namely multiplication of a four-vector by a 4
 4 matrix. The
hardware may thus be kept relatively simple since only one type of
operation needs to be provided for.

(iii) Since kX, kY, kZ, kW represents the same point as X, Y, Z, W,
the hardware may be arranged to maximize resolution without risk
of integer overflow.

For analytical purposes it is convenient to regard homogeneous
transformations in terms of partitioned matrices

M V
U N

	 

X
W

	 

,

where M is a 3
 3 matrix, V and X are three-element column
vectors, U is a three-element row vector and N and W are scalars.

Matrices and vectors which are equivalent under the considera-
tions of (iii) above will be related by the sign � in what follows.

360

International Tables for Crystallography (2006). Vol. B, Chapter 3.3, pp. 360–384.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ba/ch3o3v0001/


Hardware systems which use true floating-point representations
have less need of homogeneous coordinates and for these N and W
may normally be set to unity.

3.3.1.1.3. Notation

In this chapter the conventions of matrix algebra will be adhered
to except where it is convenient to show operations on elements of
vectors, matrices and tensors, where a subscript notation will be
used with a modified summation convention in which summation is
over lower-case subscripts only. Thus the equation

xI � AIjXj

is to be read ‘For any I, xI is AIjXj summed over j’.
Subscripts using the letter i or later in the alphabet will relate to

the usual three dimensions and imply a three-term summation.
Subscripts a to h are not necessarily so limited, and, in particular,
the subscript a is used to imply summation over atoms of which
there may be an arbitrary number.

We shall use the superscript T to denote a transpose, and also use
the Kronecker delta, 
IJ , which is 1 if I � J and zero otherwise, and
the tensor �IJK which is 1 if I, J and K are a cyclic permutation of 1,
2, 3, �1 if an anticyclic permutation, and zero otherwise.

�IJK � �I � J��J � K��K � I��2 1 � I , J , K � 3�

A useful identity is then

�iJK�iLM � 
JL
KM � 
JM
KL�

Single modulus signs surrounding the symbol for a square matrix
denote its determinant, and around a vector denote its length.

The symbol � is defined in the previous section.

3.3.1.1.4. Standards

The sections of this chapter concerned with graphics are
primarily concerned with the mathematical aspects of graphics
programming as they confront the applications programmer. The
implementations outlined in the final section have all, so far as the
author is aware, been developed ab initio by their inventors to deal
with these aspects using their own and unrelated techniques and
protocols. It is clear, however, that standards are now emerging, and
it is to be hoped that future developments in applications software
will handle the graphics aspects through one or other of these
standards.

First among these standards is the Graphical Kernel System,
GKS, defined in American National Standards Institute, American
National Standard for Information Processing Systems – Computer
Graphics – Graphical Kernel System (GKS) Functional Description
(1985) and described and illustrated by Hopgood et al. (1986) and
Enderle et al. (1984). GKS became a full International Standards
Organization (ISO) standard in 1985, and its purpose is to
standardize the interface between application software and the
graphics system, thus enhancing portability of software. Specifica-
tions for Fortran, Pascal and Ada formulations are at an advanced
stage of development. Its value to crystallographers is limited by the
fact that it is only two-dimensional. A three-dimensional extension
known as GKS-3D, defined in International Standards Organisa-
tion, International Standard Information Processing Systems –
Computer Graphics – Graphical Kernel System for Three
Dimensions (GKS-3D), Functional Description (1988) became an
ISO standard in 1988. Perhaps of greatest interest to crystal-
lographers, however, is the Programmers’ Hierarchical Interactive
Graphics System (PHIGS) (Brown, 1985; Abi-Ezzi & Bunshaft,
1986) since this allows hierarchical segmentation of picture content
to exist in both the applications software and the graphics device in
a related manner, which GKS does not. Some graphics devices now

available support this type of working and its exploitation indicates
the choice of PHIGS. Furthermore, Fortran implementations of
GKS and GKS-3D require points to be stored in arrays dimensioned
as X(N), Y(N), Z(N) which may be equivalenced (in the Fortran
sense) to XYZ(N, 3) but not to XYZ(3, N), which may not be
convenient. PHIGS also became an International Standard in 1988:
American National Standards Institute, American National Stan-
dard for Information Processing Systems – Computer Graphics –
Programmer’s Hierarchical Graphics System (PHIGS) Functional
Description, Archive File Format, Clear-Text Encoding of Archive
File (1988). PHIGS has also been extended to support the capability
of raster-graphics machines to represent reflections, shadows, see-
through effects etc. in a version known as PHIGS+ (van Dam,
1988).

Increasingly, manufacturers of graphics equipment are orienting
their products towards one or other of these standards. While these
standards are not the subject of this chapter it is recommended that
they be studied before investing in equipment.

In addition to these standards, related standards are evolving
under the auspices of the ISO for defining images in a file-storage,
or metafile, form, and for the interface between the device-
independent and device-dependent parts of a graphics package.
Arnold & Bono (1988) describe the ANSI and ISO Computer
Graphics Metafile standard which provides for the definition of
(two-dimensional) images. The definition of three-dimensional
scenes requires the use of (PHIGS) archive files.

3.3.1.2. Orthogonal (or rotation) matrices

It is a basic requirement for any graphics or molecular-modelling
system to be able to control and manipulate the orientation of the
structures involved and this is achieved using orthogonal matrices
which are the subject of these sections.

3.3.1.2.1. General form

If a vector v is expressed in terms of its components resolved
onto an axial set of vectors X, Y, Z which are of unit length and
mutually perpendicular and right handed in the sense that
�X
 Y�  Z � �1, and if these components are vI , and if a second
set of axes X�, Y�, Z� is similarly established, with the same origin
and chirality, and if v has components v�I on these axes then

v�I � aIjvj,

in which aIJ is the cosine of the angle between the ith primed axis
and the jth unprimed axis. Evidently the elements aIJ comprise a
matrix R, such that any row represents one of the primed axial
vectors, such as X�, expressed as components on the unprimed axes,
and each column represents one of the unprimed axial vectors
expressed as components on the primed axes. It follows that RT �
R�1 since elements of the product RT R are scalar products among
perpendicular unit vectors.

A real matrix whose transpose equals its inverse is said to be
orthogonal.

Since X, Y and Z can simultaneously be superimposed on X�, Y�
and Z� without deformation or change of scale the relationship is
one of rotation, and orthogonal matrices are often referred to as
rotation matrices. The operation of replacing the vector v by Rv
corresponds to rotating the axes from the unprimed to the primed set
with v itself unchanged. Equally, the same operation corresponds to
retaining fixed axes and rotating the vector in the opposite sense.
The second interpretation is the one more frequently helpful since
conceptually it corresponds more closely to rotational operations on
objects, and it is primarily in this sense that the following is written.

If three vectors u, v and w form the edges of a parallelepiped,
then its volume V is
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V � u  �v
 w� � �ijkuivjwk

and if these vectors are transformed by the matrix R as above, then
the transformed volume V� is

V � � �lmnu�lv
�
mw�

n � �lmnaliamjankuivjwk �

But the determinant of R is given by

	R	�IJK � �lmnalI amJ anK

so that

V � � 	R	V
and the determinant of R must therefore be +1 for a transformation
which is a pure rotation. Nevertheless orthogonal matrices with
determinant �1 exist though these do not describe a pure rotation.
They may always be described as the product of a pure rotation and
inversion through the origin and are referred to here as improper
rotations. In what follows all references to orthogonal matrices refer
to those with positive determinant only, unless stated otherwise.

An important general form of an orthogonal matrix in three
dimensions was derived as equation (1.1.4.32) and is

R �
l2 � �m2 � n2� cos � lm�1 � cos �� � n sin � nl�1� cos �� � m sin �

lm�1 � cos �� � n sin � m2 � �n2 � l2� cos � mn�1 � cos �� � l sin �
nl�1� cos �� � m sin � mn�1 � cos �� � l sin � n2 � �l2 �m2� cos �

�
�

�
�

or

RIJ � �1� cos ��lI lJ � 
IJ cos �� �IJklk sin �,

in which l, m and n are the direction cosines of the axis of rotation
(which are the same when referred to either set of axes under either
interpretation) and � is the angle of rotation. In this form, and with R
operating on column vectors on the right, the sign of � is such that,
when viewed along the rotation axis from the origin towards the
point lmn, the object is rotated clockwise for positive � with a fixed
right-handed axial system. If, under the same viewing conditions,
the axes are to be rotated clockwise through � with the object fixed
then the components of vectors in the object, on the new axes, are
given by R with the same lmn and with � negated. This is the
transpose of R, and if R is constructed from a product, as below,
then each factor matrix in the product must be transposed and their
order reversed to achieve this. Note that if, for a given rotation, the
viewing direction from the origin is reversed, l, m, n and � are all
reversed and the matrix is unchanged.

Any rotation about a reference axis such that two of the direction
cosines are zero is termed a primitive rotation, and it is frequently a
requirement to generate or to interpret a general rotation as a
product of primitive rotations.

A second important general form is based on Eulerian angles and
is the product of three such primitives. It is

R �
cos�3 � sin�3 0

sin�3 cos�3 0

0 0 1

�
��

�
��

cos�2 0 sin�2

0 1 0

� sin�2 0 cos�2

�
��

�
��

cos�1 � sin�1 0

sin�1 cos�1 0

0 0 1

�
��

�
��

�

�cos�3 cos�2 cos�1 ��cos�3 cos�2 sin�1 cos�3 sin�2

� sin�3 sin�1� � sin�3 cos�1�
�sin�3 cos�2 cos�1 �� sin�3 cos�2 sin�1 sin�3 sin�2

� cos�3 sin�1� � cos�3 cos�1�
� sin�2 cos�1 sin�2 sin�1 cos�2

�
��������

�
��������

which is commonly employed in four-circle diffractometers for
which � � ��1,  � �2 and � � ��3. In terms of the fixed-axes–
moving-object conceptualization this corresponds to a rotation �1
about Z followed by �2 about Y followed by �3 about Z. In the
familiar diffractometer example, when  � 0 the � and � axes are
both vertical and equivalent. If � is altered first, then the  axis is

still in the direction of a fixed Y axis, but if � is altered first it is not.
Since all angles are to be rotations about fixed axes to describe a
rotating object it follows that it is � rather than � which corresponds
to �1. In general, when rotating parts are mounted on rotating parts
the rotation closest to the moved object must be applied first,
forming the right-most factor in any multiple transformation, with
the rotation closest to the fixed part as the left-most factor, assuming
data supplied as column vectors on the right.

Given an orthogonal matrix, in either numerical or analytical
form, it may be required to discover � and the axis of rotation, or to
factorize it as a product of primitives. From the first form we see
that the vector

vI � �Ijkajk ,

consisting of the antisymmetric part of R, has elements �2 sin �
times the direction cosines l, m, n, which establishes the direction
immediately, and normalization using l2 � m2 � n2 � 1 determines
sin �. Furthermore, the trace is 1� 2 cos � so that the quadrant of �
is also fixed. This method fails, however, if the matrix is
symmetrical, which occurs if � � �. In this case only the direction
of the axis is required, which is given by

l � m � n � �a23��1 � �a31��1 � �a12��1

for non-zero elements, or l �
��������������������
1
2�a11 � 1�

�
etc., with the signs

chosen to satisfy a12 � 2lm etc.
The Eulerian form may be factorized by noting that

tan�1 � �a32�a31, tan�3 � a23�a13, cos�2 � a33. There is then
freedom to choose the sign of sin�2, but the choice then fixes the
quadrants of �1 and �3 through the elements in the last row and
column, and the primitives may then be constructed. These
expressions for �1 and �3 fail if sin�2 � 0, in which case the
rotation reduces to a primitive rotation about Z with angle
��1 � �3�,�2 � 0, or ��3 � �1�,�2 � �.

Eulerian angles are unlikely to be the best choice of primitive
angles unless they are directly related to the parameters of a system,
as with the diffractometer. It is often more important that the
changes to primitive angles should be quasi-linearly related to � for
any small rotations, which is not the case with Eulerian angles when
the required rotation axis is close to the X axis. In such a case
linearized techniques for solving for the primitive angles will fail.
Furthermore, if the required rotation is about Z only ��1 � �3� is
determinate.

Quasi-linear relationships between � and the primitive rotations
arise if the primitives are one each about X, Y and Z. Any order of
the three factors may be chosen, but the choice must then be adhered
to since these factors do not commute. For sufficiently small
rotations the primitive rotations are then l�, m� and n�, whilst for
larger � linearized iterative techniques for finding the primitive
rotations are likely to be convergent and well conditioned.

The three-dimensional space of the angles �1,�2 and �3 in either
case is non-linearly related to �. In the Eulerian case the worst non-
linearities occur at the origin of �-space. Equally severe non-
linearities occur in the quasi-linear case also but are 90° away from
the origin and less likely to be troublesome.

Neither of the foregoing general forms of orthogonal matrix has
ideally convenient properties. The first is inconvenient because it
uses four non-equivalent variables l, m, n and �, with a linking
equation involving l, m and n, so that they cannot be treated as
independent variables for analytical purposes. The second form (the
product of primitives) is not ideal because the three angles, though
independent, are not equivalent, the non-equivalence arising from
the non-commutation of the primitive factors. In the remainder of
this section we give two further forms of orthogonal matrix which
each use three variables which are independent and strictly
equivalent, and a third form using four whose squares sum to unity.
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The first of these is based on the diagonal and uses the three
independent variables p, q, r, from which we construct the auxiliary
variables

P � �
���������������������������
1� p� q� r

�
, Q � �

���������������������������
1� p� q� r

�
,

R � �
���������������������������
1� p� q� r

�
, S � �

���������������������������
1� p� q� r

�
,

then

R �
p 1

2�PQ� RS � 1
2�PR � QS�

1
2�PQ� RS � q 1

2�QR � PS�
1
2�PR � QS� 1

2�QR � PS� r

�
��

�
��

is orthogonal with positive determinant for any of the sixteen sign
combinations. The signs of P, Q, R and S are, respectively, the signs
of the direction cosines of the rotation axis and of sin �. Using also
T �

�������������
4� S2

�
, which may be deemed positive without loss of

generality,

l � P�T , m � Q�T , n � R�T , sin � � ST�2,

cos � � 1� T2�2 � S2�2� 1�

Although p, q and r are independent, the point [pqr] is bound, by
the requirement that P, Q, R and S be real, to lie within a tetrahedron
whose vertices are the points [111], �1�1�1�, ��11�1� and ��1�11�,
corresponding to the identity and to 180° rotations about each of
the axes. The facts that the identity occurs at a vertex of the feasible
region and that �1� cos ��, rather than sin �, is linear on p, q and r in
this vicinity make this form suitable only for substantial rotations.

The second form consists in defining a rotation vector r with
components u, v, w such that u � lt, v � mt, w � nt with t �
tan���2� and r  r � t2. Then the matrix

R �

1� u2 � v2 � w2

1� t2

2�uv � w�
1� t2

2�uw� v�
1� t2

2�uv � w�
1� t2

1� u2 � v2 � w2

1� t2

2�vw� u�
1� t2

2�uw� v�
1� t2

2�vw � u�
1� t2

1� u2 � v2 � w2

1� t2

�
���������

�
���������

RIJ � �1� t2��1�
IJ �1� ukuk� � 2�uI uJ � �IJlul��
is orthogonal and the variables u, v, w are independent, equivalent
and unbounded, and, unlike the previous form, small rotations are
quasi-linear on these variables. As examples, r � �100� gives 90°
about X, r � �111� gives 120° about [111].

R then transforms a vector d according to

Rd � d� 2
1� t2

��r
 d� � �r
 �r
 d����
Multiplying two such matrices together allows us to establish the

manner in which the rotation vectors r1 and r2 combine.

r � r2 � r1 � r2 
 r1

1� r2  r1

for a rotation r1 followed by r2, so that rotations expressed in terms
of rotation angles and axes may be compounded into a single such
rotation without the need to form and decompose a product matrix.

