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intensity /(R,Z) into polar coordinates as I(p,o), or by simply
sampling I (R, Z) for fixed p and equally spaced samples of o, [;(R)
can be calculated from (p, o) by deconvolution, usually by some
appropriate solution of the resulting system of linear equations
(Makowski, 1978). If the effects of coherence length are significant,
as they often are, then equation (4.5.2.55) does not represent a
convolution since the width of the Gaussian smearing function
depends on ¢ through equation (4.5.2.20). However, the problem
can still be posed as the solution of a system of linear equations and
becomes one of profile fitting rather than deconvolution (Millane &
Arnott, 1986). This allows the layer-line intensities to be extracted
from the data beyond the resolution where they overlap, although
there is a limiting resolution, owing to excessive overlap, beyond
which reliable data cannot be obtained (Makowski, 1978; Millane &
Arnott, 1986). This procedure requires that oy and . be known;
these parameters can be estimated from the angular profiles at low
resolution where there is no overlap, or they can be determined as
part of the profile-fitting procedure.

For a diffraction pattern from a polycrystalline specimen
containing Bragg reflections, the intensities I;(Rj) given by
equation (4.5.2.24) need to be extracted from the intensity I(R, Z)
on the diffraction pattern mapped into reciprocal space. Each
composite reflection ;(Ry) is smeared into a spot whose intensity
profile is given by equation (4.5.2.27), and adjacent reflections may
overlap. The intensity [;(Ry) is equal to the intensity I(R,Z)
integrated over the region of the spot, and the intensity at the centre
of a spot is reduced, relative to ;(Ry), by a factor that increases
with the degree of smearing.

The ¢ repeat can be obtained immediately from the layer-line
spacing. Initial estimates of the remaining cell constants can be
made from inspection of the (R,Z) coordinates of low-order
reflections. These values are refined by minimizing the difference
between the calculated and measured (R,Z) coordinates of all the
sharp reflections on the pattern.

One approach to measuring the intensities of Bragg reflections is
to estimate the boundary of each spot (or a fixed proportion of the
region occupied by each spot) and integrate the intensity over that
region (Millane & Arnott, 1986; Hall et al., 1987). For spots that
overlap, an integration region that is the union of the region
occupied by each contributing spot can be used, allowing the
intensities for composite spots to be calculated (Millane & Arnott,
1986). This is more accurate than methods based on the
measurement of the peak intensity followed by a correction for
smearing. Integration methods suffer from problems associated
with determining accurate spot boundaries and they are not capable
of separating weakly overlapping spots. A more effective approach
is one based on profile fitting. The intensity distribution on the
diffraction pattern can be written as

I(R,Z) = Y>> Ii(Ru, R, Z),
I hk

(4.5.2.56)

where I)(Ry, R,Z) denotes the intensity distribution of the spot
I;(Rp), and the sums are over all spots on the diffraction pattern.
Using equation (4.5.2.27) shows that equation (4.5.2.56) can be
written as

I(R,Z) = 3> Li(Ri)S(Ru; I/c; R; Z),

(4.5.2.57)

where S(Ry; I/c; R; Z) denotes the profile of the spot centred at
(Ruk,1/c) [which can be derived from equation (4.5.2.27)]. Given
estimates of the parameters /1, loxia and o, equation (4.5.2.57) can
be written as a system of linear equations that can be solved for the
intensities 1;(Ry) from the data I(R,Z) on the diffraction pattern.
The parameters I, [y and ag, as well as the cell constants and

possibly other parameters, can also be refined as part of the profile-
fitting procedure using nonlinear optimization.

A suite of programs for processing fibre diffraction data is
distributed (and often developed) by the Collaborative Computa-
tional Project for Fibre and Polymer Diffraction (CCP13) in the UK
(www.dLac.uk/SRS/CCP13) (Shotton et al., 1998).

4.5.2.6. Structure determination

4.5.2.6.1. Overview

Structure determination in fibre diffraction is concerned with
determining atomic coordinates or some other structural para-
meters, from the measured cylindrically averaged diffraction data.
Fibre diffraction analysis suffers from the phase problem and low
resolution (diffraction data rarely extend beyond 3 A resolution),
but this is no worse than in protein crystallography where phases
derived from, say, isomorphous replacement or molecular replace-
ment, coupled with the considerable stereochemical information
usually available on the molecule under study, together contribute
enough information to lead to precise structures. What makes
structure determination by fibre diffraction more difficult is the loss
of information owing to the cylindrical averaging of the diffraction
data. However, in spite of these difficulties, fibre diffraction has
been used to determine, with high precision, the structures of a wide
variety of biological and synthetic polymers, and other macro-
molecular assemblies. Because of the size of the repeating unit and
the resolution of the diffraction data, methods for structure
determination in fibre diffraction tend to mimic those of
macromolecular (protein) crystallography, rather than small-
molecule crystallography (direct methods).

For a noncrystalline fibre one can determine only the molecular
structure from the continuous diffraction data, whereas for a
polycrystalline fibre one can determine crystal structures from the
Bragg diffraction data. However, there is little fundamental
difference between methods used for structure determination with
noncrystalline and polycrystalline fibres. For partially crystalline
fibres, little has so far been attempted with regard to rigorous
structure determination.

As is the case with protein crystallography, the precise methods
used for structure determination by fibre diffraction depend on the
particular problem at hand. A variety of tools are available and one
selects from these those that are appropriate given the data available
in a particular case. For example, the structure of a polycrystalline
polynucleotide might be determined by using Patterson functions to
determine possible packing arrangements, molecular model build-
ing to define, refine and arbitrate between structures, difference
Fourier synthesis to locate ions or solvent molecules, and finally
assessment of the reliability of the structure. As a second example,
to determine the structure of a helical virus, one might use
isomorphous replacement to obtain phase estimates, calculate an
electron-density map, fit a preliminary model and refine it using
simulated annealing alternating with difference Fourier analysis,
and assess the results. The various tools available, together with
indications of where and how they are used, are described in the
following sections.

