
3.3.1.2.3. Orthogonalization of impure rotations

There are several ways of deriving a strictly orthogonal matrix
from a given approximately orthogonal matrix, among them the
following.

(i) The Gram–Schmidt process. This is probably the simplest and
the easiest to compute. If the given matrix consists of three column
vectors v1, v2 and v3 (later referred to as primers) which are to be
replaced by three column vectors u1, u2 and u3 then the process is

u1 � v1��v1�
u2 � v2 � �u1 � v2�u1

u2 � u2��u2�
u3 � v3 � �u1 � v3�u1 � �u2 � v3�u2

u3 � u3��u3��
As successive vectors are established, each vector v has

subtracted from it its components in the directions of established
vectors, and the remainder is normalized. The method will fail at the
normalization step if the vectors v are not linearly independent.
Otherwise, the process may be extended to any number of
dimensions.

The weakness of the method is that, though u1 differs from v1
only in scale, uN may differ grossly from vN as the various columns
are not treated equivalently.

(ii) A preferable method which treats all vectors equivalently is
to iteratively replace the matrix M by 1

2�M �MT�1�.
Defining the residual matrix E as

E � MMT � I ,

then on each iteration E is replaced by

E2�MMT��1�4

and convergence necessarily ensues.
(iii) A third method resolves M into its symmetric and

antisymmetric parts

S � 1
2�M �MT�, A � 1

2�M �MT �, M � S � A

and constructs an orthogonal matrix for which only S is altered. A
determines l, m, n and � as shown in Section 3.3.1.2.1, and from
these a new S may be constructed.

(iv) A fourth method is to treat the general matrix M as a
combination of pure strain and pure rotation. Setting

M � RT

with R orthogonal and T symmetrical gives

T � �MT M�1�2, R � M�MT M��1�2�

The rotation so found is the one which exactly superposes those
three mutually perpendicular directions which remain mutually
perpendicular under the transformation M.

T � I is then the strain tensor of an unrotated body.
Writing M � TR, T � �MMT �1�2, R � �MMT��1�2M may also

be useful, in which T � I is the strain tensor of a rotated body. See
also Section 3.3.1.2.2 (iv).

3.3.1.2.4. Eigenvalues and eigenvectors of orthogonal
matrices

If R is the orthogonal matrix given in Section 3.3.1.2.1 in terms
of the direction cosines l, m and n of the axis of rotation, then it is
clear that (l, m, n) is an eigenvector of R with eigenvalue unity
because

R
l
m
n

�
�

�
� �

l
m
n

�
�

�
��

Consideration of the determinant �R� �I� � 0 shows that the
sum of the three eigenvalues is 1� 2 cos � and that their product is
unity. Hence the three eigenvalues are 1, ei� and e�i�. Since R is
real, its product with any real vector is also real, yet its product with
an eigenvector must, in general, be complex. Thus the eigenvectors
must themselves be complex.

The remaining two eigenvectors u may be found using the results
of Section 3.3.1.2.1 (q.v.) according to

Ru � u� 2
1� t2

��r	 u� � 
r	 �r	 u��� � uei� � u
1 it
1� it

,

which is solved by any vector of the form

u � l	 v� il 	 �l	 v�
for any real vector v, where l is the normalized axis vector, lt � r,
�l� � 1, t � tan���2�. Eigenvectors for the two eigenvalues may
have unrelated v vectors though the sign choices are coupled. If the
vector v is rotated about l through an angle � the corresponding
vector u is multiplied by e�i� and remains an eigenvector. Using
superscript signs to denote the sign of � in the eigenvalue with
which each vector is associated, the matrix

U � �l, u�, u��
has the properties that

RU � U
1 0 0
0 ei� 0
0 0 e�i�

�
�

�
�

and

U�T U �
1 0 0
0 2�l	 v��2 0
0 0 2�l	 v��2

�
�

�
�

which places restrictions on v if this is to be the identity. Note that
the 23 element vanishes even in the absence of any relationship
between v� and v�.