Note that if r1 and r2 are parallel this reduces to the formula for
the tangent of the sum of two angles, and that if r1  r2 � 1 the
combined rotation is always 180°. Note, too, that reversing the order
of application of the rotations reverses only the vector product.

If three rotations r1, r2 and r3 are applied successively, r1 first,
then their combined rotation is

r � �r3�1� r1  r2� � r2�1� r3  r1� � r1�1� r3  r2�
� r3 
 r2 � r3 
 r1 � r2 
 r1�

 �1� r1  r2 � r2  r3 � r3  r1 � r3  �r2 
 r1���1�

Note the irregular pattern of signs in the numerator.
Similar ideas, using a vector of magnitude sin���2�, are

developed in Aharonov et al. (1977).
The third form of orthogonal matrix uses four variables, �, �, �

and �, which comprise a four-dimensional vector �, such that
� � ls, � � ms, � � ns with s � sin���2� and � � cos���2�. In
terms of these variables

R �
��2 � �2 � �2 � �2� 2���� ��� 2��� � ���

2���� ��� ���2 � �2 � �2 � �2� 2��� � ���
2��� � ��� 2��� � ��� ���2 � �2 � �2 � �2�

�
�

�
��

Two further matrices S and T may be defined (Diamond, 1988),

S �
�� � �� �
�� �� � �
� �� �� �
� � � �

�
���

�
��� and T �

� �� � �
� � �� �

�� � � �
�� �� �� �

�
���

�
���,

which are themselves orthogonal (though S has determinant �1)
and which have the property that

S2 � R 0
0T 1

	 


so that, for example, if homogeneous coordinates are being
employed (Section 3.3.1.1.2)

x�

y�

z�

w

�
���

�
��� �

�� � �� �
�� �� � �
� �� �� �
� � � �

�
���

�
���

�� � �� �
�� �� � �
� �� �� �
� � � �

�
���

�
���

x
y
z
w

�
���

�
���

is a rotation of (x, y, z, w) through the angle � about the axis (l, m, n).
With suitably pipelined hardware this forms an efficient means of
applying rotations since the ‘overhead’ of establishing S is so
trivial.

T has the property that the rotation vector � arising from a
concatenation of n rotations is

� � TnTn�1 � � �T1�0,

in which �T
0 is the vector (0, 0, 0, 1) which defines a null rotation.

This equation may be used as a basis for factorizing a given rotation
into a concatenation of rotations about designated axes (Diamond,
1990a).

Finally, an exact rotation of the vector d may be obtained without
using matrices at all by writing

d ���
0

dn

in which

dn � 1
n
�� 
 dn�1�

and d0 is the initial position which is to be rotated. Here � is a vector
with direction cosines l, m and n, and magnitude equal to the
required rotation angle in radians (Diamond, 1966). This method is
particularly efficient when 	� 	 � 1 or when the number of vectors
to be transformed is small since the overhead of establishing R is
eliminated and the process is simple to program. It is the three-
dimensional analogue of the power series for sin � and cos � and has
the same convergence properties.
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3.3.1.2.2. Measurement of rotations and strains from
coordinates

Given the coordinates of a molecular fragment it is often a
requirement to relate the fragment to its image in some standard
orientation by a transformation which may be required to be a pure
rotation, or may be required to be a combination of rotation and
strain. Of the methods reviewed in this section all except (iv) are
concerned with pure rotation, ignoring any strain that may be
present, and give the best rigid-body superposition. In all these
methods, unless inhomogeneous strain is being considered, the best
possible superposition is obtained if the centroids of the two images
are first brought into coincidence by translation and treated as the
origin.

Methods (i) to (v) seek transformations which perform the
superposition and impose on these, in various ways, the
requirements of orthogonality for the rotational part. All these
methods therefore need some defence against indeterminacy that
arises in the general transformation if one or both of the fragments is
planar, and, if improper rotations are to be excluded, need a defence
against these also if the fragment and its image are of opposite
chirality. Methods (vi) and (vii) pay no attention to the general
transformation and work with variables which are intrinsically
rotational in character, and always produce an orthogonal
transformation with positive determinant, with no degeneracy
arising from planar fragments which need no special attention.
Even collinear atoms cause no problem, the superposition being
performed correctly but with an arbitrary rotation about the length
of the line being present in the result. These methods are therefore to
be preferred over the earlier ones unless the purpose of the operation
is to detect differences of chirality, although this, too, can be
detected with a simple test.

In this review we adopt the same notation for all the methods
which, unavoidably, means that symbols are used in ways which
differ from the original publications. We use the symbol x for the
vector set which is to be rotated and X for the vector set whose
orientation is not to be altered, and write the residuals as

eIA � DIjxjA � XIA

and, by choice of origin,

WaxIa � WaXIa � 0I

for weights W. The quadratic residual to be minimized is

E � Waeiaeia

and we define the matrix MIJ � WaxIaXJa and use l for the direction
cosines of the rotation axis.

(i) McLachlan’s first method (McLachlan, 1972, 1982) is
iterative and conceptually the simplest. It sets

DIJ � AIkRkJ

in which A and R are both orthogonal with R being a current
estimate of D and A being an adjustment which, at the beginning of
each cycle, has a zero angle associated with it. One iterative cycle
estimates a non-trivial A, after which the product AR replaces R.

AIJ � �1� cos ��lI lJ � 
IJ cos �� �IJklk sin �

and

�AIJ

��

	 


��0
� ��IJklk ,

therefore

�E
��

	 


��0
� 2Wa

�Aij

��

	 


��0
Rjkxka�AilRlmxma � Xia�

� 2�ijlRjkMkill�

For this to vanish for all possible rotation axes l the vector

gL � �ijLRjkMki

must vanish, i.e. at the end of the iteration R must be such that the
matrix

NJI � RJkMkI

is symmetrical. The vector g represents the couple exerted on the
rotating body by forces 2WA�RIjxjA � XIA� acting at the atoms.
Choosing

lL � gL�	g	
gives the greatest 	�E���	��0 and ��E���� vanishes when

tan � � �ijkNjilk
Npq�lplq � 
pq�

in which N is constructed from the current R matrix. A is then
constructed from l and this � and AR replaces R. The process is
iterative because a couple about some new axis can appear when
rotation about g eliminates the couple about g.

Note that for each rotation axis l there are two values of �,
differing by �, which reduce 	g	 to zero, corresponding to maximum
and minimum values of E. The minimum is that which makes

�2E
��2

� 2�tr N � liNijlj�

positive. Adding � to � alters R and N and negates this quantity.
Note, too, that the process is essentially characterized as that

which makes the product RM symmetrical with R orthogonal. We
return to this point in (iii).

(ii) Kabsch’s method (Kabsch, 1976, 1978) minimizes E with
respect to the nine elements of D, subject to the six constraints

DkI DkJ � 
IJ � 0IJ ,

by using an auxiliary function

F � Lij�DkiDkj � 
ij�
in which L is symmetric containing six Lagrange multipliers. The
Lagrangian function

G � E � F

then has minima with respect to the elements of D at locations
which are dependent, inter alia, on the elements of L. By suitably
choosing L a minimum of G may be brought into coincidence with
the constrained minimum of E. A minimum of G occurs where

�G
�DIJ

� 2DIk�SJk � LJk� � 2MJI � 0IJ

and the 9
 9 matrix

�2G
�DMK�DIJ

� 2
MI�SJK � LJK�

is positive definite, block diagonal, and has

SJK � WaxJaxKa

which is symmetrical. Thus L must be chosen so as to make the
symmetric matrix �S � L� such that

D�S � L�T � MT
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with D orthogonal, or RN � MT with R replacing D since we are
now confined to the orthogonal case, and N is symmetric and
positive definite.

(iii) Comparison of the Kabsch and McLachlan methods. Using
the initials of these authors as subscripts, we have seen that the
Kabsch solution involves solving

RWKNWK � MT

for an orthogonal matrix RWK given that NWK is symmetrical and
positive definite. Thus

MMT � NT
WKRT

WKRWKNWK � N2
WK

and

RWK � MT �MMT��1�2�

By comparison, the McLachlan treatment leads to an orthogonal
R matrix satisfying

RADM � NADMM�1

in which NADM is also symmetric and positive definite, which
similarly leads to

RADM � �MT M�1�2M�1�

These seemingly different expressions for RWK and RADM are, in
fact, equal, as the following shows

RWK � RADMR�1
ADMRWK � RADMMN�1

ADMMT N�1
WK,

therefore

RT
WKRWK � I

� N�1
WKMN�1

ADMMT RT
ADMRADMMN�1

ADMMT N�1
WK�

Multiplying on both sides by NWK gives

N2
WK � �MN�1

ADMMT �2,

and since both N matrices are positive definite

NWK � MN�1
ADMMT

and conversely

NADM � MT N�1
WKM ,

therefore

RWK � MT MT�1NADMM�1 � RADM�

(iv) Diamond’s first method. This method (Diamond, 1976a)
differs from the previous ones in that the transformation D is
allowed to be a general transformation which is then factorized into
the product of an orthogonal matrix R and a symmetrical matrix T.
The transformation of x to fit X is thus interpreted as the
combination of homogeneous strain and pure rotation in which x
is subjected to strain and the result is rotated.

D � RT

T2 � DT D

T � �DT D�1�2

R � D�DT D��1�2�

Furthermore, the solution for D is

D � MT S�1

(in the notation of Kabsch), so that

R � MT S�1�S�1MMT S�1��1�2

which may be compared with the results of the previous paragraph.
Although this R matrix by itself (i.e. applied without T) does not

produce the best rotational superposition (i.e. smallest E), it is the
one which exactly superposes the only three vectors in x whose
mutual dispositions are conserved, on their equivalents in X, so that
the rotation so found is arguably the best defined one.

Alternatives based on D � TR, D�1 � RT , D�1 � TR are all
easily developed, and these ideas are developed by Diamond
(1976a) to include non-homogeneous strains also.

(v) McLachlan’s second method. This method (McLachlan,
1979) is based on the properties of the 6
 6 matrix

0 M
MT 0

	 


and is immune to singularity of M. If p and q are three-dimensional
vectors such that �pT , qT� is an eigenvector of this matrix then

0 M
MT 0

	 

p
q

	 

� Mq

MT p

	 

� p�

q�

	 

�

If q is negated the second equality is maintained provided � is
also negated. Therefore an orthogonal 6
 6 matrix

H H
K �K

	 


(consisting of 3
 3 partitions) exists for which

HT KT

HT �KT

	 

0 M

MT 0

	 

H H
K �K

	 

� � 0

0 ��
	 


in which � is diagonal and contains non-negative eigenvalues. The
reverse transformation shows that

M � 2H�KT

and multiplying the eigenvectors together gives

HT H � KT K � 1
2I � HHT � KKT �

Therefore

2KHT M � 4KHT H�KT � 2K�KT ,

but 2KHT is orthogonal and 2K�KT is symmetrical, therefore [by
paragraphs (i) and (iii) above] 2KHT is the required rotation.
Similarly, forming

MT � 2K�HT

2MT H��1HT � 4K�HT H��1HT � 2KHT

corresponds to the Kabsch formulation [paragraphs (ii) and (iii)]
since 2H��1HT is symmetrical and the same rotation, 2KHT ,
appears.

Note that the determinant of the orthogonal matrix so found is
twice the product of the determinants of H and of K, and since the
positive eigenvalues are collected into � it follows that the sign of
the determinant of M is the same as the sign of the determinant of
the resulting orthogonal matrix. If this is negative it means that the
best superposition is obtained if one vector set is inverted and that x
and X are of opposite chirality.

Expanding the expression for E, the weighted sum of squares of
errors, for an orthogonal transformation shows that this is least
when the trace of the product RM is greatest. In this treatment

tr�RM� � tr�2KHT  2H�KT � � tr�2K�KT � � tr����
Hence, if the eigenvalues in � and �� are arranged in decreasing
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order of modulus, and if the determinant of M is negative, then
exchanging the third and sixth columns of

H H
K �K

	 


produces a product 2KHT with positive determinant (i.e. a proper
rotation) at minimum cost in residual. Similarly, if M is singular and
one or more eigenvalues in � vanishes it is necessary only to
complete an orthonormal set of eigenvectors such that the
determinants of H and K have the same sign.

(vi) MacKay’s method. MacKay (1984) was the first to consider
the rotational superposition problem in terms of the vector r of
Section 3.3.1.2.1. Using quaternion algebra he showed that if a
vector x is rotated to X � Rx then

�X� x� � r
 �X� x�,
where 	r	 � tan���2� and the direction of r is the axis of rotation, as
may also be shown from elementary considerations. MacKay then
solves this for the vector r by least squares given the vector pairs X
and x. The individual errors are

eIA � �Ijkrj�XkA � xkA� � �XIA � xIA�
and

E � Waeiaeia�

Setting �E��rP � 0P gives

Wa�iPk�ilmrl�Xka � xka��Xma � xma�
� Wa�iPk�Xka � xka��Xia � xia�

which reduces to

2V � ��Q� Q0�r
in which

Q � M �MT � 2Itr M

Q0 � S � S� � I�tr S � tr S��
VI � �IjkMjk

SIJ � WaxIaxJa

S�IJ � WaXIaXJa�

Thus a direct solution for r is obtained,

r � �2�Q0 � Q��1V,

the elements of which are u, v and w, and may be used to construct
the orthogonal matrix as in Section 3.3.1.2.1. Q� Q0 may be
obtained directly from X � x.

If the requisite rotation is 180°, �Q0 � Q� is singular and cannot
be inverted. In this case any row or column of the adjoint of �Q0 �
Q� is a vector in the direction of the axis. Normalizing this vector to
unity, giving l, gives the requisite orthogonal matrix as

R � 2llT � I�

Note that MacKay’s residual E is quadratic in r. E therefore has
one minimum and no maximum, and the minimum is reached on the
first cycle of least squares. By contrast, the objective function E that
is minimized in methods (i), (ii), (v) and (vii) has one minimum, one
maximum and two saddle points in the space of the vector r, as
shown in (vii).

It may be shown (Diamond, 1989) that if MacKay’s solution
vector r is denoted by rM and that given by the other methods
[except (iv)] by rO then

rM � rO � A�1BrO

in which A and B are real symmetric, positive semi-definite. A is
positive definite unless all the individual vector sums �X� x� are
parallel, as can happen when the best rotation is 180°. Thus the
MacKay method only gives the same result as the other methods if:

(a) the initial orientation is optimal, for then rO � 0, or
(b) perfect fitting is possible, for then B � 0, or
(c) all the residual vectors (after fitting by rO) are parallel to rO,

for then B is singular such that BrO � 0. In general, 	rM 	 � 	rO	. rO
may be found by iterating rM , but x must be replaced by Rx on each
iteration.

(vii) Diamond’s second method. This is closely related to
MacKay’s method, but uses a four-dimensional vector � with
components �, �, � and � in which �, � and � are the direction
cosines of the rotation axis multiplied by sin���2� and � is cos���2�.
In terms of such a vector Diamond (1988) showed that

E � E0 � 2�T P�

in which E is the weighted sum of squares of coordinate differences,
as before, E0 is its value before any rotation is applied and P is the
matrix

P � Q V
VT 0

	 

�

The rotation matrix R corresponding to the vector � is then the last
of the forms for R given in Section 3.3.1.2.1.

The minimum E is therefore E0 minus twice the largest
eigenvalue of P since �T� � 1, and a stationary value of E occurs
when � is any of the four eigenvectors of P. E thus has a maximum,
a minimum and two saddle points, in general, and its value may be
determined before any coordinates are transformed. Diamond also
showed that the orientations giving these stationary values are
related by the operations of 222 symmetry. Equivalent results have
also been obtained by Kearsley (1989).

