
previous frame needs to be deleted with each new frame unless it is
known that each new frame will specify every pixel. However, the
technology is advancing rapidly and these restrictions are already
disappearing.

Vector machines, on the other hand, are specialized to drawing
straight lines between specified points by driving the electron beam
along such lines. No time is wasted on blank areas of the screen.
Dots may be drawn with arbitrary coordinates, in any order, but
areas, if they are to be filled, must be done with a ruling technique
which is very seldom done. Images produced by vector machines
are naturally transparent in that foreground does not obscure
background, which makes them ideal for seeing into representations
of molecular structure.

3.3.1.5.2. Optimization of line drawings

A line drawing consisting of n line segments may be specified by
anything from �n� 1� to 2n position vectors depending on whether
the lines are end-to-end connected or independent. Appreciable
gains in both processing time and storage requirements may be
made in complicated drawings by arranging for line segments to be
end-to-end connected as far as possible, and an algorithm for doing
this is outlined below. For further details see Diamond (1984a).

Supposing that a list of nodal points (atoms if a covalent skeleton
is being drawn) exists within a computer with each node appearing
only once and that the line segments to be drawn between them are
already determined, then at each node there are, generally, both
forward and backward connections, forward connections being
those to nodes further down the list. A quantity D is calculated at
each node which is the number of forward connections minus the
number of backward connections. At the commencement of
drawing, the first connected node in the list must have a positive
D, the last must have a negative D, the sum of all D values must be
zero and the sum of the positive ones is the number of strokes
required to draw the drawing, a ‘stroke’ being a sequence of end-to-
end connected line segments drawn without interruption. The total
number of position vectors required to specify the drawing is then
the number of nodes plus the number of strokes plus the number of
rings minus one.

Drawing should then be done by scanning the list of nodes from
the top looking for a positive D (usually found at the first node),
commencing a stroke at this node and decrementing its D value by
1. This stroke is continued from node to node using the specified
connections until a negative D is encountered, at which point the
stroke is terminated and the D value at the terminating node is
incremented by 1. This is done even though this terminating node
may also possess some forward connections, as the total number of
strokes required is not minimized by keeping a stroke going as far as
possible, but by terminating a stroke as soon as it reaches a node at
which some stroke is bound to terminate.

The next stroke is initiated by resuming the scan for positive D
values at the point in the node list where the previous stroke began.
If this scan encounters a zero D value at a node which has not
hitherto been drawn to, or drawn from, then the node concerned is
isolated and not connected to any other, and such nodes may require
to be drawn with some special symbol. The expression already
given for the number of vectors required is valid in the presence of
isolated nodes if drawing an isolated node is allowed one position
vector, this vector not being counted as a stroke.

The number of strokes generated by this algorithm is sensitive to
the order in which the nodes are listed, but if this resembles a natural
order then the number of strokes generated is usually close to the
minimum, which is half the number of nodes having an odd number
of connections. For example, the letter � has six nodes, four of
which have an odd number of connections, so it may be drawn with
two strokes.

3.3.1.5.3. Representation of surfaces by lines

The commonest means of representing surfaces, especially
contour surfaces, is to consider evenly spaced serial sections and
to perform two-dimensional contouring on each section. Repeating
this on serial sections in two other orientations then provides a good
representation of the surface in three dimensions when all such
contours are displayed. The density is normally cited on a grid with
submultiples of a, b and c as grid vectors, inverse linear
interpolation being used between adjacent grid points to locate
points on the contour. For vector-graphics applications it is
expedient to connect such points with straight lines; some
equipment may be capable of connecting them with splines though
this is burdensome or impossible if real-time rotation of the scene is
required. Precalculation of splines stored as short vectors is always
possible if the proliferation of vectors is acceptable. For efficient
drawing it is necessary for the line segments of a contour to be end-
to-end connected, which means that it is necessary to contour by
following contours wherever they go and not by scanning the grid.
Algorithms which function in this way have been given by Heap &
Pink (1969) and Diamond (1982a). Contouring by grid scanning
followed by line connection by the methods of the previous section
would be possible but less efficient. Further contouring methods are
described by Sutcliffe (1980) and Cockrell (1983).