A convenient form for U, symmetrical in the elements of l, is
obtained by setting v� � v� � 
111� and is

U �
l ��m� n� � i
l�l � m� n� � 1���d ��m� n� � i
l�l � m� n� � 1���d
m ��n� l� � i
m�l � m� n� � 1���d ��n� l� � i
m�l � m� n� � 1���d
n ��l � m� � i
n�l � m� n� � 1���d ��l �m� � i
n�l � m� n� � 1���d

�
�

�
�

in which the normalizing denominator is given by

d � 2
�����������������������������������
1� lm� mn� nl

�
�

3.3.1.3. Projection transformations and spaces

In the following section we address the question of the
relationship between the coordinates of a molecular model and
the corresponding coordinates on the screen of the graphics device.
A good introduction to this topic is given by Newman & Sproull
(1973), and Foley et al. (1990) give a comprehensive account of the
field, including recent developments, especially those arising from
the development of raster-graphics technologies.

3.3.1.3.1. Definitions

Typically, the coordinates, X, of points in an object to be drawn
are held in homogeneous Cartesian form as described in Section
3.3.1.1.2. Such coordinates are said to be in data space or world
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coordinates and this coordinate system is generally a constant
aspect of the problem.

In order to view these data in convenient ways such coordinates
may be subjected to a 4	 4 viewing transformation T, affecting
orientation, scale etc., the resulting coordinates TX being then in
display space. Here, and throughout what follows, we treat position
vectors as columns with transformation matrices as factors on the
left, though some writers do the reverse.

In general, only some portion of display space which lies inside a
certain frustum of a pyramid is required to fall within the picture.
The pyramid may be thought of as having the observer’s eye at its
vertex, with a rectangular base corresponding to the picture area.
This volume is called a window. A transformation, U, which takes
display-space coordinates as input and generates vectors (X, Y, Z,
W) for which X�W and Y�W � 1 for points on the left, right, top
and bottom boundaries of the window and for which Z�W takes
particular values on the front and back planes of the window, is said
to be a windowing transformation. In machines for which Z�W
controls intensity depth cueing, the range of Z�W corresponding to
the window is likely to be 0 to 1 rather than �1 to 1. Coordinates
obtained by multiplying display-space coordinates by U are termed
picture-space coordinates. Mathematically, U is a 4	 4 matrix like
any other, but functionally it is special. Declaring a transformation
to be a windowing transformation implies that only resulting points
having �X �, �Y � � W and positive Z � W are to be plotted.
Machines with clipping hardware to truncate lines which run out
of the picture perform clipping on the output from the windowing
transformation.

Finally, the picture has to be drawn in some rectangular portion
of the screen which is allocated for the purpose. Such an area is
termed a viewport and is defined in terms of screen coordinates
which are defined absolutely for the hardware in question as n for
full-screen deflection, where n is declared by the manufacturer.
Screen coordinates are obtained from picture coordinates with a
viewport transformation, V.*

To summarize, screen coordinates, S, are given by

3.3.1.3.2. Translation

The transformation

NI V

0T N

� �
X

W

� �
� XN � VW

NW

� �
� X� VW�N

W

� �

� X�W � V�N

1

� �

evidently corresponds to the addition of the vector VW�N to the
components of X or of V�N to the components of X�W . (I is the
identity.) Displacements may thus be affected by expressing the
required displacement vector in homogeneous coordinates with any
suitable choice of N (commonly, N � W ), with V scaled to
correspond to this choice, and loading the 4	 4 transformation
matrix as indicated above.

3.3.1.3.3. Rotation

Rotation about the origin is achieved by

NR 0
0T N

� �
X
W

� �
� NRX

NW

� �
� RX

W

� �
,

in which R is an orthogonal 3	 3 matrix. R necessarily has
elements not exceeding one in modulus. For machines using integer
arithmetic, therefore, N would be chosen large enough (usually half
the largest possible integer) for the product NR to be well
represented in the available word length. Characteristically, N
affects resolution but not scale.