As an alternative to solving a 4
 4 eigenproblem, Diamond also
showed that the vector r, as in MacKay’s solution, may be obtained
by iterating

�0 � E0�2

rn � ��nI � Q��1V

�n�1 � V  rn � �nr2
n

1� r2
n

which has the property that if X and x are exactly superposable then
�0 is the exact solution and no iteration is necessary. If X and x are
similar but not exactly superposable then a small number of
iterations may be required to reach a stable r vector, though the
matrix Q0 is not required. As in MacKay’s solution, ��I � Q� is
singular at the end of the iteration if the required rotation is 180°,
but the MacKay and Diamond methods both have the advantage
that improper rotations are never generated by these means, and
methods based on P and � rather than Q and r are trouble-free for
180° rotations. The iterative loop in this method does not require Rx
to be redetermined on each cycle.

Finally, it may be shown that if p1, p2, p3, p4 are the eigenvalues
of P arranged in descending order and

p1 � p2 � p3 � p4

is negative, then a closer superposition may be obtained by
reversing the chirality of one of the vector sets, and the R matrix
constructed from �4 optimally superimposes Rx onto �X, the
enantiomer of X (Diamond, 1990b).
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3.3.1.2.3. Orthogonalization of impure rotations

There are several ways of deriving a strictly orthogonal matrix
from a given approximately orthogonal matrix, among them the
following.

(i) The Gram–Schmidt process. This is probably the simplest and
the easiest to compute. If the given matrix consists of three column
vectors v1, v2 and v3 (later referred to as primers) which are to be
replaced by three column vectors u1, u2 and u3 then the process is

u1 � v1�	v1	
u2 � v2 � �u1  v2�u1

u2 � u2�	u2	
u3 � v3 � �u1  v3�u1 � �u2  v3�u2

u3 � u3�	u3	�
As successive vectors are established, each vector v has

subtracted from it its components in the directions of established
vectors, and the remainder is normalized. The method will fail at the
normalization step if the vectors v are not linearly independent.
Otherwise, the process may be extended to any number of
dimensions.

The weakness of the method is that, though u1 differs from v1
only in scale, uN may differ grossly from vN as the various columns
are not treated equivalently.

(ii) A preferable method which treats all vectors equivalently is
to iteratively replace the matrix M by 1

2�M �MT�1�.
Defining the residual matrix E as

E � MMT � I ,

then on each iteration E is replaced by

E2�MMT��1�4

and convergence necessarily ensues.
(iii) A third method resolves M into its symmetric and

antisymmetric parts

S � 1
2�M �MT�, A � 1

2�M �MT �, M � S � A

and constructs an orthogonal matrix for which only S is altered. A
determines l, m, n and � as shown in Section 3.3.1.2.1, and from
these a new S may be constructed.

(iv) A fourth method is to treat the general matrix M as a
combination of pure strain and pure rotation. Setting

M � RT

with R orthogonal and T symmetrical gives

T � �MT M�1�2, R � M�MT M��1�2�

The rotation so found is the one which exactly superposes those
three mutually perpendicular directions which remain mutually
perpendicular under the transformation M.

T � I is then the strain tensor of an unrotated body.
Writing M � TR, T � �MMT �1�2, R � �MMT��1�2M may also

be useful, in which T � I is the strain tensor of a rotated body. See
also Section 3.3.1.2.2 (iv).

3.3.1.2.4. Eigenvalues and eigenvectors of orthogonal
matrices

If R is the orthogonal matrix given in Section 3.3.1.2.1 in terms
of the direction cosines l, m and n of the axis of rotation, then it is
clear that (l, m, n) is an eigenvector of R with eigenvalue unity
because

R
l
m
n

�
�

�
� �

l
m
n

�
�

�
��

Consideration of the determinant 	R� �I	 � 0 shows that the
sum of the three eigenvalues is 1� 2 cos � and that their product is
unity. Hence the three eigenvalues are 1, ei� and e�i�. Since R is
real, its product with any real vector is also real, yet its product with
an eigenvector must, in general, be complex. Thus the eigenvectors
must themselves be complex.

The remaining two eigenvectors u may be found using the results
of Section 3.3.1.2.1 (q.v.) according to

Ru � u� 2
1� t2

��r
 u� � �r
 �r
 u��� � ue�i� � u
1� it
1� it

,

which is solved by any vector of the form

u � l
 v� il 
 �l
 v�
for any real vector v, where l is the normalized axis vector, lt � r,
	l	 � 1, t � tan���2�. Eigenvectors for the two eigenvalues may
have unrelated v vectors though the sign choices are coupled. If the
vector v is rotated about l through an angle � the corresponding
vector u is multiplied by e�i� and remains an eigenvector. Using
superscript signs to denote the sign of � in the eigenvalue with
which each vector is associated, the matrix

U � �l, u�, u��
has the properties that

RU � U
1 0 0
0 ei� 0
0 0 e�i�

�
�

�
�

and

U�T U �
1 0 0
0 2	l
 v�	2 0
0 0 2	l
 v�	2

�
�

�
�

which places restrictions on v if this is to be the identity. Note that
the 23 element vanishes even in the absence of any relationship
between v� and v�.

A convenient form for U, symmetrical in the elements of l, is
obtained by setting v� � v� � �111� and is

U �
l ��m� n� � i�l�l � m� n� � 1���d ��m� n� � i�l�l � m� n� � 1���d
m ��n� l� � i�m�l � m� n� � 1���d ��n� l� � i�m�l � m� n� � 1���d
n ��l � m� � i�n�l � m� n� � 1���d ��l �m� � i�n�l � m� n� � 1���d

�
�

�
�

in which the normalizing denominator is given by

d � 2
�����������������������������������
1� lm� mn� nl

�
�

3.3.1.3. Projection transformations and spaces

In the following section we address the question of the
relationship between the coordinates of a molecular model and
the corresponding coordinates on the screen of the graphics device.
A good introduction to this topic is given by Newman & Sproull
(1973), and Foley et al. (1990) give a comprehensive account of the
field, including recent developments, especially those arising from
the development of raster-graphics technologies.

3.3.1.3.1. Definitions

Typically, the coordinates, X, of points in an object to be drawn
are held in homogeneous Cartesian form as described in Section
3.3.1.1.2. Such coordinates are said to be in data space or world
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coordinates and this coordinate system is generally a constant
aspect of the problem.

In order to view these data in convenient ways such coordinates
may be subjected to a 4
 4 viewing transformation T, affecting
orientation, scale etc., the resulting coordinates TX being then in
display space. Here, and throughout what follows, we treat position
vectors as columns with transformation matrices as factors on the
left, though some writers do the reverse.

In general, only some portion of display space which lies inside a
certain frustum of a pyramid is required to fall within the picture.
The pyramid may be thought of as having the observer’s eye at its
vertex, with a rectangular base corresponding to the picture area.
This volume is called a window. A transformation, U, which takes
display-space coordinates as input and generates vectors (X, Y, Z,
W) for which X�W and Y�W � �1 for points on the left, right, top
and bottom boundaries of the window and for which Z�W takes
particular values on the front and back planes of the window, is said
to be a windowing transformation. In machines for which Z�W
controls intensity depth cueing, the range of Z�W corresponding to
the window is likely to be 0 to 1 rather than �1 to 1. Coordinates
obtained by multiplying display-space coordinates by U are termed
picture-space coordinates. Mathematically, U is a 4
 4 matrix like
any other, but functionally it is special. Declaring a transformation
to be a windowing transformation implies that only resulting points
having 	X 	, 	Y 	 � W and positive Z � W are to be plotted.
Machines with clipping hardware to truncate lines which run out
of the picture perform clipping on the output from the windowing
transformation.

Finally, the picture has to be drawn in some rectangular portion
of the screen which is allocated for the purpose. Such an area is
termed a viewport and is defined in terms of screen coordinates
which are defined absolutely for the hardware in question as �n for
full-screen deflection, where n is declared by the manufacturer.
Screen coordinates are obtained from picture coordinates with a
viewport transformation, V.*

To summarize, screen coordinates, S, are given by

3.3.1.3.2. Translation

The transformation

NI V

0T N

	 

X

W

	 

� XN � VW

NW

	 

� X� VW�N

W

	 


� X�W � V�N

1

	 


evidently corresponds to the addition of the vector VW�N to the
components of X or of V�N to the components of X�W . (I is the
identity.) Displacements may thus be affected by expressing the
required displacement vector in homogeneous coordinates with any
suitable choice of N (commonly, N � W ), with V scaled to
correspond to this choice, and loading the 4
 4 transformation
matrix as indicated above.

3.3.1.3.3. Rotation

Rotation about the origin is achieved by

NR 0
0T N

	 

X
W

	 

� NRX

NW

	 

� RX

W

	 

,

in which R is an orthogonal 3
 3 matrix. R necessarily has
elements not exceeding one in modulus. For machines using integer
arithmetic, therefore, N would be chosen large enough (usually half
the largest possible integer) for the product NR to be well
represented in the available word length. Characteristically, N
affects resolution but not scale.

3.3.1.3.4. Scale

The transformation

SNI 0
0T N

	 

X
W

	 

� SNX

NW

	 

� SX

W

	 


scales the vector (X, W) by the factor S. For integer working and
	S	 � 1, N should be set to the largest representable integer. For
	S	 	 1 the product SN should be the largest representable integer, N
being reduced accordingly.

3.3.1.3.5. Windowing and perspective

It is necessary at this point to relate the discussion to the axial
system inherent in the graphics device employed. One common
system adopts X horizontal and to the right when viewing the
screen, Y vertically upwards in the plane of the screen, and Z normal
to X and Y with +Z into the screen. This is, unfortunately, a left-
handed system in that �X
 Y�  Z is negative. Since it is usual in
crystallographic work to use right-handed axial systems it is
necessary to incorporate a matrix of the form

W 0 0 0
0 W 0 0
0 0 �W 0
0 0 0 W

�
���

�
���

either as the left-most factor in the matrix T or as the right-most
factor in the windowing transformation U (see Section 3.3.1.3.1).
The latter choice is to be preferred and is adopted here. The former
choice leads to complications if transformations in display space
will be required. Display-space coordinates are necessarily referred
to this axial system.

Let L, R, T, B, N and F be the left, right, top, bottom, near and far
boundaries of the windowed volume �L � R, T 	 B, N � F�, S be
the Z coordinate of the screen, and C, D and E be the coordinates of
the observer’s eye position, all ten of these parameters being
referred to the origin of display space as origin, which may be
anywhere in relation to the hardware. L, R, T and B are to be
evaluated in the screen plane. All ten parameters may be referred to
their own fourth coordinate, V, meaning that the point (X, Y, Z, W) in
display space will be on the left boundary of the picture if X�W �
L�V when Z�W � S�V . V may be freely chosen so that all eleven
quantities and all elements of U suit the word length of the machine.
These relationships are illustrated in Fig. 3.3.1.1.

Since

�X , Y , Z, W � � XV
W

,
YV
W

,
ZV
W

, V

	 

,

XV�W is a display-space coordinate on the same scale as the
window parameters. This must be plotted on the screen at an X
coordinate (on the scale of the window parameters) which is the
weighted mean of XV�W and C, the weights being �S � E� and

� In recent years it has become increasingly common, especially in two-
dimensional work, to apply the term ‘window’ to what is here called a viewport,
but in this chapter we use these terms in the manner described in the text.
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�ZV�W � S�, respectively. This provides perspective because the
weighted mean is at the point where the straight line from
�X , Y , Z, W � to the eye intersects the screen. This then has to be
mapped into the L-to-R interval, so that picture-space coordinates
�x, y, z, w� are given by

x

y

z

w

�
����������

�
����������

�

2�S � E�V
�R � L� 0

�2C � R � L�V
�R � L�

�R � L�E � 2SC
�R � L�

0
2�S � E�V
�T � B�

�2D� T � B�V
�T � B�

�T � B�E � 2SD
�T � B�

0 0
�F � E�V
�F � N�

�N�F � E�
�F � N�

0 0 V �E

�
����������

�
����������

X

Y

Z

W

�
����������

�
����������

which provides for 	x�w	 and 	y�w	 to be unity on the picture
boundaries, which is usually a requirement of the clipping hard-
ware, and for 0 � z�w � 1, zero being for the near-plane boundary.
Even though z�w is not linear on Z�W , straight lines and planes in
display space transform to straight lines and planes in picture space,

the non-linearity affecting only distances. Thus vector-drawing
machines are not disadvantaged by the introduction of perspective.

Note that the dimensionality of X�W must equal that of S�V and
that this may be regarded as length or as a pure number, but that in
either case x�w is dimensionless, consistent with the stipulation that
the picture boundaries be defined by the pure number �1.

The above matrix is U and is suited to left-handed hardware
systems. Note that only the last column of U (the translational part)
is sensitive to the location of the origin of display space and that if
the eye is on the normal to the picture centre then C � 1

2 �R � L�,
D � 1

2�T � B� and simplifications result. If C, D and E can be
continuously monitored then dynamic parallax as well as
perspective may be obtained (Diamond et al., 1982).

If data space is referred to right-handed axes, the viewing
transformation T involves only proper rotations and the hardware
uses a left-handed axial system then elements in the third column of
U should be negated, as explained in the opening paragraph.

To provide for orthographic projection, multiply every element
of U by �K�E and then let E � ��, choosing some positive K to
suit the word length of the machine [see Section 3.3.1.1.2 (iii)]. The

Fig. 3.3.1.1. The relationship between display-space coordinates (X, Y, Z, W) and picture-space coordinates (x, y, z, w) derived from them by the window
transformation, U. (a) Display space (in X, Z projection) showing a square object P, Q, R, S for display viewed from the position (C, D, E, V). The bold
trapezium is the window (volume) and the bold line is the viewport portion of the screen. The points P, Q, R and S must be plotted at p, q, r and s to give
the correct impression of the object. (b) Picture space (in x, z projection). The window is mapped to a rectangle and all sight lines are parallel to the z
axis, but the object P, Q, R, S is no longer square. The distribution of p, q, r and s is identical in the two cases. Note that z�w values are not linear on
Z�W , and that the origin of picture space arises at the midpoint of the near clipping plane, regardless of the location of the origin of display space. The
figure is accurately to scale for coincident viewport positions. The words ‘Left clipping plane’, if part of the scene in display space, would currently be
obscured, but would come into view if the eye moved to the right, increasing C, as the left clipping plane would pivot about the point L�V in the screen
plane.
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result is

U � �

2KV
�R � L� 0 0

�K�R � L�
�R � L�

0
2KV

�T � B� 0
�K�T � B�
�T � B�

0 0
KV

�F � N�
�KN
�F � N�

0 0 0 K

�
����������

�
����������

,

which is the orthographic window.
It may be convenient in some applications to separate the

functions of windowing and the application of perspective, and to
write

U � U �P,

where U and U� are as above and P is a perspective transformation
given by

P � �U ���1U �

S � E 0 C �SC�V

0 S � E D �SD�V

0 0 F � E � N �NF�V

0 0 V �E

�
����

�
����,

which involves F and N but not R, L, T or B. In this form the action
of P may be thought of as compressing distant parts of display space
prior to an orthographic projection by U� into picture space.

Other factorizations of U are possible, for example

U � U ��P�

with

U �� �

2KV
R � L

0 0
�K�R � L�
�R � L�

0
2KV

T � B
0

�K�T � B�
�T � B�

0 0
KV�N � E��F � E�

E2�F � N�
KN�F � E�
E�F � N�

0 0 0 K

�
������������

�
������������

P� �

S � E 0 C �SC�V

0 S � E D �SD�V

0 0 �E 0

0 0 V �E

�
������

�
������

,

which renders P� independent of all six boundary planes, but U�� is
no longer independent of E. It is not possible to factorize U so that
the left factor is a function only of the boundary planes and the right
factor a function only of eye and screen positions.

Note that as E � ��, U �� � U �, P and P� � �IE � I .