Although a variety of techniques are used to solve structures
using fibre diffraction, most of the methods do fall broadly into one
of three classes that depend primarily on the size of the helical
repeat unit. The first class applies to molecules whose repeating
units are small, i.e. are represented by a relatively small number of
independent parameters or degrees of freedom (after all stereo-
chemical constraints have been incorporated). The structure can
then be determined by an exhaustive exploration of the parameter
space using molecular model building. The first example above
would belong to this class. The second class of methods is
appropriate when the size of the helical repeating unit is such that
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its structure is described by too many variable parameters for the
parameter space to be explored a priori. It is then necessary to phase
the fibre diffraction data and construct an electron-density map into
which the molecular structure can be fitted and then refined. The
second example above would belong to this class. The second class
of methods therefore mimics conventional protein crystallography
quite closely. The third class of problems applies when the structure
is large, but there are too few diffraction data to attempt phasing and
the usual determination of atomic coordinates. The solution to such
problems varies from case to case and usually involves modelling
and optimization of some kind.

An important parameter in structure determination by fibre
diffraction is the degree of overlap (that results from the cylindrical
averaging) in the data. This parameter is equal to the number of
significant terms in equation (4.5.2.17) or the number of independent
terms in equation (4.5.2.24), and depends on the position in reciprocal
space and, for a polycrystalline fibre, the space-group symmetry. The
number of degrees of freedom in a particular datum is equal to twice
this number (since each structure factor generally has real and
imaginary parts), and is denoted in this section by m. Determination of
the G,(R) from the cylindrically averaged data I;(R) therefore
involves separating the m/2 amplitudes |G,;(R)| and assigning
phases to each. The electron density can be calculated from the G,; (R)
using equations (4.5.2.7) and (4.5.2.11).

4.5.2.6.2. Helix symmetry, cell constants and space-group
symmetry

The first step in analysis of any fibre diffraction pattern is
determination of the molecular helix symmetry u,. Only the zero-
order Bessel term contributes diffracted intensity on the meridian,
and referring to equation (4.5.2.6) shows that the zero-order term
occurs only on layer lines for which [ is a multiple of u. Therefore,
inspection of the distribution of diffraction along the meridian
allows the value of u to be inferred. This procedure is usually
effective, but can be difficult if u is large, because the first
meridional maximum may be on a layer line that is difficult to
measure. This difficulty was overcome in one case by Franklin &
Holmes (1958) by noting that the second Bessel term on the equator
is n=u, estimating Gpy(R) using data from a heavy-atom
derivative (see Section 4.5.2.6.6), subtracting this from Iy(R), and
using the behaviour of the remaining intensity for small R to infer
the order of the next Bessel term [using equation (4.5.2.14)] and
thence u.

Referring to equations (4.5.2.6) and (4.5.2.14) shows that the
distribution of Ry, for 0 <! < u depends on the value of v.
Therefore, inspection of the intensity distribution close to the
meridian often allows v to be inferred. Note, however, that the
distribution of Ry, does not distinguish between the helix
symmetries u, and u,_,. Any remaining ambiguities in the helix
symmetry need to be resolved by steric considerations, or by
detailed testing of models with the different symmetries against the
available data.

For a polycrystalline system, the cell constants are determined
from the (R, Z) coordinates of the spots on the diffraction pattern as
described in Section 4.5.2.6.4. Space-group assignment is based on
analysis of systematic absences, as in conventional crystallography.
However, in some cases, because of possible overlap of systematic
absences with other reflections, there may be some ambiguity in
space-group assignment. However, the space group can always be
limited to one of a few possibilities, and ambiguities can usually be
resolved during structure determination (Section 4.5.2.6.4).

4.5.2.6.3. Patterson functions

In fibre diffraction, the conventional Patterson function cannot be
calculated since the individual structure-factor intensities are not

available. However, MacGillavry & Bruins (1948) showed that the
cylindrically averaged Patterson function can be calculated from
fibre diffraction data. Consider the function Q(r,z) defined by

0(r,z) = io:ofcslll(R)JO(Zer) cos(2mlz/c)27R dR, (4.5.2.58)
i=00

where ¢;, = 1 for/ = 0 and 2 for / > 0, which can be calculated from
the intensity distribution on a continuous fibre diffraction pattern.
Using equations (4.5.2.7), (4.5.2.10), (4.5.2.17) and (4.5.2.58)
shows that Q(r,z) is the cylindrical average of the Patterson
function, P(r, ¢, z), of one molecule, i.e.

0(r,z) = (1/2@2[”?@, 0,2) dip. (4.5.2.59)

The * symbols on P(r,p,z) and Q(r,z) indicate that these are
Patterson functions of a single molecule, as distinct from the usual
Patterson function of a crystal, which contains intermolecular
interatomic vectors and is periodic with the same periodicity as the
crystal. P(r, ¢, 7) is periodic only along z and is therefore, strictly, a
Patterson function along z and an autocorrelation function along x
and y (Millane, 1990b). The cylindrically averaged Patterson
contains information on interatomic separations along the axial
direction and in the lateral plane, but no information on orientations
of the vectors in the lateral plane.

For a polycrystalline system; consider the function Q(r, z) given

by

Q(I’, Z) = ZZth[[(th)Jo(ZTrth}’) COS(27T[Z/C),
I hk

(4.5.2.60)

where the sums are over all the overlapped reflections I;(Ry) on the
diffraction pattern, given by equation (4.5.2.24). It is easily shown
that Q(r, z) is related to the Patterson function P(r, ¢, z) by

O(r,z) = (I/ZW)ZfP(r, .2) do, (4.5.2.61)

where, in this case, P(r,p,z) is the usual Patterson function
(expressed in cylindrical polar coordinates), i.e. it contains all
intermolecular (both intra- and inter-unit cell) interatomic vectors
and has the same translational symmetry as the unit cell. The
cylindrically averaged Patterson function for polycrystalline fibres
therefore contains the same information as it does for noncrystalline
fibres (i.e. no angular information in the lateral plane), except that it
also contains information on intermolecular separations.

Low resolution and cylindrical averaging, in addition to the usual
difficulties with interpretation of Patterson functions, has resulted in
the cylindrically averaged Patterson function not playing a major
role in structure determination by fibre diffraction. However,
information provided by the cylindrically averaged Patterson
function has, in a number of instances, been a useful component
in fibre diffraction analyses. A good review of the application of
Patterson functions in fibre diffraction is given by Stubbs (1987).
Removing data from the low-resolution part (or all) of the equator
when calculating the cylindrically averaged Patterson function
removes the strong vectors related to axially invariant (or
cylindrically symmetric) parts of the map, and can aid interpretation
(Namba et al., 1980; Stubbs, 1987). It is also important when
calculating cylindrically averaged Patterson functions to use data
only at a resolution that is appropriate to the size and spacings of
features one is looking for (Stubbs, 1987).

