
The reciprocal-lattice points H � h1d�1 and H � h2d�2, h1,
h2 � �, on the main axes d1

� and d2
� are the main reflections of

the two substructures. All other reflections are referred to as satellite
reflections. Their intensities differ from zero only in the case of
modulated substructures. Each reflection of one subsystem
coincides with exactly one reflection of the other subsystem.

4.6.2.4. 1D quasiperiodic structures

The Fibonacci sequence, the best investigated example of a 1D
quasiperiodic structure, can be obtained from the substitution rule
�: S � L, L � LS, replacing the letter S by L and the letter L by the

word LS (see e.g. Luck et al., 1993). Applying the substitution
matrix

S � 0 1
1 1

� �

associated with �, this rule can be written in the form

S
L

� �
� 0 1

1 1

� �
S
L

� �
� L

L� S

� �
�

S gives the sum of letters, L � S � S� L, and not their order.
Consequently, the same substitution matrix can also be applied, for
instance, to the substitution ��: S � L, L � SL. The repeated
action of S on the alphabet A � �S, L� yields the words An � �n	S

and Bn � �n	L
 � An�1 as illustrated in Table 4.6.2.1. The
frequencies of letters contained in the words An and Bn can be
calculated by applying the nth power of the transposed substitution
matrix on the unit vector. From

�A
n�1

�B
n�1

� �
� ST �A

n

�B
n

� �

it follows that

�A
n

�B
n

� �
� 	ST
n 1

1

� �
�

In the case of the Fibonacci sequence, vB
n gives the total number of

letters S and L, and vA
n the number of letters L.

An infinite Fibonacci sequence, i.e. a word Bn with n ��,
remains invariant under inflation (deflation). Inflation (deflation)
means that the number of letters L, S increases (decreases) under the
action of the (inverted) substitution matrix S. Inflation and deflation
represent self-similarity (scaling) symmetry operations on the
infinite Fibonacci sequence. A more detailed discussion of the
scaling properties of the Fibonacci chain in direct and reciprocal
space will be given later.

The Fibonacci numbers Fn � Fn�1 � Fn�2 form a series with
lim

n��	Fn�1�Fn
 = � �the golden mean � = 
1� 	5
1�2��2 � 2 cos

	��5
 � 1�618 � � ��. The ratio of the frequencies of L and S in the
Fibonacci sequence converges to � if the sequence goes to infinity.
The continued fraction expansion of the golden mean � ,

Fig. 4.6.2.5. 2D embedding of a 1D composite structure with mutual
interaction of the subsystems causing modulations. Filled and empty
circles represent the modulated substructures with periods a1 and a2 of
the basic substructures, respectively. The atoms result from the parallel-
space cut of the sinusoidal atomic surfaces running parallel to d1 and d2.

Fig. 4.6.2.6. Schematic representation of the reciprocal space of the
embedded 1D composite structure depicted in Fig. 4.6.2.4. Filled and
empty circles represent the reflections generated by the substructures
with periods a1 and a2, respectively. The actual 1D diffraction pattern of
the 1D CS results from a projection of the 2D reciprocal space onto the
parallel space. The correspondence between 2D reciprocal-lattice
positions and their projected images is indicated by dashed lines.

Fig. 4.6.2.7. Schematic representation of the reciprocal space of the
embedded 1D composite structure depicted in Fig. 4.6.2.5. Filled and
empty circles represent the main reflections of the two subsystems. The
satellite reflections generated by the modulated substructures are shown
as grey circles. The diameters of the circles are roughly proportional to
the intensities of the reflections. The actual 1D diffraction pattern of the
1D CS results from a projection of the 2D reciprocal space onto the
parallel space. The correspondence between 2D reciprocal-lattice
positions and their projected images is indicated by dashed lines.
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� � 1� 1

1� 1

1� 1
1� � � �

,

contains only the number 1. This means that � is the ‘most
irrational’ number, i.e. the irrational number with the worst
truncated continued fraction approximation to it. This might be
one of the reasons for the stability of quasiperiodic systems, where �
plays a role. The strong irrationality may impede the lock-in into
commensurate systems (rational approximants).