3.3.1.3.4. Scale

The transformation

SNI 0
0T N

� �
X
W

� �
� SNX

NW

� �
� SX

W

� �

scales the vector (X, W) by the factor S. For integer working and
�S� � 1, N should be set to the largest representable integer. For
�S� � 1 the product SN should be the largest representable integer, N
being reduced accordingly.

3.3.1.3.5. Windowing and perspective

It is necessary at this point to relate the discussion to the axial
system inherent in the graphics device employed. One common
system adopts X horizontal and to the right when viewing the
screen, Y vertically upwards in the plane of the screen, and Z normal
to X and Y with +Z into the screen. This is, unfortunately, a left-
handed system in that �X	 Y� � Z is negative. Since it is usual in
crystallographic work to use right-handed axial systems it is
necessary to incorporate a matrix of the form

W 0 0 0
0 W 0 0
0 0 �W 0
0 0 0 W

�
���

�
		�

either as the left-most factor in the matrix T or as the right-most
factor in the windowing transformation U (see Section 3.3.1.3.1).
The latter choice is to be preferred and is adopted here. The former
choice leads to complications if transformations in display space
will be required. Display-space coordinates are necessarily referred
to this axial system.

Let L, R, T, B, N and F be the left, right, top, bottom, near and far
boundaries of the windowed volume �L � R, T � B, N � F�, S be
the Z coordinate of the screen, and C, D and E be the coordinates of
the observer’s eye position, all ten of these parameters being
referred to the origin of display space as origin, which may be
anywhere in relation to the hardware. L, R, T and B are to be
evaluated in the screen plane. All ten parameters may be referred to
their own fourth coordinate, V, meaning that the point (X, Y, Z, W) in
display space will be on the left boundary of the picture if X�W �
L�V when Z�W � S�V . V may be freely chosen so that all eleven
quantities and all elements of U suit the word length of the machine.
These relationships are illustrated in Fig. 3.3.1.1.

Since

�X , Y , Z, W � � XV
W

,
YV
W

,
ZV
W

, V

� �
,

XV�W is a display-space coordinate on the same scale as the
window parameters. This must be plotted on the screen at an X
coordinate (on the scale of the window parameters) which is the
weighted mean of XV�W and C, the weights being �S � E� and

� In recent years it has become increasingly common, especially in two-
dimensional work, to apply the term ‘window’ to what is here called a viewport,
but in this chapter we use these terms in the manner described in the text.
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�ZV�W � S�, respectively. This provides perspective because the
weighted mean is at the point where the straight line from
�X , Y , Z, W � to the eye intersects the screen. This then has to be
mapped into the L-to-R interval, so that picture-space coordinates
�x, y, z, w� are given by

x

y

z

w

�
����������

�
									�

�

2�S � E�V
�R � L� 0

�2C � R � L�V
�R � L�

�R � L�E � 2SC
�R � L�

0
2�S � E�V
�T � B�

�2D� T � B�V
�T � B�

�T � B�E � 2SD
�T � B�

0 0
�F � E�V
�F � N�

�N�F � E�
�F � N�

0 0 V �E

�
����������

�
									�

X

Y

Z

W

�
����������

�
									�

which provides for �x�w� and �y�w� to be unity on the picture
boundaries, which is usually a requirement of the clipping hard-
ware, and for 0 � z�w � 1, zero being for the near-plane boundary.
Even though z�w is not linear on Z�W , straight lines and planes in
display space transform to straight lines and planes in picture space,

the non-linearity affecting only distances. Thus vector-drawing
machines are not disadvantaged by the introduction of perspective.

Note that the dimensionality of X�W must equal that of S�V and
that this may be regarded as length or as a pure number, but that in
either case x�w is dimensionless, consistent with the stipulation that
the picture boundaries be defined by the pure number 1.

The above matrix is U and is suited to left-handed hardware
systems. Note that only the last column of U (the translational part)
is sensitive to the location of the origin of display space and that if
the eye is on the normal to the picture centre then C � 1

2 �R � L�,
D � 1

2�T � B� and simplifications result. If C, D and E can be
continuously monitored then dynamic parallax as well as
perspective may be obtained (Diamond et al., 1982).