Cylindrically averaged Patterson functions were used in early
applications of fibre diffraction analysis (Franklin & Gosling, 1953;
Franklin & Klug, 1955). The intermolecular peaks that usually
dominate in a cylindrically averaged Patterson function can help to
define the locations of multiple molecules in the unit cell.
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Depending on the space-group symmetry, it is sometimes possible
to calculate the complete three-dimensional Patterson function (or
certain projections of it). This comes about because of the
equivalence of the amplitudes of overlapping reflections in some
high-symmetry space groups. The intensity of each reflection can
then be determined and a full three-dimensional Patterson map
calculated (Alexeev et al., 1992). The only difficulty is that non-
systematic overlaps are often present, although these are usually
relatively few in number and the intensity can be apportioned
equally amongst them, the resulting errors usually being small
relative to the level of detail present in the Patterson map. For lower
space-group symmetries, it may not be possible to calculate a three-
dimensional Patterson map, but it may be possible to calculate
certain projections of the map. For example, if the overlapped 7k0
reflections have the same intensities, a projection of the Patterson
map down the ¢ axis can be calculated. Since such a projection is
along the polymer axes, it gives the relative positions of the
molecules in the ab plane. If the combined helix and space-group
symmetry is high, an estimate of the electron density can be
obtained by averaging appropriate copies of the three-dimensional
Patterson function (Alexeev et al., 1992).

4.5.2.6.4. Molecular model building

The majority of the structures determined by X-ray fibre
diffraction analysis have been determined by molecular model
building (Campbell Smith & Arnott, 1978; Arnott, 1980; Millane,
1988). Most applications of molecular model building have been to
polycrystalline systems, although there have been a number of
applications to noncrystalline systems (Park et al., 1987; Millane et
al., 1988). The approach is to use spacings and symmetry
information derived directly from the diffraction pattern, coupled
with the primary structure and stereochemical information on the
molecule under study, to construct models of all kinds of possible
molecular or crystal structure. These models are each refined
(optimized) against the diffraction data, as well as stereochemical
restraints, to produce the best model of each kind. The optimized
models can be compared using various figures of merit, and in
favourable cases one model will be sufficiently superior to the
remainder for it to represent unequivocally the correct structure.
The principle of this approach is that by making use of
stereochemical constraints, the molecular and crystal structure
have few enough degrees of freedom that the parameter space has a
sufficiently small number of local minima for these to be identified
and individually examined to find the global minimum. The X-ray
phases are therefore not determined explicitly.

There are three steps involved in structure determination by
molecular model building: (1) construction of all possible
molecular and crystal structure models, (2) refinement of each
model against the X-ray data and stereochemical restraints, and (3)
adjudication among the refined models. The overall procedure for
determining polymer structures using molecular model building is
summarized by the flow chart in Fig. 4.5.2.2, and is described
below.

The helix symmetry of the molecule, or one of a few helix
symmetries, can be determined as described in Section 4.5.2.6.2.
Different kinds of molecular model may correspond to one of a few
different helix symmetries, usually corresponding to different
values of v. For example, helix symmetries u, and u,_,, which
correspond to the left- and right-handed helices, cannot be
distinguished on the basis of the overall intensity distribution
alone. Other examples of different kinds of molecular model may
include single, double or multiple helices, parallel or antiparallel
double helices, different juxtapositions of chains within multiple
helices and different conformational domains within the molecule.
For polycrystalline systems, in addition to different kinds of

| Fibre diffraction pattern J

Primary structure

I

<—| Standard bond lengths and angles

Determine helix pitch and
possible molecular symmetries.

Produce molecular models constrained
to have appropriate pitch and minimize
steric compression. Attempt decision

\ among symmetry choices.

For polycrystalline specimens,
determine unit cell and ——
possible space groups.

|

I Determine possible packings.

Y

Optimize models to fit X-ray data while maintaining
constraints and steric restraints. Attempt decision
among symmetry and packing choices.

Use Fourier difference synthesis to determine
possible ion and/or solvent sites.

Refine augmented crystal model until complete. ’—

Fig. 4.5.2.2. Flow chart of the molecular-model-building approach to
structure determination (Arnott, 1980).

molecular structures, there are often different kinds of possible
packing arrangements within the unit cell. There may be a number
of possible packings which correspond to different arrangements
within the crystallographic asymmetric unit, and there may be more
than one space group that needs to be considered.

Despite the apparent large number of potential starting models
implied by the above discussion, in practice the number of feasible
models is usually quite small, and many of these are often
eliminated at an early stage. Definition and refinement of helical
polymers [steps (1) and (2) above] are carried out using computer
programs, the most popular and versatile being the linked-atom
least-squares (LALS) system (Campbell Smith & Arnott, 1978;
Millane et al., 1985), originally developed by Arnott and co-
workers in the early 1960s (Arnott & Wonacott, 1966). This system
has been used to determine the structures of a wide variety of
polynucleotides, polysaccharides, polyesters and polypeptides
(Arnott, 1980; Arnott & Mitra, 1984; Chandrasekaran & Arnott,
1989; Millane, 1990c). Other refinement systems exist (Zugenmaier
& Sarko, 1980; Iannelli, 1994), but the principles are essentially the
same and the following discussion is in terms of the LALS system.
The atomic coordinates are defined, using a linked-atom descrip-
tion, in terms of bond lengths, bond angles and conformation
(torsion) angles (Campbell Smith & Arnott, 1978). Stereochemical
constraints are imposed, and the number of parameters reduced, by
fixing the bond lengths, often (but not always) the bond angles, and
possibly some of the conformation angles. The molecular
conformation is then defined by the remaining parameters. For
polycrystalline systems, there are usually additional variable
parameters that define the packing of the molecule(s) in the unit
cell. A further source of stereochemical data is the requirement that
a model exhibit no over-short nonbonded interatomic distances.
These are incorporated by a quadratic nonbonded potential that is
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matched to a Buckingham potential (Campbell Smith & Arnott,
1978). A variety of other restraints can also be incorporated.
In the LALS system, the quantity {2 given by

Q =S WnAF: + S kA2 + Y MG =X + C+ L (452.62)

is minimized by varying a set of chosen parameters consisting of
conformation angles, possibly bond angles, and packing para-
meters. The term X involves the differences AF,, between the
model and experimental X-ray amplitudes — Bragg and/or
continuous. The term C involves restraints to ensure that over-
short nonbonded interatomic distances are driven beyond accep-
table minimum values, that conformations are within desired
domains, that hydrogen-bond and coordination geometries are
close to the expected configurations, and a variety of other
relationships are satisfied (Campbell Smith & Arnott, 1978). The
wy and k, are weights that are inversely proportional to the
estimated variances of the data. The term L involves constraints
which are relationships that are to be satisfied exactly (G,, = 0) and
the )\, are Lagrange multipliers. Constraints are used, for example,
to ensure connectivity from one helix pitch to the next and to ensure
that chemical ring systems are closed. The cost function €2 is
minimized using full-matrix nonlinear least squares and singular
value decomposition (Campbell Smith & Arnott, 1978).