3.3.1.3.6. Stereoviews

Assuming that left- and right-eye views are to be presented
through the same viewport (next section) or that their viewports are
to be superimposed by an external optical system, e.g. Ortony
mirrors, then stereopairs are obtained by using appropriate eye
coordinates in the U matrix of the previous section. However, U
may be factorized according to

U � U ���S

in which U��� is the matrix U obtained by setting �C, D, E, V � to
correspond to the point midway between the viewer’s eyes and

S �

1 0 c��S � E� �cS��S � E�V
0 1 0 0

0 0 1 0

0 0 0 1

�
������

�
������

�

V 0 cV��S � E� �cS��S � E�
0 V 0 0

0 0 V 0

0 0 0 V

�
������

�
������

in which (c, 0, 0, V) is the position of the right eye relative to the
mean eye position, and the left-eye view is obtained by negating c.

Stereo is often approximated by introducing a rotation about the
Y axis of � sin�1�c��S � E�� to the views or sin�1�2c��S � E�� to
one of them. The first corresponds to

S �

�������������
1� �2

�
0 � 0

0 1 0 0

�� 0
�������������
1� �2

�
0

0 0 0 1

�
����

�
����

with � � c��S � E�. The main difference is in the resulting Z value,
which only affects depth cueing and z clipping. The X translation
which arises if S �� 0 is also suppressed, but this is not likely to be
noticeable. � is often treated as a constant, such as sin 3�.

The distinction in principle between the true S and the rotational
approximation is that with the true S the eye moves relative to the
screen and the displayed object, whereas with the approximation the
eye and the screen are moved relative to the displayed object, in
going from one view to the other.

Strobing of left and right images may conveniently be
accomplished with an electro-optic liquid-crystal shutter as
described by Harris et al. (1985). The shutter is switched by the
display itself, thus solving the synchronization problem in a manner
free of inertia.

A further discussion of stereopairs may be found in Johnson
(1970) and in Thomas (1993), the second of which generalizes the
treatment to allow for the possible presence of an optical system.

3.3.1.3.7. Viewports

The window transformation of the previous two sections has
been constructed to yield picture coordinates (X, Y, Z, W) (formerly
called x, y, z, w) such that a point having X�W or Y�W � �1 is on
the boundary of the picture, and the clipping hardware operates on
this basis. However, the edges of the picture need not be at the edges
of the screen and a viewport transformation, V, is therefore needed
to position the picture in the requisite part of the screen.

V �
�r � l��2 0 0 �r � l��2

0 �t � b��2 0 �t � b��2

0 0 n 0
0 0 0 n

�
����

�
����,

where r, l, t and b are now the right, left, top and bottom boundaries
of the picture area, or viewport, expressed in screen coordinates,
and n is the full-screen deflection value. Thus a point with X�W �
1 in picture space plots on the screen with an X coordinate which is a
fraction r�n of full-screen deflection to the right. Z�W is unchanged
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by V and is used only to control intensity in a technique known as
depth cueing.

It is necessary, of course, to arrange for the aspect ratio of the
viewport, �r � l���t � b�, to equal that of the window otherwise
distortions are introduced.

3.3.1.3.8. Compound transformations

In this section we consider the viewing transformation T of
Section 3.3.1.3.1 and its construction in terms of translation,
rotation and scaling, Sections 3.3.1.3.2–4. We use T� to denote a
new transformation in terms of the prevailing transformation T.

We note first that any 4
 4 matrix of the form

UR V
0T W

	 

,

with U a scalar, may be factorized according to

UR V
0T W

	 

� UI 0

0T W

	 

UI V
0T U

	 

UR 0
0T U

	 


and also that multiplying

UR V
0T W

	 


by an isotropic scaling matrix, a rotation, or a translation, either on
the left or on the right, yields a product matrix of the same form, and
its inverse

WRT �RT V
0T U

	 


is also of this form, i.e. any combination of these three operations in
any order may be reduced by the above factorization to a rotation
about the original origin, a translation (which defines a new origin)
and an expansion or contraction about the new origin, applied in
that order.

If

NR 0
0T N

	 


is a rotation matrix as in Section 3.3.1.3.3, its application produces a
rotation about an axis through the origin defined only in the space in
which it is applied. For example, if

R �
cos � sin � 0

� sin � cos � 0

0 0 1

�
��

�
��,

T � X

W

	 

� T

NR 0

0T N

	 

X

W

	 


rotates the image about the z axis of data space, whatever the
prevailing viewing transformation, T.

Forming

NR 0
0T N

	 

T

X
W

	 


rotates the image about the z axis of display space, i.e. the normal to
the tube face under the usual conventions, whatever the prevailing
T. Furthermore, if this rotation is to appear to be about some chosen
position in the picture, e.g. the centre, then the window
transformation U, Section 3.3.1.3.5, must place the origin of
display space there by setting F 	 S � R � L � T � B � 0 	 N ,
in the notation of that section.

If a rotation is to be about a point

V
N

	 


then

T � � NI V

0T N

	 

N �R 0

0T N �

	 

NI �V

0T N

	 

T

� NR V� RV

0T N

	 

T

or

T � � T
NI V

0T N

	 

N �R 0

0T N �

	 

NI �V

0T N

	 


� T
NR V� RV

0T N

	 


according to whether R and V are both defined in display space or
both in data space. If the rotation is defined in display space and the
position of the centre of rotation is defined in data space, then the
first form of T� must be used, in which V is first computed from

V
N

	 

� T

U
W

	 


for a rotation centre at

U
W

	 


in data space.
For continuous rotations defined in display space it is usually

worthwhile to bring the centre of rotation to the origin of display
space and leave it there, i.e. to omit the left-most factor in the first
expression for T�. Incremental rotations can then be made by further
rotational factors on the left without further attention to V. When
continuous rotations are implemented by repeated multiplication of
T by a rotation matrix, say thirty times a second for a minute or so,
the orthogonality of the top-left partition of T may become
degraded by accumulation of round-off error and this should be
corrected occasionally by one of the methods of Section 3.3.1.2.3.

It is sometimes a requirement, depending on hardware
capabilities, to affect a transformation in display space when access
to data space is all that is readily available. In such a case

T � � T1T � TT2,

where T1 is the required alteration to the prevailing viewing
transformation T and T2 is the data-space equivalent,

T2 � T�1T1T � UR V

0T W

	 
�1 U1R1 V1

0T W 1

	 

UR V

0T W

	 


� UU1RT R1R RT�U1R1V�WV1 �W 1V�
0T UW 1

 �
�

An important special case is when T1 is to effect a rotation about
the origin of display space without change of scale, so that
V1 � 0, U1 � W1 � W , for then

T2 � URT R1R RT�R1 � I�V
0T U

	 

�

If r is the required axis of rotation of R1 in display space then the
axis of rotation of RT R1R in data space is s � RT r since
RT R1Rs � s. This gives a particularly simple result if R1 is to be
a primitive rotation for then s is the relevant row of R, and RT R1R
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can be constructed directly from this and the required angle of
rotation.

3.3.1.3.9. Inverse transformations

It is frequently a requirement to be able to identify a feature or
position in data space from its position on the screen. Facilities for
identifying an existing feature on the screen are in many instances
provided by the manufacturer as a ‘hit’ function which correlates
the position indicated on the screen by the user (with a tablet or light
pen) with the action of drawing and flags the corresponding item in
the drawing internally as having been hit. In other instances it may
be necessary to be able to indicate a position in data space
independently of any drawn feature and this may be done by setting
two or more non-parallel sight lines through the displayed volume
and finding their best point of intersection in data space.

In Section 3.3.1.3.1 the relationship between data-space co-
ordinates and screen-space coordinates was given as

S � VUTX;

hence data-space coordinates are given by

X � T�1U�1V�1S�

A line of sight through the displayed volume passing through the
point

x
y

	 


on the screen is the line joining the two position vectors

S �
x x
y y
o n
n n

�
���

�
���

in screen-space coordinates, as in Section 3.3.1.3.7, from which the
corresponding two points in data space may be obtained using

V�1 �

2n
r � l

0 0
��r � l�
�r � l�

0
2n

t � b
0 ��t � b�

�t � b�
0 0 1 0

0 0 0 1

�
��������

�
��������

and

U�1 �

R � L
2�S � E� 0

�C�F � N�
�F � E��N � E�

�R � L��N � E� � 2C�N � S�
2�N � E��S � E�

0
T � B

2�S � E�
�D�F � N�

�F � E��N � E�
�T � B��N � E� � 2D�N � S�

2�N � E��S � E�
0 0

�E�F � N�
�F � E��N � E�

N
�N � E�

0 0
�V �F � N�

�F � E��N � E�
V

�N � E�

�
�������������

�
�������������

in the notation of Section 3.3.1.3.5, and T�1 was given in Section
3.3.1.3.8. If orthographic projection is being used �E � ��� then
U�1 simplifies to

U ��1 �

R � L
2

0 0
R � L

2

0
T � B

2
0

T � B
2

0 0 F � N N

0 0 0 V

�
�������

�
�������
�

Each of these inverse matrices may be suitably scaled to suit the
word length of the machine [Section 3.3.1.1.2 (iii)].

Having determined the end points of one sight line in data space
the viewing transformation T may then be changed and the required
position marked again through the screen in the new orientation.
Each such operation generates a pair of points in data space,
expressed in homogeneous form, with a variety of values for the
fourth coordinate. Each such point must then be converted to three
dimensions in the form �X�W , Y�W , Z�W�, and for each sight line
any (three-dimensional) point pA on the line and the direction qA of
the line are established. For each sight line a rank 2 projector matrix
MA of order 3 is formed as

MA � I � qAqT
A�qT

AqA

and the best point of intersection of the sight lines is given by

�
a

Ma

	 
�1 �
a

Mapa

	 

,

to which three-vector a fourth coordinate of unity may be applied.

3.3.1.3.10. The three-axis joystick

The three-axis joystick is a device which depends on compound
transformations for its exploitation. As it is usually mounted it
consists of a vertical shaft, mounted at its lower end, which can
rotate about its own length (the Y axis of display space, Section
3.3.1.3.1), its angular setting, �, being measured by a shaft encoder
in its mounting. At the top of this shaft is a knee-joint coupling to a
second shaft. The first angle � is set to zero when the second shaft is
in some selected direction, e.g. normal to the screen and towards the
viewer, and goes positive if the second shaft is moved clockwise
when seen from above. The knee joint itself contains a shaft
encoder, providing an angle, �, which may be set to zero when the
second shaft is horizontal and goes positive when its free end is
raised. A knob on the tip of the second shaft can then rotate about an
axis along the second shaft, driving a third shaft encoder providing
an angle �. The device may then be used to produce a rotation of the
object on the screen about an axis parallel to the second shaft
through an angle given by the knob. The necessary transformation is
then

R �
cos� 0 � sin�

0 1 0

sin� 0 cos�

�
��

�
��

1 0 0

0 cos� sin�

0 � sin� cos�

�
��

�
��



cos � � sin � 0

sin � cos � 0

0 0 1

�
��

�
��

1 0 0

0 cos� � sin�

0 sin� cos�

�
��

�
��



cos� 0 sin�

0 1 0

� sin� 0 cos�

�
��

�
��

which is
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c2�s2�� �1� c2�s2��c� �s�c�s��1 � c�� � c�c�s�

�s�c�s��1� c�� � c�c�s� s2�� c2�c�

�c2�s�c��1� c�� � s�s� s�c�c��1� c�� � c�s�s�

�
���

�c2�s�c��1� c�� � s�s�

s�c�c��1� c�� � c�s�s�

c2�c2�� �1� c2�c2��c�

�
���

in which cos and sin are abbreviated to c and s, which is the standard
form with l � � cos� sin�, m � sin�, n � cos� cos�.

3.3.1.3.11. Other useful rotations

If rotations in display space are to be controlled by trackerball or
tablet then there are two measures available, an x and a y, which can
define an axis of rotation in the plane of the screen and an angle �. If
x and y are suitably scaled coordinates of a pen on a tablet then the
rotation

y2 � x2c
x2 � y2

�xy�1� c�
x2 � y2

x
��������������
x2 � y2

�

�xy�1� c�
x2 � y2

x2 � y2c
x2 � y2

y
��������������
x2 � y2

�

�x
��������������
x2 � y2

�
�y

��������������
x2 � y2

�
c

�
������

�
������

with c � ����������������������������
1� �x2 � y2�2

�
is about an axis in the xy plane (i.e. the

screen face) normal to �x, y� and with sin � � x2 � y2. Applied
repetitively this gives a quadratic velocity characteristic. Similarly,
if an atom at �x, y, z, w� in display space is to be brought onto the z
axis by a rotation with its axis in the xy plane the necessary matrix,
in homogeneous form, is

x2z� y2r
x2 � y2

�xy�r � z�
x2 � y2

�x 0

�xy�r � z�
x2 � y2

x2r � y2z
x2 � y2

�y 0

x y z 0
0 0 0 r

�
��������

�
��������

with r �
������������������������
x2 � y2 � z2

�
.

3.3.1.3.12. Symmetry

In Section 3.3.1.1.1 it was pointed out that it is usual to express
coordinates for graphical purposes in Cartesian coordinates in
ångström units or nanometres. Symmetry, however, is best
expressed in crystallographic fractional coordinates. If a molecule,
with Cartesian coordinates, is being displayed, and a symmetry-
related neighbour is also to be displayed, then the data-space
coordinates must be multiplied by

W T
0T W

	 

M 0
0T 1

	 

� M�1 0

0T 1

	 

W �T
0T W

	 

,

where

T
W

	 


are the data-space coordinates of the crystallographic origin, M and
M�1 are as in Section 3.3.1.1.1 and � is a crystallographic
symmetry operator in homogeneous coordinates, expressed relative
to the same crystallographic origin.

For example, in P21 with the origin on the screw dyad along b,

� �
�1 0 0 0
0 1 0 1

2
0 0 �1 0
0 0 0 1

�
���

�
���

and

M 0
0T 1

	 

� M�1 0

0T 1

	 

�

�1 0 0 0
0 1 0 1

2 b
0 0 �1 0
0 0 0 1

�
���

�
����

� comprises a proper or improper rotational partition, S, in the
upper-left 3
 3 in the sense that MSM�1 is orthogonal, and with
the associated fractional lattice translation in the last column, with
the last row always consisting of three zeros and 1 at the 4, 4
position. See IT A (1983, Chapters 5.3 and 8.1) for a fuller
discussion of symmetry using augmented (i.e. 4
 4) matrices.

3.3.1.4. Modelling transformations

The two sections under this heading are concerned only with the
graphical aspects of conformational changes. Determination of such
changes is considered under Section 3.3.2.2.

3.3.1.4.1. Rotation about a bond

It is a common requirement in molecular modelling to be able to
rotate part of a molecule relative to the remainder about a bond
between two atoms.

If four atoms are bonded 1–2–3–4 then the dihedral angle in the
bond 2–3 is zero if the four atoms are cis planar, and a rotation in the
2–3 bond is, by convention (IUPAC–IUB Commission on
Biochemical Nomenclature, 1970), positive if, when looking
along the 2–3 bond, the far end rotates clockwise relative to the
near end. This is valid for either viewing direction. This sign
convention, when applied to the R matrix of Section 3.3.1.2.1, leads
to the following statement.

If one of the two atoms is selected as the near atom and the
direction cosines are those of the vector from the near atom to the
far atom, and if the matrix is to rotate material attached to the far
atom (with the reference axes fixed), then a positive rotation in the
foregoing sense is generated by a positive �.

Rotation about a bond normally involves compounding R with
translations in the manner of Section 3.3.1.3.8.

3.3.1.4.2. Stacked transformations

A flexible molecule may require to be drawn in any of a number
of conformations which are related to one another by, for example,
rotations about single bonds, changes of bond angles or changes of
bond lengths, all of which changes may be brought about by the
application of suitable homogeneous transformations during the
drawing of the molecule (Section 3.3.1.3.8). With suitable
organization, this may be done without necessarily altering the
coordinates of the atoms in the coordinate list, only the
transformations being manipulated during drawing.