If data space is referred to right-handed axes, the viewing
transformation T involves only proper rotations and the hardware
uses a left-handed axial system then elements in the third column of
U should be negated, as explained in the opening paragraph.

To provide for orthographic projection, multiply every element
of U by �K�E and then let E � ��, choosing some positive K to
suit the word length of the machine [see Section 3.3.1.1.2 (iii)]. The

Fig. 3.3.1.1. The relationship between display-space coordinates (X, Y, Z, W) and picture-space coordinates (x, y, z, w) derived from them by the window
transformation, U. (a) Display space (in X, Z projection) showing a square object P, Q, R, S for display viewed from the position (C, D, E, V). The bold
trapezium is the window (volume) and the bold line is the viewport portion of the screen. The points P, Q, R and S must be plotted at p, q, r and s to give
the correct impression of the object. (b) Picture space (in x, z projection). The window is mapped to a rectangle and all sight lines are parallel to the z
axis, but the object P, Q, R, S is no longer square. The distribution of p, q, r and s is identical in the two cases. Note that z�w values are not linear on
Z�W , and that the origin of picture space arises at the midpoint of the near clipping plane, regardless of the location of the origin of display space. The
figure is accurately to scale for coincident viewport positions. The words ‘Left clipping plane’, if part of the scene in display space, would currently be
obscured, but would come into view if the eye moved to the right, increasing C, as the left clipping plane would pivot about the point L�V in the screen
plane.

369

3.3. MOLECULAR MODELLING AND GRAPHICS



result is

U � �

2KV
�R � L� 0 0

�K�R � L�
�R � L�

0
2KV

�T � B� 0
�K�T � B�
�T � B�

0 0
KV

�F � N�
�KN
�F � N�

0 0 0 K

�
����������

�
									�

,

which is the orthographic window.
It may be convenient in some applications to separate the

functions of windowing and the application of perspective, and to
write

U � U �P,

where U and U� are as above and P is a perspective transformation
given by

P � �U ���1U �

S � E 0 C �SC�V

0 S � E D �SD�V

0 0 F � E � N �NF�V

0 0 V �E

�
����

�
			�,

which involves F and N but not R, L, T or B. In this form the action
of P may be thought of as compressing distant parts of display space
prior to an orthographic projection by U� into picture space.

Other factorizations of U are possible, for example

U � U ��P�

with

U �� �

2KV
R � L

0 0
�K�R � L�
�R � L�

0
2KV

T � B
0

�K�T � B�
�T � B�

0 0
KV�N � E��F � E�

E2�F � N�
KN�F � E�
E�F � N�

0 0 0 K

�
������������

�
											�

P� �

S � E 0 C �SC�V

0 S � E D �SD�V

0 0 �E 0

0 0 V �E

�
������

�
					�

,

which renders P� independent of all six boundary planes, but U�� is
no longer independent of E. It is not possible to factorize U so that
the left factor is a function only of the boundary planes and the right
factor a function only of eye and screen positions.

Note that as E � ��, U �� � U �, P and P� � �IE � I .

3.3.1.3.6. Stereoviews

Assuming that left- and right-eye views are to be presented
through the same viewport (next section) or that their viewports are
to be superimposed by an external optical system, e.g. Ortony
mirrors, then stereopairs are obtained by using appropriate eye
coordinates in the U matrix of the previous section. However, U
may be factorized according to

U � U ���S

in which U��� is the matrix U obtained by setting �C, D, E, V � to
correspond to the point midway between the viewer’s eyes and

S �

1 0 c��S � E� �cS��S � E�V
0 1 0 0

0 0 1 0

0 0 0 1

�
������

�
					�

�

V 0 cV��S � E� �cS��S � E�
0 V 0 0

0 0 V 0

0 0 0 V

�
������

�
					�

in which (c, 0, 0, V) is the position of the right eye relative to the
mean eye position, and the left-eye view is obtained by negating c.