Structure determination usually involves first using equation
(4.5.2.62) with the terms C and L only, to establish the
stereochemical viability of each kind of possible molecular model
and packing arrangement. It is worth emphasizing that it is usually
advantageous if the specimen is polycrystalline, even though the
continuous diffraction contains, in principle, more information than
the Bragg reflections (since the latter are sampled). This is because
the molecule in a noncrystalline specimen must be refined in steric
isolation, whereas for a polycrystalline specimen it is refined while
packed in the crystal lattice. The extra information provided by the
intermolecular contacts can often help to eliminate incorrect
models. This can be particularly significant if the molecule has
flexible sidechains. The initial models that survive the steric
optimization are then optimized also against the X-ray data, by
further refinement with X included in equation (4.5.2.62). The ratios
(QP/QQ)I/2 and (XP/XQ)l/2 can be used in Hamilton’s test
(Hamilton, 1965) to evaluate the differences between models P
and Q. On the basis of these statistical tests, one can decide if one
model is superior to the others at an acceptable confidence level. In
the final stages of refinement, bond angles may be varied in a ‘stiffly
elastic’ fashion from their mean values if there are sufficient data to
justify the increase in the number of degrees of freedom.

If sufficient X-ray data are available, it is sometimes possible to
locate additional ordered molecules such as counterions or solvent
molecules by difference Fourier synthesis as described in Section
4.5.2.6.5. Their positions can then be co-refined with the polymer
structure while hydrogen bonds and coordination geometries are
optimized. The resulting structure can then be used to compute
improved phases to search for additional molecules. Since the
signal-to-noise ratio in fibre difference syntheses is usually low,
difference maps must be interpreted with caution. The assignment
of counterions or solvent molecules to peaks in the difference
synthesis must be supported by plausible interactions with the rest
of the structure and, following refinement of the structure, by
elimination of the peak in the difference map and by a significant
improvement in the agreement between the calculated and
measured X-ray amplitudes.

4.5.2.6.5. Difference Fourier synthesis

Difference Fourier syntheses are widely used in both protein and
small-molecule crystallography to detect structural errors or to

complete partial structures (Drenth, 1994). The difficulty in
applying difference Fourier techniques in fibre diffraction is that
the individual observed amplitudes |F,| are not available. However,
difference syntheses have found wide use in fibre diffraction
analysis, one of the earliest applications being to polycrystalline
fibres of polynucleotides (e.g. Arnott et al., 1967). Calculation of a
three-dimensional difference map (for the unit cell) from Bragg
fibre diffraction data requires that the observed intensity /;(Ry) =
I, be apportioned among the contributing intensities |F, hk1|2 =|F 0|2.
There are two ways of doing this. The intensities may be divided
equally among the contributing (m/2) reflections [i.e.
|F,| = (21,/m) 121 or they may be divided in the same proportions
as those in the model, i.e.

p 12
|F0| = <Z|; |2> |FC‘-

The advantage of the former is that it is unbiased, and the advantage
of the latter is that it may be more accurate but is biased towards the
model. Equal division of the intensities is often (but not always)
used to minimize model bias. Once the observed amplitudes have
been apportioned, an |F,| — |F,| map can be calculated as in
conventional crystallography, although noise levels will be higher
owing to errors in apportioning the amplitudes. As a result of
overlapping of the reflections, a synthesis based on coefficients
m|F,| — (m — 1)|F,| gives a more accurate estimate of the true
density than does one based on 2|F,| — |F.], as is described below.
Difference syntheses for polycrystalline specimens calculated in
this way have been used, for example, to locate cations and water
molecules in polynucleotide and polysaccharide structures (e.g.
Cael et al., 1978), to help position molecules in the unit cell (e.g.
Chandrasekaran et al., 1994) and to help position side chains, and
have also been applied in neutron fibre diffraction studies of
polynucleotides (Forsyth et al., 1989).

Sim (1960) has shown that the mean-squared error in difference
syntheses can be minimized by weighting the coefficients based on
the agreement between the calculated and observed structure
amplitudes. Such an analysis has recently been conducted for
fibre diffraction, and shows that the optimum difference synthesis is
obtained by using coefficients (Millane & Baskaran, 1997;
Baskaran & Millane, 19994)

F.|(1,)"?
o S

N (SIEP?

where m is the number of degrees of freedom as defined in Section
4.5.2.6.1. If the reflections contributing to I, are either all centric or
all acentric, then the weights are given by

Im/Z(X)
Wm =T
1m/2—1(X)

where I,,(+) denotes the modified Bessel function of the first kind of
order m, and X is given by

”(10)1/2(Z|F6|2)1/2
2l ’

where k =1 for centric reflections and 2 for acentric reflections.
The form of the weighting function is more complicated if both
centric and acentric reflections contribute, but it can be
approximated as w' given by

(4.5.2.63)

explia,), (4.5.2.64)

(4.5.2.65)

X =

(4.5.2.66)

w = (waw, +wy,)/2, (4.5.2.67)

where N, and N, are the number of acentric and centric reflections,
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respectively, contributing. Use of the weighted maps reduces bias
towards the model (Baskaran & Millane, 1999b).

For continuous diffraction data from noncrystalline specimens,
the situation is essentially identical except that one works in
cylindrical coordinates. Referring to equations (4.5.2.7) and
(4.5.2.10), the desired difference synthesis, Ag(r,p,z), is the
Fourier—Bessel transform of G, — G, where G, and G, denote the
observed and calculated, respectively, Fourier-Bessel structure
factors G,;(R). Since G, is not known, the synthesis is based on the
Fourier-Bessel transform of (|G,| — |G.|) exp(ic. ), where « is the
phase of G,. As in the polycrystalline case, the individual |G, | need
to be estimated from the data I(}/ 2 given by equation (4.5.2.17), and
can be based on either equal division of the data, or division in the
same proportion as the amplitudes from the model.

