4.4. SCATTERING FROM MESOMORPHIC STRUCTURES

layers; however, from the optical birefringence it is apparent that the site symmetry is not uniaxial. X-ray diffraction studies on single crystals by Doucet and co-workers demonstrated that the biaxiality was not attributable to molecular tilt and subsequent work by a number of others resulted in the arrangement shown in Fig. 4.4.4.7(*a*). The most important distinguishing reciprocal-space feature associated with the intralayer 'herringbone' packing is the appearance of Bragg peaks at $\sin(\theta)$ equal to $\sqrt{7}/2$ times the value for the lowest-order in-plane Bragg peak for the triangular lattice (Pindak *et al.*, 1981). These are illustrated by the open circles in Fig. 4.4.4.7(*b*). The shaded circles correspond to peaks that are missing because of the glide plane that relates the two molecules in the rectangular cell.

Leadbetter, Mazid & Malik (1980) carried out detailed studies on both the crystalline-E phase of isobutyl 4-(4-phenylbenzylideneamino)cinnamate (IBPBAC) and the crystalline phase immediately below the crystalline-E phase. Partially ordered samples of the crystalline-E phase were obtained by melting the lower-temperature crystalline phase. Although the data for the crystalline-E phase left some ambiguity, they argued that the phase they were studying might well have had molecular tilts of the order of 5 or 6°. This is an important distinction, since the crystalline-H and crystalline-J phases are essentially tilted versions of the crystalline-E. Thus, one important symmetry difference that might distinguish the crystalline-E from the others is the presence of a mirror plane parallel to the layers. In view of the low symmetry of the individual molecules, the existence of such a mirror plane would imply residual molecular motions. In fact, using neutron diffraction Leadbetter et al. (1976) demonstrated for a different liquid crystal that, even though the site symmetry is not axially symmetric, there is considerable residual rotational motion in the crystalline-E phase about the long axis of the molecules. Since the in-plane spacing is too small for neighbouring molecules to be rotating independently of each other, they proposed what might be interpreted as large partially hindered rotations.

4.4.4.4.2. Crystal-H, crystal-K

The crystalline-H and crystalline-K phases are tilted versions of the crystalline-E. The crystalline-H is tilted in the direction between the near neighbours, with the convenient mnemonic that on cooling the sequence of phases with the same relative orientation of tilt to near-neighbour position is $F \rightarrow G \rightarrow H$. Similarly, the tilt direction for the crystalline-K phase is similar to that of the smectic-I and crystalline-J so that the expected phase sequences are only intended to indicate the progression in lower symmetry; the actual transitions vary from material to material.

4.4.5. Discotic phases

In contrast to the long thin rod-like molecules that formed most of the other phases discussed in this chapter, the discotic phases are formed by molecules that are more disc-like [see Fig. 4.4.1.3(f), for example]. There was evidence that mesomorphic phases were formed from disc-like molecules as far back as 1960 (Brooks & Taylor, 1968); however, the first identification of a discotic phase was by Chandrasekhar *et al.* (1977) with benzenehexyl hexa-nalkanoate compounds. Disc-like molecules can form either a fluid nematic phase in which the disc normals are aligned, without any particular long-range order at the molecular centre of mass, or more-ordered 'columnar' (Helfrich, 1979) or 'discotic' (Billard *et al.*, 1981) phases in which the molecular positions are correlated such that the discs stack on top of one another to form columns. Some of the literature designates this nematic phase as N_D to distinguish it from the phase formed by 'rod-like' molecules

Fig. 4.4.5.1. Schematic illustration of the molecular stacking for the discotic (a) D_2 and (b) D_1 phases. In neither of these two phases is there any indication of long-range positional order along the columns. The hexagonal symmetry of the D_1 phase is broken by 'herringbone-like' correlations in the molecular tilt from column to column.

(Destrade *et al.*, 1983). In the same way that the appearance of layers characterizes order in smectic phases, the order for the discotic phases is characterized by the appearance of columns. Chandrasekhar (1982, 1983) and Destrade *et al.* (1983) have reviewed this area and have summarized the several notations for various phases that appear in the literature. Levelut (1983) has also written a review and presented a table listing the space groups for columnar phases formed by 18 different molecules. Unfortunately, it is not absolutely clear which of these are mesomorphic phases and which are crystals with true long-range positional order.

Fig. 4.4.5.1 illustrates the molecular packing in two of the well identified discotic phases that are designated as D_1 and D_2 (Chandrasekhar, 1982). The phase D_2 consists of a hexagonal array of columns for which there is no intracolumnar order. The system is uniaxial and, as originally proposed, the molecular normals were supposed to be along the column axis. However, recent X-ray scattering studies on oriented free-standing fibres of the D_2 phase of triphenylene hexa-*n*-dodecanoate indicate that the molecules are tilted with respect to the layer normal (Safinya et al., 1985, 1984). The D_1 phase is definitely a tilted phase, and consequently the columns are packed in a rectangular cell. According to Safinya *et al.*, the D_1 to D_2 transition corresponds to an order-disorder transition in which the molecular tilt orientation is ordered about the column axis in the D_1 phase and disordered in the D_2 phase. The reciprocal-space structure of the D_1 phase is similar to that of the crystalline-E phase shown in Fig. 4.4.4.7(b).

Other discotic phases that have been proposed would have the molecules arranged periodically along the column, but disordered between columns. This does not seem physically realistic since it is well known that thermal fluctuations rule out the possibility of a one-dimensional periodic structure even more strongly than for the two-dimensional lattice that was discussed above (Landau, 1965; Peierls, 1934). On the other hand, in the absence of either more high-resolution studies on oriented fibres or further theoretical studies, we prefer not to speculate on the variety of possible true discotic or discotic-like crystalline phases that might exist. This is a subject for future research.

4.4.6. Other phases

We have deliberately chosen not to discuss the properties of the cholesteric phase in this chapter because the length scales that characterize the long-range order are of the order of micrometres and are more easily studied by optical scattering than by X-rays (De Gennes, 1974; De Vries, 1951). Nematic phases formed from chiral