Stereo is often approximated by introducing a rotation about the
Y axis of  sin�1
c��S � E�� to the views or sin�1
2c��S � E�� to
one of them. The first corresponds to

S �

�������������
1� �2

�
0 � 0

0 1 0 0

�� 0
�������������
1� �2

�
0

0 0 0 1

�
����

�
			�

with � � c��S � E�. The main difference is in the resulting Z value,
which only affects depth cueing and z clipping. The X translation
which arises if S �� 0 is also suppressed, but this is not likely to be
noticeable. � is often treated as a constant, such as sin 3�.

The distinction in principle between the true S and the rotational
approximation is that with the true S the eye moves relative to the
screen and the displayed object, whereas with the approximation the
eye and the screen are moved relative to the displayed object, in
going from one view to the other.

Strobing of left and right images may conveniently be
accomplished with an electro-optic liquid-crystal shutter as
described by Harris et al. (1985). The shutter is switched by the
display itself, thus solving the synchronization problem in a manner
free of inertia.

A further discussion of stereopairs may be found in Johnson
(1970) and in Thomas (1993), the second of which generalizes the
treatment to allow for the possible presence of an optical system.

3.3.1.3.7. Viewports

The window transformation of the previous two sections has
been constructed to yield picture coordinates (X, Y, Z, W) (formerly
called x, y, z, w) such that a point having X�W or Y�W � 1 is on
the boundary of the picture, and the clipping hardware operates on
this basis. However, the edges of the picture need not be at the edges
of the screen and a viewport transformation, V, is therefore needed
to position the picture in the requisite part of the screen.

V �
�r � l��2 0 0 �r � l��2

0 �t � b��2 0 �t � b��2

0 0 n 0
0 0 0 n

�
����

�
			�,

where r, l, t and b are now the right, left, top and bottom boundaries
of the picture area, or viewport, expressed in screen coordinates,
and n is the full-screen deflection value. Thus a point with X�W �
1 in picture space plots on the screen with an X coordinate which is a
fraction r�n of full-screen deflection to the right. Z�W is unchanged
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by V and is used only to control intensity in a technique known as
depth cueing.

It is necessary, of course, to arrange for the aspect ratio of the
viewport, �r � l���t � b�, to equal that of the window otherwise
distortions are introduced.

3.3.1.3.8. Compound transformations

In this section we consider the viewing transformation T of
Section 3.3.1.3.1 and its construction in terms of translation,
rotation and scaling, Sections 3.3.1.3.2–4. We use T� to denote a
new transformation in terms of the prevailing transformation T.

We note first that any 4	 4 matrix of the form

UR V
0T W

� �
,

with U a scalar, may be factorized according to

UR V
0T W

� �
� UI 0

0T W

� �
UI V
0T U

� �
UR 0
0T U

� �

and also that multiplying

UR V
0T W

� �

by an isotropic scaling matrix, a rotation, or a translation, either on
the left or on the right, yields a product matrix of the same form, and
its inverse

WRT �RT V
0T U

� �

is also of this form, i.e. any combination of these three operations in
any order may be reduced by the above factorization to a rotation
about the original origin, a translation (which defines a new origin)
and an expansion or contraction about the new origin, applied in
that order.

If

NR 0
0T N

� �

is a rotation matrix as in Section 3.3.1.3.3, its application produces a
rotation about an axis through the origin defined only in the space in
which it is applied. For example, if

R �
cos � sin � 0

� sin � cos � 0

0 0 1

�
��

�
	�,

T � X

W

� �
� T

NR 0

0T N

� �
X

W

� �

rotates the image about the z axis of data space, whatever the
prevailing viewing transformation, T.

Forming

NR 0
0T N

� �
T

X
W

� �

rotates the image about the z axis of display space, i.e. the normal to
the tube face under the usual conventions, whatever the prevailing
T. Furthermore, if this rotation is to appear to be about some chosen
position in the picture, e.g. the centre, then the window
transformation U, Section 3.3.1.3.5, must place the origin of
display space there by setting F � S � R � L � T � B � 0 � N ,
in the notation of that section.