By associating intervals (e.g. atomic distances) with length ratio
� to 1 to the letters L and S, a quasiperiodic structure s	r

(Fibonacci chain) can be obtained. The invariance of the ratio of
lengths L/S � 	L � S
�L � � is responsible for the invariance of
the Fibonacci chain under scaling by a factor �n, n � �. Owing to a
minimum atomic distance S in real crystal structures, the full set of
inverse symmetry operators ��n does not exist. Consequently, the
set of scaling operators s � ��0 � 1, �1, � � �� forms only a semi-
group, i.e. an associative groupoid. Groupoids are the most general
algebraic sets satisfying only one of the group axioms: the
associative law. The scaling properties of the Fibonacci sequence
can be derived from the eigenvalues of the scaling matrix S. For this
purpose the equation

det �S � �I� � 0

with eigenvalue � and unit matrix I has to be solved. The evaluation
of the determinant yields the characteristic polynomial

�2 � �� 1 � 0,

yielding in turn the eigenvalues �1 � 
1� 	5
1�2��2 � � , �2 �

1� 	5
1�2��2 � �1�� and the eigenvectors w1 � 1

�

� �
,

w2 � 1
�1��

� �
. Rewriting the eigenvalue equation gives for the

first (i.e. the largest) eigenvalue

0 1
1 1

� �
1
�

� �
� �

1� �

� �
� �

�2

� �
� �

1
�

� �
�

Identifying the eigenvector
1
�

� �
with

S
L

� �
shows that an infinite

Fibonacci sequence s	r
 remains invariant under scaling by a factor
� . This scaling operation maps each new lattice vector �r upon a
vector r of the original lattice:

s	�r
 � s	r
�

Considering periodic lattices, these eigenvalues are integer
numbers. For quasiperiodic ‘lattices’ (quasilattices) they always
correspond to algebraic numbers (Pisot numbers). A Pisot number
is the solution of a polynomial equation with integer coefficients. It
is larger than one, whereas the modulus of its conjugate is smaller
than unity: �1 � 1 and ��2� 	 1 (Luck et al., 1993). The total
lengths lA

n and lB
n of the words An, Bn can be determined from the

equations lA
n � �n

1lA and lB
n � �n

1lB with the eigenvalue �1. The left
Perron–Frobenius eigenvector w1 of S, i.e. the left eigenvector
associated with �1, determines the ratio S:L to 1:� . The right
Perron–Frobenius eigenvector w1 of S associated with �1 gives the
relative frequencies, 1 and � , for the letters S and L (for a definition
of the Perron–Frobenius theorem see Luck et al., 1993, and
references therein).

The general case of an alphabet A � �L1 � � �Lk� with k letters
(intervals) Li, of which at least two are on incommensurate length
scales and which transform with the substitution matrix S,

L�i �
�k
j�1

SijLj,

can be treated analogously. S is a k � k matrix with non-negative
integer coefficients. Its eigenvalues are solutions of a polynomial
equation of rank k with integer coefficients (algebraic or Pisot
numbers). The dimension n of the embedding space is generically
equal to the number of letters (intervals) k involved by the
substitution rule. From substitution rules, infinitely many different
1D quasiperiodic sequences can be generated. However, their
atomic surfaces in the nD description are generically of fractal
shape (see Section 4.6.2.5).

The quasiperiodic 1D density distribution 
	r
 of the Fibonacci
chain can be represented by the Fourier series


	r
 � 	1�V 
�
H�

F	H�
 exp	�2�iH� � r
,

with H� � � (the set of real numbers). The Fourier coefficients
F	H�
 form a Fourier module M� � �H� ��2

i�1hia�i �hi � ��
equivalent to a � module of rank 2. Thus a periodic function in
2D space can be defined by


	r�, r�
 � 	1�V 
�
H

F	H
 exp
�2�i	H� � r� �H� � r�
�,

where r � 	r�, r�
 � � and H � 	H�, H�
 � �� are, by construc-
tion, direct and reciprocal lattice vectors (Figs. 4.6.2.8 and 4.6.2.9):

Table 4.6.2.1. Expansion of the Fibonacci sequence
Bn � �n	L
 by repeated action of the substitution rule �:

S � L, L � LS

�L, �S are the frequencies of the letters L and S in word Bn.