Namba & Stubbs (1987a) have shown that the peak heights in a
difference synthesis are 1/m times their true value, as opposed to
half their true value in a conventional difference synthesis. The best
estimate of the true map is therefore provided by a synthesis based
on the coefficients [m|F,| — (m — 1)|F.|] exp(ic), rather than on
(2|F,| — |F¢|) exp(ic). Test examples showed that the noise in the
synthesis can be reduced by using a value for m that is fixed over the
diffraction pattern and approximately equal to the average value of
m over the pattern (Namba & Stubbs, 19874). Difference Fourier
maps for noncrystalline systems have been used in studies of helical
viruses to locate heavy atoms, to correct errors in atomic models
and to locate water molecules (Mandelkow et al., 1981; Lobert et
al., 1987; Namba, Pattanayek & Stubbs, 1989; Wang & Stubbs,
1994).

4.5.2.6.6. Multidimensional isomorphous replacement

At low enough resolution, only one Fourier-Bessel structure
factor contributes on each layer line of a fibre diffraction pattern, so
that only the phase needs to be determined and the situation is no
different to that in protein crystallography. If heavy-atom-
derivative specimens can be prepared, the usual method of multiple
isomorphous replacement (MIR) (Drenth, 1994) can be applied,
which in principle requires only two heavy-atom derivatives. At
higher resolution, however, more than one Fourier—Bessel structure
factor contributes on each layer line. A generalized form of
isomorphous replacement which involves using diffraction data
from several heavy-atom derivatives to determine the real and
imaginary components of each contributing G,;(R) is referred to as
multidimensional isomorphous replacement (MDIR) (Namba &
Stubbs, 1985). MDIR was first described and used to determine the
structure of TMV at 6.7 A resolution (Stubbs & Diamond, 1975;
Holmes et al., 1975), and has since been used to extend the
resolution to 2.9 A (Namba, Pattanayek & Stubbs, 1989). A
consequence of cylindrical averaging is that large numbers of
heavy-atom derivatives are required: at least two for each Bessel
term to be separated. The theory of MDIR is outlined here.

The first step in MDIR is location of the heavy atoms in the
derivative structures. The radial coordinate of a heavy atom can be
determined by analysis of the intensity distribution in the low-
resolution region of the equator where only the Goy(R) Bessel term
contributes. Since Gy (R) is real, and [;(R) can be measured
continuously in R, inspection of the positions of the minima and
maxima in the low-resolution region of th? equator generally allows
the sign of Goo(R) to be assigned to Iy*(R), i.e. Goo(R) can be
determined from Iy(R). If the sign is determined for both the native
and a heavy-atom derivative, referring to equation (4.5.2.13) shows

that
Gip(R) — Goo(R) = onfinJo(27Rr), (4.5.2.68)

where G5)(R) is the value derived from the derivative data, o

denotes the occupancy and the subscript 4 denotes values for the
heavy atom. The parameters o, and r, on the right-hand side of
equation (4.5.2.68) can be searched in a trial-and-error fashion to
obtain the best agreement with the left-hand side (calculated from
the data) to determine the radial coordinate r;, of the heavy atom
(Mandelkow & Holmes, 1974). Lobert et al. (1987) applied the
same method to cucumber green mottle mosaic virus (CGMMV),
except that the sign of Goo(R) was taken from that of TMV.

Two approaches have been used to determine the angular and
axial coordinates of the heavy atom. Mandelkow & Holmes (1974)
and Holmes et al. (1975) used a search procedure in which the
quantity ® = —npy, + 27lz;/c is varied and used to calculate the
intensity of the Fourier—Bessel structure factor for the heavy atom
alone. This is compared to I”(R) — I;(R) on each layer line, where
only one Bessel order contributes, and ® chosen to minimize the
mean-square difference. The values of ® found for each layer line
can then be combined to determine ¢, and z,. In the case of
CGMMYV, Lobert et al. (1987) used the phases and Bessel-order
separations from TMV to calculate Fourier-Bessel difference maps
between the native and derivative data to determine the heavy-atom
coordinates (ry, pp, 7).

Consider a set of isomorphous heavy-atom derivatives indexed
by j. Since the analysis is applied at any point (/,R) on the fibre
diffraction pattern, the symbol G, will be used for G,,;(R) where no
confusion arises. Denote by G, ; the value of G, for the jth
derivative, so that

Guj=Gu+ g, (4.5.2.69)

where g, ; denotes the Fourier—Bessel structure factor of a structure
containing the heavy atom only. Denote by A, and B, the real and
imaginary parts, respectively, of G, (for the native structure), and
by a, ;j and b, ; the real and imaginary parts of g, j, i.e. for the jth
heavy-atom structure alone. Equation (4.5.2.17) can then be written
as

=3 (A,+B)

n

(4.5.2.70)

for the native and

I = Cl(Aw+an)’ + By + b))

n

(4.52.71)

for the jth derivative. If intensity data are available from J heavy-
atom derivatives, a, ; and b, ; can be calculated from the heavy-
atom positions, and equations (4.5.2.70) and (4.5.2.71) represent a
system of J 4 1 second-order equations for the m unknowns A, and
B,. If J +1 > m, then the system of equations is overdetermined
and can be solved for the A, and B,,. The solution of this nonlinear
system can be eased by deriving a system of linear equations by
substituting from (4.5.2.70) into (4.5.2.71), giving

S (Antn j + Bubn ) = (1/2) |, =1 = Y (a; ; + b, )| -

n n

(4.52.72)

Equation (4.5.2.72) is a system of linear equations for the unknowns
A, and B,, the solution being subject to the constraint equation
(4.5.2.70). However, since the original problem is second-order,
there may be up to m local minima. Stubbs & Diamond (1975)
describe a numerical procedure for locating all the local minima and
selecting the best of these based on ‘continuity” of the G,;(R). This
method was used to determine the structure of TMV at 6.7 A
resolution (Holmes et al., 1975) and 4 A resolution (Stubbs et al.,
1977). In current applications of MDIR a more direct solution
technique is used in which the phase-determining equations
(4.5.2.770) and (4.5.2.71) are solved by first solving the linear
equations (4.5.2.72) by linear least squares to obtain an approximate
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solution, which is then refined by solving the quadratic equations
(4.5.2.770) and (4.5.2.71) directly using nonlinear least squares
(Namba & Stubbs, 1985).