If a rotation is to be about a point

V
N

� �

then

T � � NI V

0T N

� �
N �R 0

0T N �

� �
NI �V

0T N

� �
T

� NR V� RV

0T N

� �
T

or

T � � T
NI V

0T N

� �
N �R 0

0T N �

� �
NI �V

0T N

� �

� T
NR V� RV

0T N

� �

according to whether R and V are both defined in display space or
both in data space. If the rotation is defined in display space and the
position of the centre of rotation is defined in data space, then the
first form of T� must be used, in which V is first computed from

V
N

� �
� T

U
W

� �

for a rotation centre at

U
W

� �

in data space.
For continuous rotations defined in display space it is usually

worthwhile to bring the centre of rotation to the origin of display
space and leave it there, i.e. to omit the left-most factor in the first
expression for T�. Incremental rotations can then be made by further
rotational factors on the left without further attention to V. When
continuous rotations are implemented by repeated multiplication of
T by a rotation matrix, say thirty times a second for a minute or so,
the orthogonality of the top-left partition of T may become
degraded by accumulation of round-off error and this should be
corrected occasionally by one of the methods of Section 3.3.1.2.3.

It is sometimes a requirement, depending on hardware
capabilities, to affect a transformation in display space when access
to data space is all that is readily available. In such a case

T � � T1T � TT2,

where T1 is the required alteration to the prevailing viewing
transformation T and T2 is the data-space equivalent,

T2 � T�1T1T � UR V

0T W

� ��1 U1R1 V1

0T W 1

� �
UR V

0T W

� �

� UU1RT R1R RT�U1R1V�WV1 �W 1V�
0T UW 1


 �
�

An important special case is when T1 is to effect a rotation about
the origin of display space without change of scale, so that
V1 � 0, U1 � W1 � W , for then

T2 � URT R1R RT�R1 � I�V
0T U

� �
�

If r is the required axis of rotation of R1 in display space then the
axis of rotation of RT R1R in data space is s � RT r since
RT R1Rs � s. This gives a particularly simple result if R1 is to be
a primitive rotation for then s is the relevant row of R, and RT R1R
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can be constructed directly from this and the required angle of
rotation.

3.3.1.3.9. Inverse transformations

It is frequently a requirement to be able to identify a feature or
position in data space from its position on the screen. Facilities for
identifying an existing feature on the screen are in many instances
provided by the manufacturer as a ‘hit’ function which correlates
the position indicated on the screen by the user (with a tablet or light
pen) with the action of drawing and flags the corresponding item in
the drawing internally as having been hit. In other instances it may
be necessary to be able to indicate a position in data space
independently of any drawn feature and this may be done by setting
two or more non-parallel sight lines through the displayed volume
and finding their best point of intersection in data space.

In Section 3.3.1.3.1 the relationship between data-space co-
ordinates and screen-space coordinates was given as

S � VUTX;

hence data-space coordinates are given by

X � T�1U�1V�1S�

A line of sight through the displayed volume passing through the
point

x
y

� �

on the screen is the line joining the two position vectors

S �
x x
y y
o n
n n

�
���

�
		�

in screen-space coordinates, as in Section 3.3.1.3.7, from which the
corresponding two points in data space may be obtained using

V�1 �

2n
r � l

0 0
��r � l�
�r � l�

0
2n

t � b
0 ��t � b�

�t � b�
0 0 1 0

0 0 0 1

�
��������

�
							�

and

U�1 �

R � L
2�S � E� 0

�C�F � N�
�F � E��N � E�

�R � L��N � E� � 2C�N � S�
2�N � E��S � E�

0
T � B

2�S � E�
�D�F � N�

�F � E��N � E�
�T � B��N � E� � 2D�N � S�

2�N � E��S � E�
0 0

�E�F � N�
�F � E��N � E�

N
�N � E�

0 0
�V �F � N�

�F � E��N � E�
V

�N � E�

�
�������������

�
												�

in the notation of Section 3.3.1.3.5, and T�1 was given in Section
3.3.1.3.8. If orthographic projection is being used �E � ��� then
U�1 simplifies to

U ��1 �

R � L
2

0 0
R � L

2

0
T � B

2
0

T � B
2

0 0 F � N N

0 0 0 V

�
�������

�
						�
�

Each of these inverse matrices may be suitably scaled to suit the
word length of the machine [Section 3.3.1.1.2 (iii)].