Bn �L �S n

L 1 0 0

LS 1 1 1

LSL 2 1 2

LSLLS 3 2 3

LSLLSLSL 5 3 4

LSLLSLSLLSLLS 8 5 5

LSLLSLSLLSLLSLSLLSLSL 13 8 6
��
� ��

� ��
�

Fn�1 Fn n

Fig. 4.6.2.8. 2D embedding of the Fibonacci chain. The short and long
distances S and L, generated by the intersection of the atomic surfaces
with the physical space V�, are indicated. The atomic surfaces are
represented by bars parallel to V�. Their lengths correspond to the
projection of one unit cell (shaded) upon V�.
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r � n1d1 � n2d2, with d1 � 1
a�	2� �


1

��
� �

V

,

d2 � 1
a�	2� �


�

1

� �
V

;

H � h1d�1 � h2d�2, with d�1 � a�
1

��
� �

V

, d�2 � a�
�

1

� �
V

�

The 1D Fibonacci chain results from the cut of the parallel
(physical) space with the 2D lattice � decorated with line elements
for the atomic surfaces (acceptance domains). In this description,
the atomic surfaces correspond simply to the projection of one 2D
unit cell upon the perpendicular-space coordinate. This satisfies the
condition that each unit cell contributes exactly to one point of the
Fibonacci chain (primitive unit cell). The physical space V� is
related to the eigenspace of the substitution matrix S associated with
its eigenvalue �1 � � . The perpendicular space V� corresponds to
the eigenspace of the substitution matrix S associated with its
eigenvalue �2 � �1�� . Thus, the physical space scales to powers of
� and the perpendicular space to powers of �1�� .

By block-diagonalization, the reducible substitution (scaling)
matrix S can be decomposed into two non-equivalent irreducible
representations. These can be assigned to the two 1D orthogonal
subspaces V� and V� forming the 2D embedding space
V � V� � V�. Thus, using WSW�1 � SV � S�V � S�V , where

W � 1 �
�� 1

� �
� d�1 d�2	 
,

one obtains

1 �

�� 1

� �
0 1

1 1

� �
D

1 �

�� 1

� ��1

� � 0

0 � 1��

� �
V

� S� 0

0 S�

� �
V

,

the scaling operations S� and S� in parallel and in perpendicular
space as indicated by the partition lines.

The metric tensors for the reciprocal and the direct 2D square
lattices read

G� � �a��2	2� �
 1 0
0 1

� �
and G � 1

�a��2	2� �

1 0
0 1

� �
�

The short distance S of the Fibonacci sequence is related to a� by

S � 1�
a�	2� �
�

� min
����	di � dj


����������	di � dj

�� 	 �AS � i, j � �

� �
,

with the projectors �� and �� onto V� and V�. The point density 
p
of the Fibonacci chain, i.e. the number of vertices per unit length,
can be calculated using the formula


p � �AS

�UC
� 	1� �
�
a�	2� �
�

1�
�a��2	2� �
� � a��2,

where �AS and �UC are the areas of the atomic surface and of the
2D unit cell, respectively.

For an infinite Fibonacci sequence generated from the intervals S
and L an average distance d can be calculated:

d � lim
n��

FnS� Fn�1L
Fn � Fn�1

� lim
n��

Fn	S� �L

Fn	1� �
 � S	1� �2


	1� �
 � 	3� �
S�

Therefrom, the point density can also be calculated:


P � 1�d � 1�
	3� �
S� � 
a�	2� �
��	3� �
 � a��2�

An approximant structure of the Fibonacci sequence with a unit
cell containing m intervals L and n intervals S can be generated by
shearing the 2D lattice � by the shear matrix Sm,