For raster-graphics devices there is little disadvantage in using
curved contours though many raster devices now have vectorizing
hardware for loading a line of pixels given only the end points. For
these devices well shaped contours may be computed readily, using
only linear arithmetic and a grid-scanning approach (Gossling,
1967). Others have colour-coded each pixel according to the
density, which provides a contoured visual impression without
performing contouring (Hubbard, 1983).

3.3.1.5.4. Representation of surfaces by dots

Connolly (Langridge et al., 1981; Connolly, 1983a,b) represents
surfaces by placing dots on the surface with an approximately
uniform superficial density. Connolly’s algorithm was developed to
display solvent-accessible surfaces of macromolecules and provides
for curved concave portions where surface atoms meet. Pearl &
Honegger (1983) have developed a similar algorithm, based on a
grid, which generates only convex portions which meet in cusps, but
is faster to compute than the Connolly surface. Bash et al. (1983)
have produced a van der Waals surface algorithm fast enough to
permit real-time changes to the structure without tearing the
surface.

It has become customary to use a dot representation to display
computed surfaces, such as the surface at a van der Waals radius
from atomic centres, and to use lines to represent experimentally
determined surfaces, especially density contours.

3.3.1.5.5. Representation of surfaces by shading

Many techniques have been developed, mainly for raster-
graphics devices, for representing molecular surfaces and these
have been very well reviewed by Max (1984).

The simplest technique in this class consists in representing each
atom by a uniform disc, or high polygon, which can be colour-coded
and area-filled by the firmware of the device. If such atoms are
sorted on their z coordinate and drawn in order, furthest ones first, so
that nearer ones partly or completely overwrite the further ones then
the result is a simple representation of the molecule as seen from the
front. This technique is fast and has its uses when a rapid schematic
is all that is required. In one sense it is wasteful to process distant
atoms when they are going to be overwritten by foreground atoms,
but front-to-back processing requires the boundaries of visible parts

375

3.3. MOLECULAR MODELLING AND GRAPHICS

International Tables for Crystallography (2006). Vol. B, Section 3.3.1.5.5, pp. 375–376.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ba/ch3o3v0001/sec3o3o1o5o5/

of partially obscured atoms near the front to be determined before
they can be painted or, alternatively, every pixel must be tested
before loading to see if it is already loaded. Not only does this
approach give a uniform rendering over the whole area of one atom,
it also gives a boundary between overlapping atoms with almost
equal z values which completes the circle of the nearer atom, though
it should be an arc of an ellipse when the atoms are drawn with radii
exceeding their covalent radii.

Greater realism is achieved by establishing a z buffer, which is an
additional area of memory with one word per pixel, in which is
stored the z value of the currently loaded feature in each pixel.
Treatments which take account of the sphericity are then possible
and correct arcs of intersection for interpenetrating spheres and
more complicated entities arise naturally through loading a colour
value into a pixel only if the z coordinate is less than that of the
currently loaded value. This z buffer and the associated x, y
coordinates should be in picture space or screen space rather than
display space since only after the application of perspective can
points with the same x / w and y / w coordinates obscure one another.

It is usual in such systems to vary the intensity of colour within
one atom by darkening it towards the circumference on the basis of
the z coordinate. Some systems augment this impression of
sphericity by highlighting. The simplest form of highlighting is
an extension of the uniform disc treatment in which additional,
brighter discs, possibly off centre, are associated with each atom.
More general highlighting (Phong, 1975) is computed from four
unit vectors, these being the normal to the surface, the direction to a
light source, the direction to the viewer and the normalized vector
sum of these last two. Intensity levels may then be set as the sum of
three terms: a constant, a term proportional to the scalar product of
the first two vectors (if positive) and a term proportional to a high
power of the scalar product of the first and last vectors; the higher
the power the glossier the surface appears to be. This final term
normally adds a white term, rather than the surface colour,
supposing the light source to be white.

Shadows may also be rendered to give even greater realism. In
addition to the z buffer and (x, y) frame buffer a second z buffer for
z� values associated with x� and y� is also required. These coordinates
are then related by x� � x� �z, y� � y� �z, z� � z. The second
buffer is a ray buffer since x�y� are the coordinates with which an
illuminating ray passing through (xyz) passes through the z � 0
plane, and z�, stored at x�, y�, records the depth at which this ray
encounters material. Thus any two pixels �x1y1z1� and �x2y2z2� are
on the same illuminating ray if their x� and y� values are equal and
the one with smaller z� shadows the other. Processing a pixel at
�x1y1z1� therefore involves first determining its visibility on the
basis of the z buffer, as before, then, whether or not it is visible,
setting z�1 � z1 and considering the value of z� currently stored at
x�y�, which we call z�2.