The use of transformations in the manner shown below is
straightforward for simply connected structures or structures
containing only rigid rings. Flexible rings may be similarly handled
provided that the matrices employed are consistent with the
consequential constraints as described in Section 3.3.2.2.1, though
this requirement may make real-time folding of flexible rings
difficult.

Any simply connected structure may be organized as a tree with a
node at each branch point and with an arbitrary number of sites of
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conformational change between one node and the next. We shall
call such sites and their associated matrices ‘conformons’. The
technique then depends on the stacking technique in which matrices
are stored and later recovered in the reverse order of their storage.

One begins at some reference point deemed to be fixed in data
space and at this point one stacks the prevailing viewing
transformation. From this reference point one advances through
the molecule along the structural tree and as each conformon is
encountered its matrix is calculated. The product of the prevailing
matrix with the conformon matrix is formed and stacked, and this
product becomes the prevailing matrix. This product is constructed
with the conformon matrix as a factor on the right, i.e. in data space
as defined in Section 3.3.1.3.1, and is calculated using the
coordinates of the molecule in their unmodified form, i.e. before
any shape changes are brought about.

This progression leads eventually to an extremity of the tree. At
this point drawing is commenced using the prevailing matrix and
working backwards towards the fixed root, unstacking (or
‘popping’) a matrix as each conformon is passed until a node is
reached, which, in general, will occur only part way back to the
root. On reaching such a node drawing is suspended and one
advances along the newly found branch as before, stacking
matrices, until another extremity is reached when drawing towards
the root is resumed. This alternation of stacking matrices while
moving away from the root and drawing and unstacking matrices
while moving towards the root is continued until the whole tree is
traversed.

This process is illustrated schematically in Fig. 3.3.1.2 for a
simple tree with one node, numbered 1, and three conformons at a, b
and c. One enters the tree with a current viewing transformation T
and progresses upwards from the fixed lower extremity. When the
conformon at a is encountered, T is stacked and the product TMa is
formed. Continuing up the tree, at node 1 either branch may be
chosen; we choose the left and, on reaching b, TMa is stacked and
TMaMb is formed. On reaching the tip drawing down to b is done
with this transformation, TMa is then unstacked and drawing
continues with this matrix until node 1 is reached. The other branch
is then followed to c whereupon TMa is again stacked and the
product TMaMc is formed. From the tip down as far as c is drawn
with this matrix, whereupon TMa is unstacked and drawing
continues down to a, where T is unstacked before drawing the
section nearest the root.

With this organization the matrices associated with b and c are
unaffected by changes in the conformation at a, notwithstanding the
fact that changes at a alter the direction of the axis of rotation at b or
c.

Two other approaches are also possible. One of these is to start at
the tip of the left branch, replace the coordinates of atoms between b
and the tip by MbX, and later replace all coordinates between the tip
and a by MaX, with a similar treatment for the other branch. The
advantage of this is that no storage is required for stacked matrices,
but the disadvantage is that atoms near the tips of the tree have to be
reprocessed for every conformon. It also modifies the stored
coordinates, which may or may not be desirable.

The second alternative is to draw upwards from the root using T
until a is reached, then using TMa until b is reached, then using
TM �

bMa to the tip, but in this formulation M �
b must be based on the

geometry that exists at b after the transformation Ma has been
applied to this region of the molecule, i.e. M �

b is characteristic of the
final conformation rather than the initial one.

3.3.1.5. Drawing techniques

3.3.1.5.1. Types of hardware

There are two main types of graphical hardware in use for
interactive work, in addition to plotters used for batch work. These
main types are raster and vector. In raster equipment the screen is
scanned as in television, with a grid of points, called pixels,
addressed sequentially as the scan proceeds. Associated with each
pixel is a word of memory, usually containing something in the
range of 1 to 24 bits per pixel, which controls the colour and
intensity to be displayed. Many computer terminals have one bit per
pixel (said to be ‘single-plane’ systems) and these are essentially
monochrome and have no grey scale. Four-plane systems are cheap
and popular and commonly provide 4-bit by 4-bit look-up tables
between the pixel memory and the monitor with one such table for
each of the colours red, green and blue. If these tables are each
loaded identically then 16 levels of monochrome grey scale are
available, but if they are loaded differently 16 different colours are
available simultaneously chosen from a total of 4096 possibilities.
Four-plane systems are adequate for many applications where
colour is used for coding, but are inadequate if colour is intended
also to provide realism, where brilliance and saturation must be
varied as well as hue. For these applications eight-plane systems are
commonly used which permit 256 colours chosen from 16 million
using three look-up tables, though the limitations of these can also
be felt and full colour is only regarded as being available in 24-
plane systems.

Raster-graphics devices are ideal for drawing objects represented
by opaque surfaces which can be endowed with realistic reflecting
properties (Max, 1984) and they have been successfully used to give
effects of transparency. They are also capable of representing
shadows, though these are generally difficult to calculate (see
Section 3.3.1.5.5). Many devices of this type provide vectorization,
area fill and anti-aliasing. Vectorization provides automatically for
the loading of relevant pixels on a straight line between specified
points. Area fill automatically fills any irregular pre-defined
polygon on the screen with a uniform colour with the user
specifying only the colour and one point within the polygon.
Anti-aliasing is the term used for a technique which softens the
staircase effect that may be seen on a line which runs at a small
angle to a vertical or horizontal row of pixels.

The main drawback with this type of equipment is that it is slow
compared to vector machines. Only relatively simple objects can be
displayed with smooth rotation in real time as transformed
coordinates have to be converted to pixel addresses and the

Fig. 3.3.1.2. Schematic representation of a simple branched-chain
molecule with a stationary root and two extremities. The positions
marked a, b and c are the loci of possible conformational change, here
called conformons, and there is a single, numbered branch point.
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previous frame needs to be deleted with each new frame unless it is
known that each new frame will specify every pixel. However, the
technology is advancing rapidly and these restrictions are already
disappearing.

Vector machines, on the other hand, are specialized to drawing
straight lines between specified points by driving the electron beam
along such lines. No time is wasted on blank areas of the screen.
Dots may be drawn with arbitrary coordinates, in any order, but
areas, if they are to be filled, must be done with a ruling technique
which is very seldom done. Images produced by vector machines
are naturally transparent in that foreground does not obscure
background, which makes them ideal for seeing into representations
of molecular structure.

3.3.1.5.2. Optimization of line drawings

A line drawing consisting of n line segments may be specified by
anything from �n� 1� to 2n position vectors depending on whether
the lines are end-to-end connected or independent. Appreciable
gains in both processing time and storage requirements may be
made in complicated drawings by arranging for line segments to be
end-to-end connected as far as possible, and an algorithm for doing
this is outlined below. For further details see Diamond (1984a).

Supposing that a list of nodal points (atoms if a covalent skeleton
is being drawn) exists within a computer with each node appearing
only once and that the line segments to be drawn between them are
already determined, then at each node there are, generally, both
forward and backward connections, forward connections being
those to nodes further down the list. A quantity D is calculated at
each node which is the number of forward connections minus the
number of backward connections. At the commencement of
drawing, the first connected node in the list must have a positive
D, the last must have a negative D, the sum of all D values must be
zero and the sum of the positive ones is the number of strokes
required to draw the drawing, a ‘stroke’ being a sequence of end-to-
end connected line segments drawn without interruption. The total
number of position vectors required to specify the drawing is then
the number of nodes plus the number of strokes plus the number of
rings minus one.

Drawing should then be done by scanning the list of nodes from
the top looking for a positive D (usually found at the first node),
commencing a stroke at this node and decrementing its D value by
1. This stroke is continued from node to node using the specified
connections until a negative D is encountered, at which point the
stroke is terminated and the D value at the terminating node is
incremented by 1. This is done even though this terminating node
may also possess some forward connections, as the total number of
strokes required is not minimized by keeping a stroke going as far as
possible, but by terminating a stroke as soon as it reaches a node at
which some stroke is bound to terminate.

The next stroke is initiated by resuming the scan for positive D
values at the point in the node list where the previous stroke began.
If this scan encounters a zero D value at a node which has not
hitherto been drawn to, or drawn from, then the node concerned is
isolated and not connected to any other, and such nodes may require
to be drawn with some special symbol. The expression already
given for the number of vectors required is valid in the presence of
isolated nodes if drawing an isolated node is allowed one position
vector, this vector not being counted as a stroke.

The number of strokes generated by this algorithm is sensitive to
the order in which the nodes are listed, but if this resembles a natural
order then the number of strokes generated is usually close to the
minimum, which is half the number of nodes having an odd number
of connections. For example, the letter � has six nodes, four of
which have an odd number of connections, so it may be drawn with
two strokes.

3.3.1.5.3. Representation of surfaces by lines

The commonest means of representing surfaces, especially
contour surfaces, is to consider evenly spaced serial sections and
to perform two-dimensional contouring on each section. Repeating
this on serial sections in two other orientations then provides a good
representation of the surface in three dimensions when all such
contours are displayed. The density is normally cited on a grid with
submultiples of a, b and c as grid vectors, inverse linear
interpolation being used between adjacent grid points to locate
points on the contour. For vector-graphics applications it is
expedient to connect such points with straight lines; some
equipment may be capable of connecting them with splines though
this is burdensome or impossible if real-time rotation of the scene is
required. Precalculation of splines stored as short vectors is always
possible if the proliferation of vectors is acceptable. For efficient
drawing it is necessary for the line segments of a contour to be end-
to-end connected, which means that it is necessary to contour by
following contours wherever they go and not by scanning the grid.
Algorithms which function in this way have been given by Heap &
Pink (1969) and Diamond (1982a). Contouring by grid scanning
followed by line connection by the methods of the previous section
would be possible but less efficient. Further contouring methods are
described by Sutcliffe (1980) and Cockrell (1983).

For raster-graphics devices there is little disadvantage in using
curved contours though many raster devices now have vectorizing
hardware for loading a line of pixels given only the end points. For
these devices well shaped contours may be computed readily, using
only linear arithmetic and a grid-scanning approach (Gossling,
1967). Others have colour-coded each pixel according to the
density, which provides a contoured visual impression without
performing contouring (Hubbard, 1983).

3.3.1.5.4. Representation of surfaces by dots

Connolly (Langridge et al., 1981; Connolly, 1983a,b) represents
surfaces by placing dots on the surface with an approximately
uniform superficial density. Connolly’s algorithm was developed to
display solvent-accessible surfaces of macromolecules and provides
for curved concave portions where surface atoms meet. Pearl &
Honegger (1983) have developed a similar algorithm, based on a
grid, which generates only convex portions which meet in cusps, but
is faster to compute than the Connolly surface. Bash et al. (1983)
have produced a van der Waals surface algorithm fast enough to
permit real-time changes to the structure without tearing the
surface.

It has become customary to use a dot representation to display
computed surfaces, such as the surface at a van der Waals radius
from atomic centres, and to use lines to represent experimentally
determined surfaces, especially density contours.

3.3.1.5.5. Representation of surfaces by shading

Many techniques have been developed, mainly for raster-
graphics devices, for representing molecular surfaces and these
have been very well reviewed by Max (1984).

The simplest technique in this class consists in representing each
atom by a uniform disc, or high polygon, which can be colour-coded
and area-filled by the firmware of the device. If such atoms are
sorted on their z coordinate and drawn in order, furthest ones first, so
that nearer ones partly or completely overwrite the further ones then
the result is a simple representation of the molecule as seen from the
front. This technique is fast and has its uses when a rapid schematic
is all that is required. In one sense it is wasteful to process distant
atoms when they are going to be overwritten by foreground atoms,
but front-to-back processing requires the boundaries of visible parts
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of partially obscured atoms near the front to be determined before
they can be painted or, alternatively, every pixel must be tested
before loading to see if it is already loaded. Not only does this
approach give a uniform rendering over the whole area of one atom,
it also gives a boundary between overlapping atoms with almost
equal z values which completes the circle of the nearer atom, though
it should be an arc of an ellipse when the atoms are drawn with radii
exceeding their covalent radii.

Greater realism is achieved by establishing a z buffer, which is an
additional area of memory with one word per pixel, in which is
stored the z value of the currently loaded feature in each pixel.
Treatments which take account of the sphericity are then possible
and correct arcs of intersection for interpenetrating spheres and
more complicated entities arise naturally through loading a colour
value into a pixel only if the z coordinate is less than that of the
currently loaded value. This z buffer and the associated x, y
coordinates should be in picture space or screen space rather than
display space since only after the application of perspective can
points with the same x / w and y / w coordinates obscure one another.

It is usual in such systems to vary the intensity of colour within
one atom by darkening it towards the circumference on the basis of
the z coordinate. Some systems augment this impression of
sphericity by highlighting. The simplest form of highlighting is
an extension of the uniform disc treatment in which additional,
brighter discs, possibly off centre, are associated with each atom.
More general highlighting (Phong, 1975) is computed from four
unit vectors, these being the normal to the surface, the direction to a
light source, the direction to the viewer and the normalized vector
sum of these last two. Intensity levels may then be set as the sum of
three terms: a constant, a term proportional to the scalar product of
the first two vectors (if positive) and a term proportional to a high
power of the scalar product of the first and last vectors; the higher
the power the glossier the surface appears to be. This final term
normally adds a white term, rather than the surface colour,
supposing the light source to be white.

Shadows may also be rendered to give even greater realism. In
addition to the z buffer and (x, y) frame buffer a second z buffer for
z� values associated with x� and y� is also required. These coordinates
are then related by x� � x� �z, y� � y� �z, z� � z. The second
buffer is a ray buffer since x�y� are the coordinates with which an
illuminating ray passing through (xyz) passes through the z � 0
plane, and z�, stored at x�, y�, records the depth at which this ray
encounters material. Thus any two pixels �x1y1z1� and �x2y2z2� are
on the same illuminating ray if their x� and y� values are equal and
the one with smaller z� shadows the other. Processing a pixel at
�x1y1z1� therefore involves first determining its visibility on the
basis of the z buffer, as before, then, whether or not it is visible,
setting z�1 � z1 and considering the value of z� currently stored at
x�y�, which we call z�2.

If z�1 � z�2 then x1y1z1 is in light and must be loaded accordingly.
From z�2 we find the previously processed pixel �x2y2z2� which is
now in shade and which was in light when originally processed, so
that the colour value stored at x2y2 needs to be altered unless the
pixel at x2y2 is now �x2y2z3� with z3 � z2, in which case the pixel
�x2y2z2� which has now become shadowed by �x1y1z1� has, in the
meantime, been obscured by �x2y2z3� which is not shadowed by
�x1y1z1� and no change is therefore needed. In either event z�1 then
replaces z�2.

If z�1 	 z�2 then �x1y1z1�, if visible, is in shade and must be
coloured accordingly, and in this case z�2 is not superseded.

This shadowing scheme corresponds to illumination by a light
source at infinity in picture space or, equivalently, with a z
coordinate equal to that of the eye in display space. For its
implementation x, y and z may be in any convenient coordinate
system, e.g. pixel addresses, but if x and y are expressed with the
range �1 to 1 and z with the range 0 to 1 corresponding to the

window then they may be identified as the quantities x�w, y�w and
z�w of picture space (Section 3.3.1.3.1).

If, in the notation of Section 3.3.1.3.5, the light source is placed at
(P, Q, E, V) in display space and a ray leaves it in the direction (p, q,
r, V) then

x� � p
r
 2�S � E�
�R � L� �

2�S � E��P � C�
�N � E��R � L� �

2C � R � L
R � L

,

which varies only with beam direction,

� � 2�S � E��F � N��P � C�
�F � E��N � E��R � L�

and similarly for y� and �.