Having determined the end points of one sight line in data space
the viewing transformation T may then be changed and the required
position marked again through the screen in the new orientation.
Each such operation generates a pair of points in data space,
expressed in homogeneous form, with a variety of values for the
fourth coordinate. Each such point must then be converted to three
dimensions in the form �X�W , Y�W , Z�W�, and for each sight line
any (three-dimensional) point pA on the line and the direction qA of
the line are established. For each sight line a rank 2 projector matrix
MA of order 3 is formed as

MA � I � qAqT
A�qT

AqA

and the best point of intersection of the sight lines is given by

�
a

Ma

� ��1 �
a

Mapa

� �
,

to which three-vector a fourth coordinate of unity may be applied.

3.3.1.3.10. The three-axis joystick

The three-axis joystick is a device which depends on compound
transformations for its exploitation. As it is usually mounted it
consists of a vertical shaft, mounted at its lower end, which can
rotate about its own length (the Y axis of display space, Section
3.3.1.3.1), its angular setting, �, being measured by a shaft encoder
in its mounting. At the top of this shaft is a knee-joint coupling to a
second shaft. The first angle � is set to zero when the second shaft is
in some selected direction, e.g. normal to the screen and towards the
viewer, and goes positive if the second shaft is moved clockwise
when seen from above. The knee joint itself contains a shaft
encoder, providing an angle, 	, which may be set to zero when the
second shaft is horizontal and goes positive when its free end is
raised. A knob on the tip of the second shaft can then rotate about an
axis along the second shaft, driving a third shaft encoder providing
an angle �. The device may then be used to produce a rotation of the
object on the screen about an axis parallel to the second shaft
through an angle given by the knob. The necessary transformation is
then

R �
cos� 0 � sin�

0 1 0

sin� 0 cos�

�
��

�
	�

1 0 0

0 cos	 sin	

0 � sin	 cos	

�
��

�
	�

	
cos � � sin � 0

sin � cos � 0

0 0 1

�
��

�
	�

1 0 0

0 cos	 � sin	

0 sin	 cos	

�
��

�
	�

	
cos� 0 sin�

0 1 0

� sin� 0 cos�

�
��

�
	�

which is
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c2	s2�� �1� c2	s2��c� �s	c	s��1 � c�� � c	c�s�

�s	c	s��1� c�� � c	c�s� s2	� c2	c�

�c2	s�c��1� c�� � s	s� s	c	c��1� c�� � c	s�s�

�
���

�c2	s�c��1� c�� � s	s�

s	c	c��1� c�� � c	s�s�

c2	c2�� �1� c2	c2��c�

�
		�

in which cos and sin are abbreviated to c and s, which is the standard
form with l � � cos	 sin�, m � sin	, n � cos	 cos�.

3.3.1.3.11. Other useful rotations

If rotations in display space are to be controlled by trackerball or
tablet then there are two measures available, an x and a y, which can
define an axis of rotation in the plane of the screen and an angle �. If
x and y are suitably scaled coordinates of a pen on a tablet then the
rotation

y2 � x2c
x2 � y2

�xy�1� c�
x2 � y2

x
��������������
x2 � y2



�xy�1� c�
x2 � y2

x2 � y2c
x2 � y2

y
��������������
x2 � y2



�x
��������������
x2 � y2


�y

��������������
x2 � y2


c

�
������

�
					�

with c � ����������������������������
1� �x2 � y2�2


is about an axis in the xy plane (i.e. the

screen face) normal to �x, y� and with sin � � x2 � y2. Applied
repetitively this gives a quadratic velocity characteristic. Similarly,
if an atom at �x, y, z, w� in display space is to be brought onto the z
axis by a rotation with its axis in the xy plane the necessary matrix,
in homogeneous form, is

x2z� y2r
x2 � y2

�xy�r � z�
x2 � y2

�x 0

�xy�r � z�
x2 � y2

x2r � y2z
x2 � y2

�y 0

x y z 0
0 0 0 r

�
��������

�
							�

with r �
������������������������
x2 � y2 � z2


.