The number of heavy-atom derivatives required can be quite
demanding experimentally, although phasing with fewer heavy-
atom derivatives is possible, particularly if additional information is
available, such as from a related structure. The different Bessel
terms may be assumed to contribute the same amplitude each, or, if
the structure of a related molecule is known, the ratios of the
amplitudes can be taken as being the same as those for the related
molecule. Using the amplitude estimates derived using either of
these two approaches, applied to both native and derivative data, the
phases of the Bessel terms can be estimated using conventional MIR
and data from at least two heavy-atom derivatives, allowing an
initial electron-density map to be calculated. If only one heavy-
atom derivative is available then two phase solutions are obtained,
but the method of conventional single isomorphous replacement
(SIR) (Drenth, 1994) can be used to obtain an estimate of the
electron density. The electron density obtained by MIR, and
particularly by SIR, in this way tends to be noisy and low contrast
as a result of inaccurate division of the intensities, as well as the
usual sources of errors in MIR. The electron density can, however,
be improved using solvent levelling. If no heavy-atom derivatives
are available, both the relative amplitudes and the phases can be
based on those of a related structure. Model bias can, however, be
more serious than in conventional crystallography since both the
phases and the relative amplitudes are based on the model.

The feasibility of structure determination with a limited number
of heavy-atom derivatives was first demonstrated by Namba &
Stubbs (1987b) using data from TMV at 4 A resolution. The
structure of CGMMYV has been determined at 5 A resolution using
data from two heavy-atom derivatives and the techniques described
above (Lobert ef al., 1987; Lobert & Stubbs, 1990). Structure
determination at this resolution using MDIR would theoretically
require six heavy-atom derivatives. Initial separation of the Bessel-
term amplitudes was based on the equal-amplitude assumption and
also on the relative amplitudes for (homologous) TMV.

In general, the equal-amplitude assumption appears to produce
reliable electron-density maps where only two or three Bessel terms
contribute. The corresponding resolution depends on the helix
symmetry and the molecular diameter, but can be relatively high for
molecules with high helix symmetry. At higher resolution where
more Bessel terms contribute, use of related or partial structures can
be used to calculate initial Bessel-term amplitudes and can lead to
successful phasing.

If the molecule has only approximate helix symmetry, then layer-
line splitting (Section 4.5.2.3.3) can provide additional information
which reduces the number of heavy-atom derivatives required. The
degree of splitting is usually significantly less than the breadth of
the layer lines so that the different Bessel terms within a (split) layer
line overlap. The effect of splitting can be observed, however, since
the centre of a layer line, at a particular value of R, is shifted
towards the position of the stronger Bessel term contributing at that
radius. The shift depends on the relative magnitudes of the
contributing Bessel terms, and can be measured and used in phase
determination as detailed by Stubbs & Makowski (1982). If P of the
heavy-atom derivatives (in addition to the native) give accurate
splitting information, then an additional P linear equations
[analogous to equation (4.5.2.72)] and one quadratic equation
[analogous to equation (4.5.2.70)] are available for solution of the
phase problem, and the number of heavy-atom derivatives required
is reduced by a factor of up to two. The value of layer-line splitting
was first demonstrated by recalculating an electron-density map of
TMV at 6.7 A resolution using only two derivatives, rather than
using six derivatives without the use of splitting data (Stubbs &
Makowski, 1982). Layer-line splitting was subsequently used in a

structure determination of TMV at 3.6 A resolution (Namba &
Stubbs, 1985).

Macromolecular fibre structures that have been built into an
electron-density map have been refined using both restrained least-
squares (RLS) and molecular-dynamics (MD) refinements. Re-
strained least squares has been used to refine the structure of TMV
at 2.9 A resolution (Namba, Pattanayek & Stubbs, 1989); however,
Wang & Stubbs (1993) have shown that a larger radius of
convergence is obtained using MD refinement (as in protein
crystallography).

Molecular-dynamics refinement in fibre diffraction has been
implemented by adding a fibre diffraction option (Wang & Stubbs,
1993) to the X-PLOR program (Briinger, 1992). This involves
including the cylindrically averaged fibre diffraction intensities in
the energy term and taking account of the inter-helical subunit
contacts and covalent connections in the same way as described
above for RLS refinement. The effective potential-energy function
E used is

E=E, + s;zw,i{[zf(zei)]‘/z —k[IS(R))'PV, (4.5.2.73)

where E, is the empirical energy function (which typically includes
bond-length, bond-angle and torsion-angle distortions, van der
Waals and electrostatic interactions, and other terms such as ring
planarity), I(R;) and I/ (R;) are the observed and calculated,
respectively, cylindrically averaged diffraction intensities sampled
at R = R;, the wy; are weights for the observed intensities /{'(R;) and
k is a scale factor between the calculated and observed data. The
quantity S is a weight to make the gradients of the two terms in
equation (4.5.2.73) comparable (Wang & Stubbs, 1993), and can be
estimated using the method of Briinger (1992). Molecular-dynamics
refinement has been successfully used to refine the structure of
CGMMV at 3.4 A resolution (Wang & Stubbs, 1994). In the case of
ribgrass mosaic virus (RMV), the close isomorphism with TMV
(identical helix symmetry, similar repeat distance, significant
sequence homology and similar diffraction pattern) allowed an
initial model to be built based on the TMV structure, and a solution
obtained at 2.9 A by alternating molecular-dynamics refinement
with difference-map and omit-map calculations (Wang et al., 1997).

4.5.2.6.7. Other techniques

Aside from the techniques for structure determination described
in the previous sections, a variety of other techniques have been
applied to specific problems where the methods described above are
not suitable. This situation usually arises where the diffraction data
available are far too few, by themselves, to determine the individual
atomic coordinates of a structure, even with the usual stereo-
chemical constraints. Often only relatively low-resolution data are
available, but they can be supplemented by either a low-resolution
or high-resolution model of either a whole molecule or relatively
large subunits. Structure determination often amounts to positioning
the molecules or subunits within a larger assembly. The results can
be quite precise, depending on the information available. The
problem is almost always one of refinement or optimization, since it
invariably involves optimizing some kind of model directly against
the fibre diffraction data. The problem is usually twofold: (1)
parameterizing the model with few enough parameters to obtain a
usable data-to-parameter ratio, but retaining enough degrees of
freedom to represent the important structural features; and (2)
devising an optimization procedure that will locate the global
minimum of the resulting complicated cost function. There have
been numerous such applications in fibre diffraction, and rather than
attempt to be exhaustive or detailed, I will briefly mention a few of
the more prominent applications and techniques.
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The structure of the bacteriophage Pfl was determined at 7 A
resolution using a model in which the a-helical segments of the
structure were represented by rods of electron density of appropriate
dimensions and spacings (Makowski et al., 1980). The positions
and orientations of the rods were refined in an iterative procedure
that alternated between real space and reciprocal space and also
incorporated solvent levelling. Neutron fibre diffraction data have
been collected from specifically deuterated phages and, starting
with a model of the kind described above, iterative application of
difference maps (between the deuterated and native data) was used
to locate 15 (of the 46) residues, allowing construction of a model of
the coat protein (Stark ez al., 1988; Nambudripad et al., 1991).