3.3.1.5.6. Advanced hidden-line and hidden-surface
algorithms

Hidden surfaces may be handled quite generally with the z-buffer
technique described in the previous section but this technique
becomes very inefficient with very complicated scenes. Faster
techniques have been developed to handle computations in real time
(e.g. 25 frames s�1) on raster machines when both the viewpoint
and parts of the environment are moving and substantial complexity
is required. These techniques generally represent surfaces by a
number of points in the surface, connected by lines to form panels.
Many algorithms require these panels to be planar and some require
them to be triangular. Of those that permit polygonal panels, most
require the polygons to be convex with no re-entrant angles. Yet
others are limited to cases where the objects themselves are convex.
Some can handle interpenetrating surfaces, others exclude these.
Some make enormous gains in efficiency if the objects in the scene
are separable by the insertion of planes between them and degrade
to lower efficiency if required, for example, to draw a chain. Some
are especially suited to vector machines and others to raster
machines, the latter capitalizing on the finite resolution of such
systems. In all of these the basic entities for consideration are entire
panels or edges, and in some cases vertices, point-by-point
treatment of the entire surface being avoided until after all decisions
are made concerning what is or is not visible.

All of these algorithms strive to derive economies from the
notion of ‘coherence’. The fact that, in a cine context, one frame is
likely to be similar to the previous frame is referred to as ‘frame
coherence’. In raster scans line coherence also exists, and other
kinds of coherence can also be identified. The presence of any form
of coherence may enable the computation to be concerned primarily
with changes in the situation, rather than with the totality of the
situation so that, for example, computation is required where one
edge crosses in front of another, but only trivial actions are involved
so long as scan lines encounter the projections of edges in the same
order.

The choice of technique from among many possibilities may
even depend on the viewpoint if the scene has a statistical
anisotropy. For example, the depiction of a city seen from a
viewpoint near ground level involves many hidden surfaces. Distant
buildings may be hidden many times over. The same scene depicted
from an aerial viewpoint shows many more surfaces and fewer
overlaps. This difference may swing the balance of advantage
between an algorithm which sorts first on z or one which leaves that
till last.

These advanced techniques have, so far, found little application
in crystallography, but this may change. Ten such techniques are
critically reviewed and compared by Sutherland et al. (1974), and
three of these are described in detail by Newman & Sproull (1973).
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3.3.2. Molecular modelling, problems and approaches

This section is concerned with software techniques which permit a
set of atomic coordinates for a molecule to be generated ab initio, or
to be modified, by reference to some chosen criterion, usually the
electron density. Software that can change the shape of a molecule
must be cognizant of the connectivity of the molecule and the
bonding characteristics of atom types. It must also have means of
regaining good stereochemistry if current coordinates are poor in
this respect, or of performing its manipulations in ways which
conserve essential stereochemical features. Approaches to some of
these problems are outlined below. Many of the issues involved,
including the topics outlined in Section 3.3.1.4 above, have been
excellently reviewed by Hermans (1985), though with little
reference to graphical aspects, and a comprehensive treatment of
modelling methods based on energies is given by Burkert &
Allinger (1982).

3.3.2.1. Connectivity

It is necessary to distinguish three different kinds of connectivity,
namely structural, logical and drawing connectivities. Structural
connectivity consists of the specification of the chemical bonding of
the molecule and, as such, is an absolute property of the molecule.
Logical connectivity consists of the specification of what part or
parts of a molecule are moved, and in what way, if some
stereochemical feature is altered. Logical and structural connectiv-
ity are closely related and in simple cases coincide, but the
distinction is apparent, for example, if the puckering of a five-
membered ring is being modelled by permitting folding of the
pentagon about a line connecting non-adjacent corners. This line is
then a logical connection between two moving parts, but it is not a
feature of the structural connectivity.

Drawing connectivity consists of a specification of the lines to be
drawn to represent the molecule and often coincides with the
structural connectivity. However, stylized drawings, such as those
showing the �-carbon atoms of a protein, require to be drawn with
lines which are features neither of the logical nor of the structural
connectivity.

3.3.2.1.1. Connectivity tables

The simplest means of storing connectivity information is by
means of tables in which, for each atom, a list of indices of other
atoms to which it is connected is stored. This approach is quite
general; it may serve any type of molecular structure and permits
structures to be traversed in a variety of ways. In this form,
however, it is extravagant on storage because every connection is
stored twice, once at each of the nodes it connects. It may, however,
provide the starting material for the algorithm of Section 3.3.1.5.2
and its generality may justify its expense.

From such a list, lists of bonds, bond angles and dihedral angles
may readily be derived in which each entry points to two, three or
four atoms in the atom list. Lists of these three types form the basis
of procedures which adjust the shape of a molecule to reduce its
estimated potential energy (Levitt & Lifson, 1969; Levitt, 1974),
and of search-and-retrieval techniques (Allen et al., 1979).

Katz & Levinthal (1972) discuss the explicit specification of
structural connectivity in terms of a tree structure in which, for each
atom, is stored a single pointer to the connected atom nearer to the
root, virtual atoms being used to allow ring structures to be treated
as trees. An algorithm is also presented which allows such a tree
specification to be redetermined if an atom in the tree is newly
chosen as the root atom or if the tree itself is modified.

Cohen et al. (1981) have developed methods of handling
connectivity in complicated fused- and bridged-ring systems.

3.3.2.1.2. Implied connectivity

In cases where software is required to deal only with a certain
class of molecule, it may be possible to exploit the characteristics of
that class to define an ordering for lists of atoms such that
connectivity is implied by the ordering of items in the list. Such
an ordering may successfully define one of the three types of
connectivity defined in Section 3.3.2.1 but it is unlikely to be able to
meet the needs of all three simultaneously. It may also be at a
disadvantage when required to deal with structures not part of the
class for which it is designed. Within these limitations, however, it
may be exceedingly efficient. Both proteins and nucleic acids are of
a class which permits their logical connectivity to be specified
entirely by list ordering, and the software described in Section
3.3.3.2.6 uses no connectivity tables for this purpose. The ordering
rules concerned are given by Diamond (1976b).

Drawing connectivity needs explicit specification in such a case;
this may be done using only one 16-bit integer per atom, which may
be stored as part of the atom list without the need of a separate table.
This integer consists of two signed bytes which act as relative
pointers in the list, positive pointers implying draw-to, negative
pointers implying move-to. As each atom is encountered during
drawing the right byte is read and utilized, and the two bytes are
swapped before proceeding. This allows up to two bonds drawn to
an atom and two bonds drawn from it, four in all, with a minimum
of storage (Diamond, 1984a).

Brandenburg et al. (1981) handle drawing connectivity by
enlarging the molecular list with duplicate atoms such that each is
connected to the next in the list, but moves and draws still need to be
distinguished.

Levitt (1971) has developed a syntax for specifying structural
connectivity implicitly from a list structure which is very general,
though designed with biopolymers in mind, and the work of Katz &
Levinthal (1972) includes something similar.

3.3.2.2. Modelling methods

Fundamental to the design of any software for molecular
modelling are the choices of modelling criteria, and of parameter-
ization. Criteria which may be adopted might include the fitting of
electron density, the minimization of an energy estimate or the
matching of complementary surfaces between a pair of molecules.
Parameterizations which may be adopted include the use of
Cartesian coordinates of atoms as independent variables, or of
internal coordinates, such as dihedral angles, as independent
variables with atomic positions being dependent on these. Systems
designed to suit energetic criteria usually use Cartesian coordinates
since all aspects of the structure, including bond lengths, must be
treated as variables and be allowed to contribute to the energy
estimate. Systems designed to fit a model to observed electron
density, however, may adequately meet the stereochemical
requirements of modelling on either parameterization, and
examples of both types appear below.

Inputs to modelling systems vary widely. Systems intended for
use mainly with proteins or other polymeric structures usually work
with a library of monomers which the software may develop into a
polymer. Systems intended for smaller molecules usually develop
the molecular structure atom-by-atom rather than a residue at a
time, and systems of this kind require a very general form of input.
They may accept a list of atom types and coordinates if
measurement and display of a known molecule is the objective,
or they may accept ‘sketch-pad’ input in the form of a hand-drawn
two-dimensional sketch of the type conventional in chemistry, if the
objective is the design of a molecule. Sketch-pad input is a feature
of some systems with quantum-mechanical capabilities.
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3.3.2.2.1. Methods based on conformational variables

Suppose that t represents a vector from the current position of an
atom in the model to a target position then (see Section 3.3.1.1.3), to
first order, the observational equations are

tIA � DIpA�p � vIA

in which � represents changes to conformational variables which
may include dihedral angles, bond angles, bond lengths, and
parameters determining overall position and orientation of the
molecule as a whole. If every such parameter is included the model
acquires 3n degrees of freedom for n atoms, in which case the
methods of the next section are more appropriate, but if bond
lengths and some or all bond angles are being treated as constants
then the above equation becomes the basis of the treatment.

DIPA � �rIA

��P
� �IjknjP�rkA � rkP�

in which nP is a unit vector defining the axis of rotation for an
angular variable �P, rA and rP are position vectors of the atom A and
the site of the parameter P, and vA represents a residual vector.

� � viavia is minimized by

� � M�1V

in which

MPQ � DiPaDiQa

VP � DiPatia�

More generally, if � represents any scalar quantity which is to be
minimized, e.g. an energy, then

VP � � 1
2
��

��P

MPQ � 1
2

�2�

��P��Q
�

It is beyond the scope of this chapter to review the methods
available for evaluating � from these equations. Difficulties may
arise from two sources:

(i) Inversion of M may be difficult if M is large or ill conditioned
and impossible if M is singular.

(ii) Successful evaluation of M�1V will not minimize � in one
step if t is not linearly dependent on � or, equivalently,
�2����P��Q is not constant, and substantial changes � are
involved. Iteration is then necessary.

Difficulties of the first kind may be overcome by gradient
methods, for example the conjugate gradient method without
searches if M is available or with searches if it is not available, or
they may be overcome by methods based on eigenvalue
decompositions. If non-linearity is serious less dependence should
be placed on M and gradient methods using searches are more
valuable. In this connection Diamond (1966) introduced a sliding
filter technique which produced rapid convergence in extreme
conditions of non-linearity. These topics have been reviewed
elsewhere (Diamond, 1981, 1984b) and are the subject of many
textbooks (Walsh, 1975; Gill et al., 1981; Luenberger, 1984).

Warme et al. (1972) have developed a similar system using
dihedral angles as variables and a variety of alternative optimization
algorithms.

The modelling of flexible rings or lengths of chain with two or
more fixed parts is sometimes held to be a difficulty in methods
using conformational variables, although a simple two-stage
solution does exist. The principle involved is the sectioning of the
space of the variables into two orthogonal subspaces of which the

first is used to satisfy the constraints and the second is used to
perform the optimization subject to those constraints.

The algebra of the method may be outlined as follows, and is
given in more detail by Diamond (1971, 1980a,b). Parametric shifts
� 1 which satisfy the constraints are solutions of

V1 � M1� 1

in which V1 and M1 depend only on the target vectors, t1, of the
atoms with constrained positions and on the corresponding
derivatives. We then find a partitioned orthogonal matrix �A1B1�
satisfying

�A1B1� � �E�E0� R� 0
0 R0

	 


in which E� are the eigenvectors of M1 having positive eigenvalues,
E0 are those having zero eigenvalues, and R� and R0 are arbitrary
orthogonal matrices. Then

AT
1

BT
1

 �
V1 � AT

1

BT
1

 �
M1�A1B1� AT

1

BT
1

 �
� 1

� AT
1 M1A1 0

0 0

 �
AT

1

BT
1

 �
� 1

AT
1� 1 � �AT

1 M1A1��1AT
1 V1

in which the matrix to be inverted is positive definite. A1, however,
is rectangular so that multiplying on the left by A1 does not
necessarily serve to determine � 1, but we may write

� 1 � �A1B1� �1
�1

	 


giving

AT
1

BT
1

 �
V1 � AT

1 M1A1 0

0 0

 �
�1

�1

	 


�1 � �AT
1 M1A1��1AT

1 V1

and �1 is indeterminate and free to adopt any value. We therefore
adopt

� 1 � A1�1 � A1�AT
1 M1A1��1AT

1 V,

which is the smallest vector of parametric shifts which will satisfy
the constraints, and allow �1 to be determined by the remaining
observational equations in which the target vectors, t, are now
modified to t2 according to

t2 � t� D2� 1,

D2 and t2 being the derivatives and effective target vectors for the
unconstrained atoms. We then solve

V2 � M2� 2

in which � 2 is required to be of the form

� 2 � B1�1

giving

� 2 � B1�BT
1 M2B1��1BT

1 V2

and apply the total shifts

� � � 1 � � 2

to obtain a structure which is optimized within the restrictions
imposed by the constraints.
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It may happen that BT
1 M2B1 is itself singular because there are

insufficient data in the vector t2 to control the structure and the
parametric shifts contained in � 2 fully. In this event the same
process may be applied again, basing the solution for � 2 on

AT
2

BT
2

 �
BT

1 M2B1�A2B2�

so that the vectors in B2 represent the degrees of freedom which
remain uncommitted. This method of application of constraints by
subspace sectioning may be nested to any depth and is completely
general.

A valid matrix A1 may be found from M1 by using the fact that
the columns of M1 are all linear combinations of the columns of E�

and are void of any contribution from E0. It follows that A1 may be
found by using the columns of M1 as priming vectors in the Gram–
Schmidt process [Section 3.3.1.2.3 (i)] until the normalizing step
involves division by zero. A1 is then complete if all the columns of
M1 have been tried. �A1B1� may then be completed by using
arbitrary vectors as primers.

Manipulation of a ring of n atoms may be achieved by treating it
as a chain of �n� 2� atoms [having �n� 1� bond lengths, n bond
angles and �n� 1� dihedral angles] in which atom 1 is required to
coincide with atom �n� 1� and atom 2 with �n� 2�. t1 then
contains two vectors, namely the lack-of-closure vectors at these
points, and is typically zero. A1 is then found to have five columns
corresponding to the five degrees of freedom of two points of fixed
separation; � 1 contains only zeros if the ring is initially closed, and
contains ring-closure corrections if, through non-linearity or
otherwise, the ring has opened. B1 contains �p� 5� columns if
the chain of �n� 2� points has p variable parameters. It follows, if
bond lengths and bond angles are treated as constants, that the
seven-membered ring is the smallest ring which is flexible, that the
six-membered ring (if it can be closed with the given bond angles)
has no flexibility (though it may have discrete alternatives) and that
it may be impossible to close a five-membered ring. Therefore some
variation of bond angles and/or bond lengths is essential for the
modelling of flexible five- and six-membered rings. Treating the
ring as a chain of �n� 1� atoms is less satisfactory as there is then
no control over the bond angle at the point of ring closure.

A useful concept for the modelling of flexible five-membered
rings with near-constant bond angles is the concept of the
pseudorotation angle P, and amplitude �m, for which the jth
dihedral angle is given by

�j � �m cos P � 4�j
5

	 

�

This formulation has the property
�4

j�0�j � 0, which is not exactly
true; nevertheless, �j values measured from observed conformations
comply with this formulation within a degree or so (Altona &
Sundaralingam, 1972).

Software specialized to the handling of condensed ring systems
has been developed by van der Lieth et al. (1984) (Section 3.3.3.3.1)
and by Cohen et al. (1981) (Section 3.3.3.3.2).

3.3.2.2.2. Methods based on positional coordinates

Modelling methods in which atomic coordinates are the
independent variables are mathematically simpler than those
using angular variables especially if the function to be minimized
is a quadratic function of interatomic distances or of distances
between atoms and fixed points. The method of Dodson et al.
(1976) is representative of this class and it may be outlined as
follows. If d is a column vector containing ideal values of the scalar
distances from atoms to fixed target points or to other atoms, and if l

is a column vector containing the prevailing values of these
quantities obtained from the model, then

d � l� D�x� ����

in which the column matrix �x contains alterations to the atomic
coordinates, ���� contains residual discrepancies and D is a large
sparse rectangular matrix containing values of �l��x, of which there
are not more than six non-zero values on any row, consisting of
direction cosines of the line of which l is the length. ����T W���� is then
minimized by setting

DT W�d� l� � DT WD�x,

which they solve by the method of conjugate gradients without
searches. This places reliance on the linearity of the observational
equations (Diamond, 1984b). It also works entirely with the sparse
matrix W 1�2D, the dense matrix DT WD, and its inverse, being never
calculated.