If z�1 � z�2 then x1y1z1 is in light and must be loaded accordingly.
From z�2 we find the previously processed pixel �x2y2z2� which is
now in shade and which was in light when originally processed, so
that the colour value stored at x2y2 needs to be altered unless the
pixel at x2y2 is now �x2y2z3� with z3 � z2, in which case the pixel
�x2y2z2� which has now become shadowed by �x1y1z1� has, in the
meantime, been obscured by �x2y2z3� which is not shadowed by
�x1y1z1� and no change is therefore needed. In either event z�1 then
replaces z�2.

If z�1 � z�2 then �x1y1z1�, if visible, is in shade and must be
coloured accordingly, and in this case z�2 is not superseded.

This shadowing scheme corresponds to illumination by a light
source at infinity in picture space or, equivalently, with a z
coordinate equal to that of the eye in display space. For its
implementation x, y and z may be in any convenient coordinate
system, e.g. pixel addresses, but if x and y are expressed with the
range �1 to 1 and z with the range 0 to 1 corresponding to the

window then they may be identified as the quantities x�w, y�w and
z�w of picture space (Section 3.3.1.3.1).

If, in the notation of Section 3.3.1.3.5, the light source is placed at
(P, Q, E, V) in display space and a ray leaves it in the direction (p, q,
r, V) then

x� � p
r
� 2�S � E�
�R � L� �

2�S � E��P � C�
�N � E��R � L� �

2C � R � L
R � L

,

which varies only with beam direction,

� � 2�S � E��F � N��P � C�
�F � E��N � E��R � L�

and similarly for y� and �.

3.3.1.5.6. Advanced hidden-line and hidden-surface
algorithms

Hidden surfaces may be handled quite generally with the z-buffer
technique described in the previous section but this technique
becomes very inefficient with very complicated scenes. Faster
techniques have been developed to handle computations in real time
(e.g. 25 frames s�1) on raster machines when both the viewpoint
and parts of the environment are moving and substantial complexity
is required. These techniques generally represent surfaces by a
number of points in the surface, connected by lines to form panels.
Many algorithms require these panels to be planar and some require
them to be triangular. Of those that permit polygonal panels, most
require the polygons to be convex with no re-entrant angles. Yet
others are limited to cases where the objects themselves are convex.
Some can handle interpenetrating surfaces, others exclude these.
Some make enormous gains in efficiency if the objects in the scene
are separable by the insertion of planes between them and degrade
to lower efficiency if required, for example, to draw a chain. Some
are especially suited to vector machines and others to raster
machines, the latter capitalizing on the finite resolution of such
systems. In all of these the basic entities for consideration are entire
panels or edges, and in some cases vertices, point-by-point
treatment of the entire surface being avoided until after all decisions
are made concerning what is or is not visible.

All of these algorithms strive to derive economies from the
notion of ‘coherence’. The fact that, in a cine context, one frame is
likely to be similar to the previous frame is referred to as ‘frame
coherence’. In raster scans line coherence also exists, and other
kinds of coherence can also be identified. The presence of any form
of coherence may enable the computation to be concerned primarily
with changes in the situation, rather than with the totality of the
situation so that, for example, computation is required where one
edge crosses in front of another, but only trivial actions are involved
so long as scan lines encounter the projections of edges in the same
order.

The choice of technique from among many possibilities may
even depend on the viewpoint if the scene has a statistical
anisotropy. For example, the depiction of a city seen from a
viewpoint near ground level involves many hidden surfaces. Distant
buildings may be hidden many times over. The same scene depicted
from an aerial viewpoint shows many more surfaces and fewer
overlaps. This difference may swing the balance of advantage
between an algorithm which sorts first on z or one which leaves that
till last.

These advanced techniques have, so far, found little application
in crystallography, but this may change. Ten such techniques are
critically reviewed and compared by Sutherland et al. (1974), and
three of these are described in detail by Newman & Sproull (1973).

376

3. DUAL BASES IN CRYSTALLOGRAPHIC COMPUTING

references

http://it.iucr.org/Ba/ch3o3v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