Pf1 undergoes a temperature-induced structural transition that
involves a small change in the helix symmetry. The low-
temperature form has 713 helix symmetry with a ¢ repeat of
216.5 A, and the high-temperature form (that discussed in the
previous paragraph) has 275 helix symmetry and a c¢ repeat of
78.3 A. These two symmetries are very similar since 71/3 ~ 27/5
and 216.5/71 ~ 78.3/27, i.e. the rotations and translations from
one subunit to the next are very similar in both structures.

The structure of the low-temperature form of Pfl has been
determined at 3.3 A resolution by starting with an a-helical
polyalanine model (Marvin et al., 1987) and alternating rounds of
molecular-dynamics refinement and model rebuilding based on
(2F, — F.) maps and omit maps (Gonzalez et al., 1995). The
structure of the high-temperature form of Pf1 was determined using
data to 3 A resolution, starting with a model based on the low-
temperature form, making small adjustments to satisfy the slightly
different helix symmetry, and refining the model using molecular
dynamics (Welsh et al., 2000).

The bacteriophage Pf3 is related to Pfl but does not undergo a
structural transition, and fibre diffraction patterns are similar to
those from the high-temperature form of Pfl. An a-helical
polyalanine model of Pf3 based on the Pf1 structure was used to
separate and phase the Bessel terms, which were then used to
calculate (5F, — 4F,) maps. These maps were used to align and
position the polypeptide chain, and the resulting model was refined
by molecular dynamics (Welsh et al., 1998).

The R-type bacterial flagellar filament structure (that has a very

high molecular weight subunit) has been determined at 9 A
resolution by X-ray fibre diffraction (Yamashita et al, 1998).
Accurate intensities were taken from high-quality X-ray diffraction
patterns and combined with phases obtained from electron
cryomicroscopy, and solvent levelling was used to refine the phases.

Some studies of muscle provide a good example of the use of
low-resolution fibre diffraction data, coupled with high-resolution
crystal structures of some of the component molecules, to determine
the structure of a complex. Holmes ef al. (1990) constructed a
model of F-actin based on the crystal structure of the monomer,
G-actin, and 8 A fibre diffraction data, by either treating the
monomer as a rigid body or dividing it into four separate rigid
domains, and using a search procedure followed by least-squares
refinement. The results gave the orientation of the actin monomer in
the actin helix. This structure has since been refined using a genetic
algorithm (Lorenz et al., 1993) and normal-mode analysis (Tirion et
al., 1995). The genetic algorithm involved a Monte Carlo method of
selecting subdomains to be refined and nonlinear least squares to
obtain the best fit for the selected domains. In the normal-mode
analysis, the model was parameterized in terms of its low-frequency
vibrational modes to allow low-energy conformational changes and
reduce the number of parameters which were optimized against the
fibre diffraction data using nonlinear least squares.

Squire et al. (1993) have refined a low-resolution model of the
muscle thin-filament structure that consists of four spheres
representing each of the F-actin monomer subdomains and five
spheres (fixed relative to each other) representing tropomyosin.

Steric restraints were placed on the actin subdomain and thin-
filament structures. The positions of the actin subdomains and the
orientation of the tropomyosin were refined using a search
procedure against fibre diffraction data from both ‘resting’ and
‘activated’ muscle at 25 A resolution. More recent work has used a
low-resolution model of the myosin head (based on the single-
crystal atomic structure), a search procedure and simulated-
annealing refinements to study myosin head configuration (Hudson
et al., 1997) and myosin rod packing (Squire et al., 1998).

4.5.2.6.8. Reliability

As with structure determination in any area of crystallography,
assessment of the reliability or precision of a structure is critically
important. The most commonly used measure of reliability in fibre
diffraction is the R factor, calculated as

|FI° — |F|¢
g = ZFE = IF 45274

YoilF;

where |F|? and |F|; denote the observed (measured) and calculated,
respectively, amplitude of either the samples (along R) of the
cylindrically averaged intensity Il1 2(R) (for a noncrystalline
specimen) or the cylindrically averaged structure factors 111/ 2(th)
(for a polycrystalline specimen). One way of assessing the
significance of the R factor obtained in a particular structure
determination is by comparing it with the ‘largest likely R factor’
(Wilson, 1950), i.e. the expected value of the R factor for a random
distribution of atoms. Wilson (1950) showed that the largest likely
R factor is 0.83 for a centric crystal and 0.59 for an acentric crystal.
Although it does not provide a quantitative measure of structural
reliability, the largest likely R factor does provide a useful yardstick
for evaluating the significance of R factors obtained in structure
determinations.

The largest likely R factor for fibre diffraction can be calculated
from the amplitude statistics, which depend on the number of
degrees of freedom, m, in the measured intensity (Stubbs, 1989;
Millane, 1990a). Making use of these statistics shows that the
largest likely R factor, R, for m components is given by (Stubbs,
1989; Millane, 1989q)

2m — 1 m+1 m
R,=2-2%" Bip|——., =), 4.5.2.75

where (') is the binomial coefficient and B,(m,n) the incomplete
beta function. The beta function in equation (4.5.2.75) can be
replaced by a finite series that is easy to evaluate (Millane, 1989a).
The expression in equation (4.5.2.75) for R,, can be written in
various approximate forms (Millane, 1990d, 1992a), the simplest
being

R, =~ (2/7m)"/? (4.5.2.76)

(Millane, 1990d), which shows that the largest likely R factor falls
off approximately as m~'/? with increasing m. This is because it is
easier to match the sum of a number of structure amplitudes than to
match each of them individually. The important conclusion is that
the largest likely R factor is smaller in fibre diffraction than in
conventional crystallography (where m = 1 or 2), and it is smaller
when there are more overlapping reflections. This means that for
equivalent precision, the R factor must be smaller for a structure
determined by fibre diffraction than for one determined by
conventional crystallography. How much smaller depends on the
number of overlapping reflections on the diffraction pattern.