The method is extremely efficient in annealing a model structure
for which an initial position for every atom is available, especially if
the required shifts are within the quasi-linear region, but is less
effective when large dihedral-angle changes are involved or when
many atoms are to be placed purely by interpolation between a few
others for which target positions are available. Interbond angles are
controlled by assigning d values to second-nearest-neighbour
distances; this is effective except for bond angles near 180° so
that, in particular, planar groups require an out-of-plane dummy
atom to be included which has no target position of its own but does
have target values of distances between itself and atoms in the
planar group. The method requires a d value to be supplied for every
type of nearest- and next-nearest-neighbour distance in the
structure, of which there are many, together with W values which
are the inverse variances of the distances concerned as assessed by
surveys of the corresponding distances in small-molecule struc-
tures, or from estimates of their accuracy, or from estimates of
accuracy of the target positions.

Hermans & McQueen (1974) published a similar method which
differs in that it moves only one atom at a time, in the environment
of its neighbours, these being considered fixed while the central
atom is under consideration. This is inefficient in the sense that in
any one cycle one atom moves only a small fraction (�3%) of the
distance it will ultimately be required to move, but individual atom
cycles are so cheap and simple that many cycles can be afforded.
The method was selected for inclusion in Frodo by Jones (1978)
(Section 3.3.3.2.7) and is an integral part of the GRIP system
(Tsernoglou et al., 1977; Girling et al., 1980) (Section 3.3.3.2.2) for
which it was designed.

3.3.2.2.3. Approaches to the problem of multiple minima

Modelling methods which operate by minimizing an objective
function of the coordinates (whether conformational or positional)
suffer from the fact that any realistic objective function representing
the potential energy of the structure is likely to have many minima
in the space of the variables for any but the simplest problems. No
general system has yet been devised that can ensure that the global
minimum is always found in such cases, but we indicate here two
approaches to this problem.

The first approach uses dynamics to escape from potential-energy
minima. Molecular-mechanics simulations allow each atom to
possess momentum as well as position and integrate the equations
of motion, conserving the total energy. By progressively removing
energy from the simulation by scaling down the momentum vectors
some potential-energy minimum may be found. Conversely, a
minimization of potential energy which has led to a minimum
thought not to be the global minimum may be continued by
introducing atomic momenta sufficient to overcome potential-
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energy barriers between minima, and subsequently attenuate the
momenta again. In this way a number of minima may be found
(Levitt & Warshel, 1975). It is equivalent to initializing a potential-
energy minimization from a number of different conformations but
it has the property that the minima so found are separated by energy
barriers for which an upper limit is known so that the possibility
exists of exploring transition pathways.

A second approach (Purisima & Scheraga, 1986) is relatively
new. If the objective function to be minimized can be expressed in
terms of interatomic distances, and if each atom is given coordinates
in a space of n� 1 dimensions for n atoms, then a starting structure
may be postulated for which the interatomic distances all take their
ideal values and the objective function is then necessarily at an
absolute minimum. This multidimensional structure is then
projected into a space of fewer dimensions, within which it is
again optimized with respect to the objective function. The
dimensionality of the model is thus progressively reduced until a
three-dimensional model is attained at a low energy. This means
that the minimum so attained in three dimensions is approached
from beneath, having previously possessed a lower value in a
higher-dimensional space. This, in itself, does not guarantee that the
three-dimensional minimum-energy structure so found is at the
global minimum, but it is not affected by energy barriers between
minima in the same way, and it does appear to reach very low
minima, and frequently the global one. Because it is formulated
entirely in terms of interatomic distances it offers great promise for
modelling molecules on the basis of data from nuclear magnetic
resonance.

3.3.3. Implementations

In this section the salient characteristics of a number of systems are
described. Regrettably, it cannot claim to be a complete guide to all
existing systems, but it probably describes a fairly representative
sample. Some of these systems have arisen in academia and these
are freely described. Some have arisen in or been adopted by
companies which now market them, and these are described by
reference to the original publications. Other marketed systems for
which originators’ published descriptions have not been found are
not described. Yet other systems have been developed, for example,
by companies within the chemical and pharmaceutical industries for
their own use, and these have generally not been described in what
follows since it is assumed that they are not generally available,
even where published descriptions exist.

Software concerned especially with molecular dynamics has not
been included unless it also provides static modelling capability,
since this is a rapidly growing field and it has been considered to be
beyond the intended scope of this chapter. Systems for which
outline descriptions have already been given (Levitt & Lifson,
1969; Levitt, 1974; Diamond, 1966; Warme et al., 1972; Dodson et
al., 1976; Hermans & McQueen, 1974) are not discussed further.

For some of the earliest work Levinthal (1966) still makes
interesting reading and Feldmann (1976) is still an excellent review
of the technical issues involved. The issues have not changed, the
algorithms there described are still valuable, only the manner of
their implementation has moved on as hardware has developed. A
further review of the computer generation of illustrations has been
given by Johnson (1980). Excellent bibliographies relating to these
sections have been given by Morffew (1983, 1984), which together
contain over 250 references including their titles.

The following material is divided into three sections. The first is
concerned primarily with display rather than modelling though
some of these systems can modify a model, the second is concerned
with molecular modelling with reference to electron density and can
develop a model ab initio, and the third is concerned with modelling
with reference to other criteria.

Where software names are known to be acronyms constructed
from initial letters, or where the original authors have used capitals,
the names are capitalized here. Otherwise names are lower case
with an initial capital.

While it is recognised that many of the systems here described
are now of mainly historical interest, most have been retained for
the second edition, some have been updated and some new
paragraphs have been added.

3.3.3.1. Systems for the display and modification of retrieved
data

One of the earliest systems designed for information retrieval and
display was that described by Meyer (1970, 1971) which used
television raster technology and enabled the contents of the
Brookhaven Protein Data Bank (Meyer, 1974; Bernstein et al.,
1977) to be studied visually by remote users. It also enabled a rigid
two-ring molecule to be solved from packing considerations alone
(Hass et al., 1975; Willoughby et al., 1974). Frames for display
were written digitally on a disk and the display rate was
synchronized to the disk rotation. With the reduction in the cost
of core storage, contemporary systems use large frame buffer
memories thus avoiding synchronization problems and permitting
much richer detail than was possible in 1970. A majority of the
systems in this section use raster techniques which preclude real-
time rotation except for relatively simple drawings, though
GRAMPS is an exception (O’Donnell & Olson, 1981; Olson,
1982) (Section 3.3.3.1.4).

3.3.3.1.1. ORTEP

This program, the Oak Ridge Thermal Ellipsoid Program, due to
Johnson (1970, 1976) was developed originally for the preparation
of line drawings on paper though versions have since been
developed to suit raster devices with interactive capability.

The program draws molecules in correct perspective with each
atom represented by an ellipsoid which is the equi-probability
surface for the atomic centre, as determined by anisotropic
temperature factor refinement, the principal axes of which are
displayed. Bonds are represented by cylindrical rods connecting the
atoms which in the drawing are tapered by the perspective.

In line-drawing versions the problem of hidden-line suppression
is solved analytically, whereas the later versions for raster devices
draw the furthest elements of the picture first and either overwrite
these with nearer features of the scene if area painting is being done
or use the nearer features as erase templates if line drawings are
being made.

3.3.3.1.2. Feldmann’s system

R. J. Feldmann and co-workers (Feldmann, 1983) at the National
Institutes of Health, Bethesda, Maryland, USA, were among the first
to develop a suite of programs to display molecular structure using
colour raster-graphics techniques. Their system draws with
coloured shaded spheres, usually with one sphere to represent
each atom, but alternatively the spheres may represent larger
moieties like amino acids or whole proteins if lower-resolution
representations are required. These workers have made very
effective use of colour. Conventionally, oxygens have been
modelled in red, but this system allows charged oxygens to be red
and uncharged ones to be pink, with a similar treatment in blue for
charged and uncharged nitrogens. By such means they have been
able to give immediacy to the hydrophobic and electrostatic
properties of molecular surfaces, and have used these characteristics
effectively in studies of the binding possibilities of benzamidine
derivatives to trypsin (Feldmann et al., 1978).
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The algorithm developed by Porter (1978) for shading spheres to
be darkened near their peripheries also computes the proper
appearance of the line of intersection of two spheres wherever
interpenetration occurs, in contrast to some simpler systems which
draw a complete disc for whichever sphere is forward of the other.
Provided that all opaque spheres are drawn first, the system is also
capable of representing transparent spheres by darkening the colour
of the existing background inside, and especially near the edge of,
discs representing transparent foreground spheres.

Other systems that produce space-filling pictures of a similar
general character have been produced by Motherwell (1978), by
Sundaram & Radhakrishnan (1979) and by Lesk (next section).

3.3.3.1.3. Lesk & Hardman software

The complexity of macromolecules is a formidable obstacle to
perceiving the basic features of their construction and the stylized
drawings produced by this software following the artistry of
Richardson (1977, 1981, 1985) enables the internal organization
of such molecules to be appreciated readily. The software is capable
of mixing several styles of representation, among them the
Richardson style of cylinders for �-helices, arrows for �-strands
and ribbons for less-organized regions, or the creased-ribbon
technique for the whole chain, or a ball-and-stick representation
of atoms and bonds, or space-filling spheres. All these styles are
available simultaneously in a single picture with depth cueing,
colour and shading, and hidden-feature suppression as appropriate.
It is also able to show a stylized drawing of a complete molecule
together with a magnified part of it in a more detailed style. See
Lesk & Hardman (1982, 1985).

3.3.3.1.4. GRAMPS

This system, due to O’Donnell & Olson (O’Donnell & Olson,
1981; Olson, 1982) provides a high-level graphics language and its
associated interpretive software. It provides a general means of
defining objects, drawable by line drawings, in such a way that these
may be logically connected in groups or trees using a simple
command language. Such a system may, for example, define a
subunit protein of an icosahedral virus and define icosahedral
symmetry, in such a way that modification of one subunit is
expressed simultaneously in all subunits whilst preserving the
symmetry, and simultaneously allowing the entire virus particle to
be rotated. Such logical and functional relationships are established
by the user through the medium of the GRAMPS language at run
time, and a great diversity of such relationships may be created. The
system is thus not limited to any particular type of structure, such as
linear polymers, and has proved extremely effective as a means of
providing animation for the production of cine film depicting viral
and other structures. GRAMPS runs on all Silicon Graphics
workstations under IRIX 4.0 or above.

3.3.3.1.5. Takenaka & Sasada’s system

Takenaka & Sasada (1980) have described a system for the
manipulation and display of molecular structures, including packing
environments in the crystal, using a minicomputer loosely coupled
to a mainframe. Their system is also capable of model building by
the addition of groups of one or more atoms with a facility for
monitoring interaction distances while doing so.

3.3.3.1.6. MIDAS

This system, due to Langridge and co-workers (Gallo et al.,
1983; Ferrin et al., 1984) is primarily concerned with the display of
existing structures rather than with the establishment of new ones,
but it may modify such structures by bond rotations under manual
control. It is of particular value in the study of molecular

interactions since two or more molecules may be manipulated
simultaneously and independently. Visual docking of molecules is
greatly facilitated by the display of van der Waals surfaces, which
may be computed in real time so that the turning of a bond in the
underlying structure does not tear the surface (Bash et al., 1983).

3.3.3.1.7. Insight

This system, originally due to Dayringer et al. (1986), has a
functionality similar to MIDAS. It has been replaced by Insight II
(current version 2.3.5). It appears to be well suited to the study of
intermolecular relationships in docking and in structural compar-
isons, and it is able to make modifications to structures. Objects for
display may be molecular or non-molecular, the former having an
atomic substructure and the latter consisting of a vector list which
may not be subdivided into referrable components. Map fitting with
the current version has been reported.

3.3.3.1.8. PLUTO

PLUTO was developed by Motherwell (1978) at the Cambridge
Crystallographic Data Centre (CCDC) for the display of molecular
structures and crystal-packing diagrams, including an option for
space-filling model style with shadowing. The emphasis was on a
free format command and data structure, and the ability to produce
ball-and-spoke drawings with line shadowing suitable for reproduc-
tion in journal publication. Many variant versions have been
produced, with essentially the 1978 functionality, its popularity
deriving from its ease of use and the provision of default options for
establishing connectivity using standard bonding radii. It was
distributed as part of the CCDC software associated with the
Cambridge Structural Database, with an interface for reading
entries from the database.

In 1993 Motherwell and others at the CCDC added an interactive
menu and introduced colour and PostScript output. New features
were introduced to allow interactive examination of intermolecular
contacts, particularly hydrogen-bonded networks, and sections
through packing diagrams (Cambridge Structural Database, 1994).

3.3.3.1.9. MDKINO

This system, due to Swanson et al. (1989), provides for the
extraction and visualization of selected regions from molecular-
dynamics simulations. It permits stereo viewing, interactive
geometric interrogation and both forwards and backwards display
of motion.

3.3.3.2. Molecular-modelling systems based on electron
density

Systems described in this section require real-time rotation of
complicated transparent scenes and all used vector-graphics
technology in their original implementations for that reason, though
many are now available for raster machines. In every case the
graphics are the means of communication between the user and
software possessing high functionality, capable of building a
representation of a molecule ab initio and to alter it, change its
shape and position it optimally in relation to an electron-density
map, with due attention being paid to stereochemical considera-
tions, by one or more of several approaches.

3.3.3.2.1. CHEMGRAF

Katz & Levinthal (1972) have developed a powerful modelling
and display system for macromolecules known as CHEMGRAF.
This system permits the definition of many atom types which
includes bonding specifications, so that, for example, four types of
carbon atom are included in the basic list and others may be added.
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A molecular fragment with an unsatisfied valency (by which it
might later be attached to another such group) would have that
feature represented by a ‘vanishing virtual’ atom which removes the
need for any organizational distinction between such fragments and
complete molecules. Fragments, such as amino-acid residues, may
be assembled from atoms, and molecules may be assembled from
atoms and/or from such fragments invoked by name, by the
superposition and elimination of the relevant vanishing virtuals.
The assembly process includes the development of a connectivity
tree for the molecule and provision is made for the ‘turning’ or
reconstruction of such trees if the combination of such fragments
redefines the root atom of one or more of the fragments. The system
also provides for ring closure. Model building initially uses fixed
bond lengths and angles, varying only the dihedral angles in single
bonds, but has a library of preformed rings which could not
otherwise be modelled on the simple basis. The results of such
modelling may then be subjected to an energy-minimization routine
using a steepest-descent method in the space of the dihedral angles
and referring to the Lennard–Jones potential for non-bonded atom
pairs. Atoms are first sorted into contiguous cubes so that all
neighbours of any atom may be found by searching not more than
27 cubes.

The system is also capable of modelling by reference to electron
density either by the translation and rotation of molecular fragments
and the rotation of rotatable bonds within them or by the automatic
linking of peaks in an electron-density map which are separated by
less than, say, 1.8 Å, which is an important aid to interpretation
when the resolution is sufficiently high.

3.3.3.2.2. GRIP

This system, developed by Professor F. P. Brooks, Dr W. V.
Wright and associates at the University of North Carolina, Chapel
Hill, NC, USA, was designed for biopolymers and was the first to
enable a protein electron-density map to be interpreted ab initio
without the aid of mechanical models (Tsernoglou et al., 1977).
Girling et al. (1980) give a more recent example of its use.

In its 1975 version GRIP is a three-machine system. Centrally
there is a minicomputer which receives inputs from the user and
controls a vector display with high-speed matrix-multiplication
capability. The third machine is a mainframe computer with high-
speed communication with the minicomputer.