3.3.1.3.12. Symmetry

In Section 3.3.1.1.1 it was pointed out that it is usual to express
coordinates for graphical purposes in Cartesian coordinates in
ångström units or nanometres. Symmetry, however, is best
expressed in crystallographic fractional coordinates. If a molecule,
with Cartesian coordinates, is being displayed, and a symmetry-
related neighbour is also to be displayed, then the data-space
coordinates must be multiplied by

W T
0T W

� �
M 0
0T 1

� �
� M�1 0

0T 1

� �
W �T
0T W

� �
,

where

T
W

� �

are the data-space coordinates of the crystallographic origin, M and
M�1 are as in Section 3.3.1.1.1 and � is a crystallographic
symmetry operator in homogeneous coordinates, expressed relative
to the same crystallographic origin.

For example, in P21 with the origin on the screw dyad along b,

� �
�1 0 0 0
0 1 0 1

2
0 0 �1 0
0 0 0 1

�
���

�
		�

and

M 0
0T 1

� �
� M�1 0

0T 1

� �
�

�1 0 0 0
0 1 0 1

2 b
0 0 �1 0
0 0 0 1

�
���

�
		��

� comprises a proper or improper rotational partition, S, in the
upper-left 3	 3 in the sense that MSM�1 is orthogonal, and with
the associated fractional lattice translation in the last column, with
the last row always consisting of three zeros and 1 at the 4, 4
position. See IT A (1983, Chapters 5.3 and 8.1) for a fuller
discussion of symmetry using augmented (i.e. 4	 4) matrices.

3.3.1.4. Modelling transformations

The two sections under this heading are concerned only with the
graphical aspects of conformational changes. Determination of such
changes is considered under Section 3.3.2.2.

3.3.1.4.1. Rotation about a bond

It is a common requirement in molecular modelling to be able to
rotate part of a molecule relative to the remainder about a bond
between two atoms.

If four atoms are bonded 1–2–3–4 then the dihedral angle in the
bond 2–3 is zero if the four atoms are cis planar, and a rotation in the
2–3 bond is, by convention (IUPAC–IUB Commission on
Biochemical Nomenclature, 1970), positive if, when looking
along the 2–3 bond, the far end rotates clockwise relative to the
near end. This is valid for either viewing direction. This sign
convention, when applied to the R matrix of Section 3.3.1.2.1, leads
to the following statement.

If one of the two atoms is selected as the near atom and the
direction cosines are those of the vector from the near atom to the
far atom, and if the matrix is to rotate material attached to the far
atom (with the reference axes fixed), then a positive rotation in the
foregoing sense is generated by a positive �.

Rotation about a bond normally involves compounding R with
translations in the manner of Section 3.3.1.3.8.

3.3.1.4.2. Stacked transformations

A flexible molecule may require to be drawn in any of a number
of conformations which are related to one another by, for example,
rotations about single bonds, changes of bond angles or changes of
bond lengths, all of which changes may be brought about by the
application of suitable homogeneous transformations during the
drawing of the molecule (Section 3.3.1.3.8). With suitable
organization, this may be done without necessarily altering the
coordinates of the atoms in the coordinate list, only the
transformations being manipulated during drawing.

The use of transformations in the manner shown below is
straightforward for simply connected structures or structures
containing only rigid rings. Flexible rings may be similarly handled
provided that the matrices employed are consistent with the
consequential constraints as described in Section 3.3.2.2.1, though
this requirement may make real-time folding of flexible rings
difficult.

Any simply connected structure may be organized as a tree with a
node at each branch point and with an arbitrary number of sites of
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