In a structure determination, the data have different values of m at
different positions on the diffraction pattern. Using the definition of
the R factor, equation (4.5.2.74), shows that the largest likely R
factor for a structure determination is given by (Millane, 1989D)
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_ ZmNmRmSm
ZmNmSm ’

where the sums are over the values of m on the diffraction pattern,
N,, is the number of data that have m components, R,, is given by
equation (4.5.2.75) and S, is given by

o Dl +(172)
m — F(m/Z) ’

where T'(+) is the gamma function. The quantities on the right-hand
side of equation (4.5.2.77) are easily determined for a particular
data set. The largest likely R factor decreases (since m increases)
with increasing resolution of the data, increasing diameter of the
molecule and decreasing order u of the helix symmetry. For
example, for TMV at 5 A resolution the largest likely R factor is
0.37, and at 3 A resolution it is 0.31, whereas for a tenfold nucleic
acid structure at 3 A resolution it is 0.40 (Millane, 1989b, 1992b).
This underlines the importance of comparing R factors obtained in a
fibre diffraction analysis with the largest likely R factor; an R factor
of 0.25 that may indicate a good protein structure may, or may not,
indicate a well determined fibre structure.

Using approximations for Ry, S,, and m allows the following
approximation for the largest likely R factor for a noncrystalline
fibre to be derived (Millane, 1992b):

R ~ 0261 (udmas /) >,

R (4.5.2.77)

(4.5.2.78)

(4.5.2.79)

where dp,.x is the resolution of the data. The approximation
(4.5.2.79) is generally not good enough for calculating accurate
largest likely R factors, but it does show the general behaviour with
helix symmetry, molecular diameter and diffraction-data resolution.
Other approximations to largest likely R factors have been derived
that are quite accurate and also include the effect of a minimum
resolution for the data (Millane, 1992b).

Largest likely R factors in fibre diffraction studies are typically
between about 0.3 and 0.5, depending on the particular structure
(Millane, 1989b, 1992b; Millane & Stubbs, 1992). Although the
largest likely R factor does not give a quantitative assessment of the
significance of an R factor obtained in a particular structure
determination, it can be used as a guide to the significance. R factors
obtained for well determined protein structures are typically
between about one-third and one-half of the corresponding largest
likely R factor, depending on the resolution. It is therefore
reasonable to expect the R factor for a well determined fibre
structure to be between one-third and one-half of the largest likely R
factor calculated for the structure. R factors should, therefore,
generally be less than 0.15 to 0.25, depending on the particular
structure and the resolution as illustrated by the examples presented
in Millane & Stubbs (1992).

The free R factor (Briinger, 1997) has become popular in single-
crystal crystallography as a tool for validation of refinements. The
free R factor is more difficult to implement (but is probably even
more important) in fibre diffraction studies because of the smaller
data sets, but has been used to advantage in recent studies (Hudson
et al., 1997; Welsh et al., 1998, 2000).

4.5.3. Electron crystallography of polymers
(D. L. DORSET)

4.5.3.1. Is polymer electron crystallography possible?

As a crystallographic tool, the electron microscope has also made
an important impact in polymer science. Historically, single-crystal
electron diffraction information has been very useful for the
interpretation of cylindrically averaged fibre X-ray patterns (Atkins,

1989), particularly when there is an extensive overlap of diffracted
intensities. An electron diffraction pattern aids indexing of the fibre
pattern and facilitates measurement of unit-cell constants, and the
observation of undistorted plane-group symmetry similarly places
important constraints on the identification of the space group (Geil,
1963; Wunderlich, 1973).

The concept of using electron diffraction intensities by
themselves for the quantitative determination of crystal structures
of polymers or other organics often has been met with scepticism
(Lipson & Cochran, 1966). Difficulties experienced in the
quantitative interpretation of images and diffraction intensities
from ‘hard’ materials composed of heavy atoms (Hirsch et al.,
1965; Cowley, 1981), for example, has adversely affected the
outlook for polymer structure analysis, irrespective of whether these
reservations are important or not for ‘soft’ materials comprising
light atoms. Despite the still commonly held opinion that no new
crystal structures will be determined that are solely based on data
collected in the electron microscope, it can be shown that this
extremely pessimistic outlook is unwarranted. With proper control
of crystallization (i.e. crystal thickness) and data collection, the
electron microscope can be used quite productively for the direct
determination of macromolecular structures at atomic resolution,
not only to verify some of the previous findings of fibre X-ray
diffraction analysis, but, more importantly, to determine new
structures, even of crystalline forms that cannot be studied
conveniently by X-rays as drawn fibres (Dorset, 1995b). The
potential advantages of electron crystallography are therefore clear.
The great advantage in scattering cross section of matter for
electrons over X-rays permits much smaller samples to be examined
by electron diffraction as single-crystalline preparations (Vainsh-
tein, 1964). (Typical dimensions are given below.)

Electron crystallography can be defined as the quantitative use of
electron micrographs and electron diffraction intensities for the
determination of crystal structures. In the electron microscope, an
electron beam illuminates a semitransparent object and the
microscope objective lens produces an enlarged representation of
the object as an image. If the specimen is thin enough and/or the
electron energy is high enough, the weak-phase-object or
‘kinematical’ approximation is valid (Cowley, 1981), see Chapter
2.5. That is to say, there is an approximate one-to-one mapping of
density points between the object mass distribution and the image,
within the resolution limits of the instrument (as set by the objective
lens aberrations and electron wavelength). The spatial relationships
between diffraction and image planes of an electron microscope
objective lens are reciprocal and related by Fourier transform
operations (Cowley, 1988). While it is easy to transform from the
image to the diffraction pattern, the reverse Fourier transform of the
diffraction pattern to a high-resolution image requires solution of
the famous crystallographic phase problem (as discussed for
electron diffraction in Section 2.5.7).

Certainly, in electron diffraction studies, one must still be
cognizant of the limitations imposed by the underlying scattering
theory. An approximate ‘quasi-kinematical’ data set is often
sufficient for the analysis (Dorset, 1995a). However (Dorset,
1995b), there are other important perturbations to diffraction
intensities which should be minimized. For example, the effects
of radiation damage while recording a high-resolution image are
minimized by so-called ‘low-dose’ procedures (Tsuji, 1989).

4.5.3.2. Crystallization and data collection

The success of electron crystallographic determinations relies on
the possibility of collecting data from thin single microcrystals.
These can be grown by several methods, including self-seeding,
epitaxic orientation, in situ polymerization on a substrate, in a
Langmuir-Blodgett layer, in situ polymerization within a thin layer
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