The system develops a polymer chain from a library of
monomers and manipulates it through bond rotations or free
rotations of fragments explicitly specified by the user, with the
aid of dials which may be coupled to bonds for the purpose. Bond
rotations in the main chain either rotate part of the molecule relative
to the remainder, which may have undesirable long-range effects, or
the scope of the rotation is artificially limited with consequential
discontinuities arising in the chain. Such discontinuities are
removed or alleviated by the mainframe computer using the method
of Hermans & McQueen (1974), which treats atomic position
vectors, rather than bond rotations, as independent variables.

The system made pioneering use of a two-axis joystick to control
orientation and a three-translation joystick to control position.

3.3.3.2.3. Barry, Denson & North’s systems

These systems (Barry & North, 1971; North et al., 1981; North,
1982) are examples of pioneering work done with minicomputers
before purpose-built graphics installations became widespread;
examples of their use are given by Ford et al. (1974), Potterton et al.
(1983) and Dodson et al. (1982). They have the ability to develop a
polymer chain in sections of several residues, each of which may
subsequently be adjusted to remove any misfit errors where the
sections overlap. Manipulations are by rotation and translation of
sections and by bond rotations within sections. These movements

are directly controlled by the user, who may simultaneously observe
on the screen the agreement with electron density, or calculated
estimates of potential or interaction energy, or a volume integral of
the product of observed and model densities, or predicted shifts of
proton magnetic resonance spectra. Thus models which are optimal
by various criteria may be constructed, but there is no optimizer
directly controlling the rotational adjustments which are determined
by the user.

One of the earliest applications of them (Beddell, 1970) was in
the fitting of substrate molecules to the active site of lysozyme using
difference electron densities; however, the systems also permitted
the enzyme–substrate interaction to be studied simultaneously and
to be taken into account in adjusting the model.

3.3.3.2.4. MMS-X

The Molecular Modelling System-X (MMS-X) is a system of
purpose-built hardware developed by Barry, Marshall and others at
Washington University, St Louis. Associated with it are several sets
of software. The St Louis software consists of a suite of programs
rather than one large one and provides for the construction of a
polymer chain in helical segments which may be adjusted bodily to
fit the electron density, and internally also if the map requires this
too. Non-helical segments are built helically initially and unwound
by user-controlled rotations in single bonds. The fitting is done to
visual criteria. An example of the use of this system is given by
Lederer et al. (1981).

Miller et al. (1981) have described an alternative software system
for the same equipment. Functions invoked from a keyboard allow
dials to be coupled to dihedral angles in the structure. Their system
communicates with a mainframe computer which can deliver small
blocks of electron density to be contoured and stored locally by the
graphics system; this provides freedom of choice of contour level at
run time. An example of the use of this system is given by Abad-
Zapatero et al. (1980).

3.3.3.2.5. Texas A&M University system

This system (Morimoto & Meyer, 1976), a development of
Meyer’s earlier system (Section 3.3.3.1), uses vector-graphics
technology and a minicomputer and is free of the timing restrictions
of the earlier system. The system allows control dials to be
dynamically coupled by software to rotations or translations of parts
of the structure, thus permitting the re-shaping or re-positioning of
the model to suit an electron-density map which may be contoured
and managed by the minicomputer host. The system may be used to
impose idealized geometry, such as planar peptides in proteins, or it
may work with non-idealized coordinates.

The system was successfully applied to the structures of
rubredoxin and the extracellular nuclease of Staphylococcus aureus
(Collins et al., 1975) and to binding studies of sulfonamides to
carbonic anhydrase (Vedani & Meyer, 1984). In addition, two of the
first proteins to be constructed without the aid of a ‘Richards’ Box’
were modelled on this system: monoclinic lysozyme in 1976 (Hogle
et al., 1981) and arabinose binding protein in 1978 (Gilliland &
Quiocho, 1981).

3.3.3.2.6. Bilder

This system (Diamond, 1980a,c, 1982b) runs on a minicomputer
independent of any mainframe. It builds a polymer chain from a
library of residues and adapts it by internal rotations and overall
positioning in much the same way as previous systems described in
this section. Like them, it can provide user-controlled bond
rotations, but its distinctive feature is that it has an optimizer
within the minicomputer which will determine optimal combina-
tions of bond rotations needed to meet the user’s declared
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objectives. Such objectives are normally target positions for atoms
set by the user by visual reference to the density, using the method
of Section 3.3.1.3.9, but they may include target values for angles.
These latter may either declare a required shape that is to take
precedence over positional requirements, which are then achieved
as closely as the declared shape allows, or they may be in least-
squares competition with the positional requests. The optimizer also
recognizes the constraints imposed by chain continuity and enables
an internal section of the main chain to be modified without
breaking its connection to the rest of the molecule. Similar
techniques also allow ring systems to adopt various conformations,
by bond rotation, without breaking the ring, simultaneously
permitting the ring to have target positions. The optimizer is
unperturbed by under-determined situations, providing a minimum-
disturbance result in such cases. All these properties of the
optimizer are generated without recourse to any ‘special cases’ by
a generalization of the subspace section technique which was used
to maintain chain continuity in a ‘real-space-refinement’ program
(Diamond, 1971). This is based entirely on the rank of the normal
matrix that arises during optimization, which may serve to satisfy a
constraint such as chain continuity or ring closure and simulta-
neously to establish what degrees of freedom remain to be
controlled by other criteria. In Bilder this is achieved without
establishing eigenvalues or eigenvectors. The method is described
in outline in Section 3.3.2.2.1 and in detail by Diamond (1980a,b).

The angular variables used normally comprise all single bonds
but may include others, such as the peptide bond with or without a
target of 180°. Thus this bond may be completely rigid, elastic, or
completely free. Any interbond angles may also be parameterized
but at some cost in storage. The normal mode of working is to
develop a single chain for the entire length of the molecule, but if
cumulative error makes fitting difficult a fresh chain may be started
at any stage. Bilder may itself reconnect such chains at a later stage.

Construction and manipulation operates on a few residues at a
time within the context of a polymer chain, but any or all of the rest
of the molecule, or other molecules, may be displayed simulta-
neously.

Contouring is done in advance to produce a directoried file of
contoured bricks of space, each brick containing up to 20
independently switchable elements which need not all be from the
same map. Choice of contour level and displayed volume is thus
instantaneous within the choices prepared.

The system is menu driven from a tablet, only file assignments
and the like requiring the keyboard, and it offers dynamic parallax
as an aid to 3D perception (Diamond et al., 1982). Bloomer et al.
(1978), Phillips (1980), and Evans et al. (1981) give examples of its
use.

3.3.3.2.7. Frodo

This system, due to Jones (Jones, 1978, 1982, 1985; Jones &
Liljas, 1984), in its original implementation was a three-machine
system comprising graphics display, minicomputer and mainframe,
though more recent implementations combine the last two functions
in a ‘midi’. Its capabilities are similar to those of Bilder described
above, but its approach to stereochemical questions is very
different. Where Bilder does not allow an atom to be moved out
of context (unless it comprises a ‘chain’ of one atom) Frodo will
permit an atom or group belonging to a chain to be moved
independently of the other members of the chain and then offers
regularization procedures based on the method of Hermans &
McQueen (1974) to regain good stereochemistry. During this
regularization, selected atoms may be fixed, remaining atoms then
adjusting to these. A peptide, for example, may be inverted by
moving the carbonyl oxygen across the peptide and fixing it, relying
on the remaining atoms to rearrange themselves. (Bilder would do

the equivalent operation by cutting the chain nearby, turning the
peptide explicitly, reconnecting the chain and optimizing to regain
chain continuity.) The Frodo approach is easy to use especially
when large displacements of an existing structure are called for, but
requires that ideal values be specified for all bond lengths, angles
and fixed dihedrals since the system may need to regain such values
in a distorted situation. Bilder, in contrast, never changes such
features and so need not know their ideal values.

Frodo may work either with consecutive residues of a polymer
chain, useful for initial building, or with a volume centred on a
chosen position, which is ideal for adjusting interacting side chains
which are close in space but remote in sequence.

In recent implementations Frodo can handle maps both in density
grid form and in contour form and permits on-line contouring. It has
also been developed (Jones & Liljas, 1984) to allow the automatic
adjustment of the position and orientation of small rigid groupings
by direct reference to electron density in the manner of Diamond
(1971) but without the maintenance of chain continuity, which is
subsequently reintroduced by regularization.

Horjales and Cambillau (Cambillau & Horjales, 1987; Cambillau
et al., 1984) have also provided a development of Frodo which
allows the optimization of the interaction of a ligand and a substrate
with both molecules being treated as flexible.

3.3.3.2.8. Guide

Brandenburg et al. (1981) have described a system which enables
representations of macromolecules to be modified with reference to
electron density. Such modifications include rotation about single
bonds under manual control, or the movement with six degrees of
freedom, also under manual control, of any part or parts of the
molecule relative to the remainder. The latter operation may
necessitate subsequent regularization of the structure if the moved
and unmoved parts are chemically connected, and this is done as a
separate operation on a different machine. The system also has the
capability of displaying several molecules and of manually
superimposing these on each other for comparison purposes.

3.3.3.2.9. HYDRA

This program, due to Hubbard (1985) (and, more recently, to
Molecular Simulations) has several functional parts, referred to as
‘heads’, which all use the same data structure. The addition of
further heads may be accomplished, knowing the data structure,
without the need to know anything of the internal workings of
existing heads.

The program contains extensive features for the display, analysis
and modelling of molecular structure with particular emphasis on
proteins. Display options include dotted surfaces, molecular
skeletons, protein cartoons and a variety of van der Waals, ball-
and-stick, and other raster-graphics display techniques such as ray
tracing and shaded molecular surfaces. Protein analysis features
include the analysis of hydrogen bonding, and of secondary and
domain structure, as well as computational assessment of deviations
from accepted protein structural characteristics such as abnormal
main-chain or side-chain conformations and solvent exposure of
hydrophobic amino acids. A full set of protein modelling facilities
are provided including homology modelling and the ‘docking’ of
substrate molecules. The program contains extensive tools for
interactive modelling of structures from NMR or X-ray crystal-
lographic data, and provides interfaces to molecular-mechanics and
dynamics calculations. There are also database searching facilities
to analyse and compare features of protein structure, and it is well
suited to the making of cine films.
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3.3.3.2.10. O

Jones et al. (1991) have developed a modelling system for
proteins with a radically different approach to any of the foregoing,
in that they begin by reducing the available electron-density map to
a skeletal representation (Greer, 1974; Williams, 1982) which
consists of a line running through the density close to its maximal
values, this being the basis of a chain trace. Provisional �-carbon
positions are also estimated at this stage. A database of known
structures is then scanned for pentapeptides which may be
superimposed on five successive positions in the chain trace, the
best fit so found being taken to provide coordinates for the three
central residues of the developing model. The process advances by
three residues at each step, the first and last residues of the
pentapeptide being used only to ensure that the central residues are
built in a manner compatible with what precedes and follows.

The process ensures that conformations so built are free from
improbable conformations, and the whole forms an adequate
starting structure for molecular-dynamics procedures, even though
some imperfect geometry is to be expected where each tripeptide
joins the next.

3.3.3.3. Molecular-modelling systems based on other criteria

Systems described within this section mostly have some form of
energy minimization as their objective but some are purely
geometrical. The optimization of molecules through empirical
force fields has been reviewed by Allinger (1976), Burkert &
Allinger (1982) and Boyd & Lipkowitz (1982). Some of these
systems are in the academic domain, others are commercial. Most
have capabilities exceeding the features referred to here and, of
necessity, the list cannot be complete. No attempt at comparative
evaluations is attempted or implied.

3.3.3.3.1. Molbuild, Rings, PRXBLD and MM2/MMP2

Liljefors (1983) has described a system for constructing
representations of organic molecules. The system develops the
molecule with plausible geometry and satisfied valencies at all
stages of the development with explicit recognition of lone pairs
and the various possible hybridization states. Growth is generally by
substitution in which a substituent and the atom it is to replace are
both nominated from the screen. The bond which is reconstructed in
a substitution is generally a single bond. Double and triple bonds are
introduced by the substitution of moieties containing them. Atom
types may be changed after incorporation in the growing molecule,
so that although the menu of substituents includes —CH3 but not
—NH2 the latter may be obtained by incorporating —CH3, then
changing C to N and one of the hydrogens to a lone pair. Facilities
are also provided for cyclization and acyclization.

van der Lieth et al. (1984) have described an extension to this
that is specialized to the construction of fused-ring systems. It
permits the joining of rings by fusion of a bond, in which two
adjacent atoms in one ring are superposed on two in another. It also
permits the construction of spiro links in which one atom is
common to two rings, or the construction of bridges, or the
polymerization of ring systems to form, for example, oligosacchar-
ides. Again the satisfaction of valencies is maintained during
building and the geometry of the result is governed by superposition
of relevant atoms in the moieties involved.

PRXBLD is a molecular model-building program which accepts
two-dimensional molecular drawings in a manner similar to Script
(Section 3.3.3.3.2) and constructs approximate three-dimensional
coordinates from these. It is the model-building component of SECS
(Simulation and Evaluation of Chemical Synthesis) (Wipke et al.,
1977; Wipke & Dyott, 1974; Wipke, 1974). See also Anderson
(1984).

All three of these programs produce output which is acceptable
as input to MM2(82)/MMP2 which are developments of Allinger’s
geometrical optimization based on molecular mechanics (Allinger,
1976).

3.3.3.3.2. Script

This system, described by Cohen et al. (1981), is specialized for
fused-ring systems, especially steroids, but is not limited to these
classes. The system allows the user to draw on the screen (with a
light pen or equivalent) a two-dimensional representation of a
molecule using single lines for single bonds, double lines for double
bonds, and wedges to indicate out-of-plane substituents. The
software can then enumerate the possible distinct conformers,
each of which is expected to be near an energy minimum on the
conformational potential surface. Each conformer may then be
annealed to reach an energy minimum using an energy estimate
based on bond lengths, bond angles, torsion angles and van der
Waals, electrostatic and hydrogen-bonding terms. An example is
given of the identification of an unusual conformer as the most
stable one from twelve possibilities for a four-ring system.

The program is a development of similar work by Cohen (1971)
in which the molecule was defined in terms of a tree structure and an
optimizer based on search techniques rather than gradient vectors
was used. The method included van der Waals terms and hence
estimated energy differences between stereoisomers in condensed
ring systems arising from steric hindrance.

3.3.3.3.3. CHARMM

This system, due to Brooks et al. (1983), is primarily concerned
with molecular dynamics but it includes the capability of model-
building proteins and nucleic acids from sequence information and
values of internal coordinates (bond lengths, bond angles and
dihedral angles). The resulting structure (or a given structure) may
then be optimized by minimizing an empirical energy function
which may include electrostatic and hydrogen-bonding terms as
well as the usual van der Waals energy and a Hookean treatment of
the covalent skeleton. Hydrogen atoms need not be handled
explicitly, groups such as —CH2— being treated as single pseudo
atoms, and this may be advisable for large structures. For small or
medium proteins hydrogens may be treated explicitly and their
initial positions may be determined by CHARMM if they are not
otherwise known.

3.3.3.3.4. Commercial systems

A number of very powerful molecular-modelling systems are
now available commercially and we mention a few of these here.
Typically, each consists of a suite of programs sharing a common
data structure so that the components of a system may be acquired
selectively.

The Chem-X system, from Chemical Design Ltd, enables models
to be developed from sketch-pad input, provides for their
geometrical optimization and interfaces the result to Gaussian80
for quantum-mechanical calculations.

MACCS, from Molecular Design Ltd, and related software
(Allinger, 1976; Wipke et al., 1977; Potenzone et al., 1977) has
similar features and also has extensive database-maintenance
facilities including data on chemical reactions.

Sybyl, from Tripos Associates (van Opdenbosch et al., 1985),
also builds from sketches with a standard fragment library, and
provides interfaces to quantum-mechanical routines, to various
databases and to MACCS.

Insight II (Section 3.3.3.1.7) is available from Biosym and
GRAMPS (Section 3.3.3.1.4) is available from T. J. O’Donnell
Associates.
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