Sm � 1
2� �

�2 � x� � 1 �x
x�2 �2 � x� � 1

� �
D

,

where x � 	n� � m
�	m� � n
:

d�i �
�2
j�1

Smijdj;

d�1 �
1

2� �
	�2 � x� � 1
d1 � xd2

	 


� 1
	2� �
a�

1

�� � x

� �
V

� 1
	2� �
a�

1

�2n� � m�

m� � n

�
�



�

V

,

d�2 �
1

2� �
x�2d1 � 	�2 � x� � 1
d2

	 


� 1
	2� �
a�

�

�x� � 1

� �
V

� 1
	2� �
a�

�

2m� � n�
m� � n

�
�



�

V

�

This shear matrix does not change the magnitudes of the intervals L
and S. In reciprocal space the inverted and transposed shear matrix
is applied on the reciprocal basis,

Fig. 4.6.2.9. Schematic representation of the reciprocal space of the
embedded Fibonacci chain depicted in Fig. 4.6.2.8. The physical-space
reciprocal basis a�1 and a�2 is marked. The diameters of the filled circles
are roughly proportional to the reflection intensities. One 2D reciprocal-
lattice unit cell is shadowed. The actual 1D diffraction pattern of the 1D
Fibonacci chain results from a projection of the 2D reciprocal space
onto the parallel space. The correspondence between 2D reciprocal-
lattice positions and their projected images is indicated by dashed lines.
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	S�1
m 
T � 1

2� �
�2 � x� � 1 �x�2

x �2 � x� � 1

� �
D

,

where x � 	n� � m
�	m� � n
:

d�
�

i ��2
j�1
	S�1

m 
T
ij d

�
j ;

d�
�

1 � 1
2� �

	�2 � x� � 1
d�1 � x�2d�2

	 


� a�
1� x�

��
� �

V

� a�
2m� � n�

m� � n
��

�
�



�

V

,

d�
�

2 � 1
2� �

xd�1 � 	�2 � x� � 1
d�2
	 


� a�
� � x

1

� �
V

� a�
2n� � m�

m� � n

1

�
�



�

V

�

The point xn	t
 of the nth interval L or S of an infinite Fibonacci
sequence is given by

xn	t
 � �x0 � n	3� �
 � 	� � 1

frac	n� � t
 � 	1�2
��S,

where t is the phase of the modulation function y	t
 �
	� � 1

frac	n� � t
 � 	1�2
� (Janssen, 1986). Thus, the Fibonacci
sequence can also be dealt with as an incommensurately modulated
structure. This is a consequence of the fact that for 1D structures
only the crystallographic point symmetries 1 and �1 allow the
existence of a periodic average structure.

The embedding of the Fibonacci chain as an incommensurately
modulated structure can be performed as follows:

(1) select a subset �� � M� of strong reflections for main
reflections H � ha�, h � �;

(2) define a satellite vector q � �a� pointing from each main
reflection to the next satellite reflection.

One possible way of indexing based on the same a� as defined
above is illustrated in Fig. 4.6.2.10. The scattering vector is given
by H� � h	� � 1
a� � mq, where q � �a�, or, in the 2D

representation, H � h1d�1 � h2d�2, where d�1 � a� 1� �
0

� �
V

and

d�2 � a� �
1

� �
v

, with the direct basis

d1 � 1
a�	1� �


1
��

� �
V

, d2 � 1
a�

0
1

� �
V

�

The modulation function is saw-tooth-like (Fig. 4.6.2.11).

4.6.2.5. 1D structures with fractal atomic surfaces

A 1D structure with a fractal atomic surface (Hausdorff
dimension 0.9157. . .) can be derived from the Fibonacci sequence
by squaring its substitution matrix S:

S

L

� �
� 1 1

1 2

� �
S

L

� �
� S� L

S� 2L

� �

with S2 � 1 1

1 2

� �
,

corresponding to the substitution rule S � SL, L � LLS as well

as two other non-equivalent ones (see Janssen, 1995). The
eigenvalues �i are obtained by calculating

det �S � �I� � 0�

The evaluation of the determinant gives the characteristic
polynomial

�2 � 3�� 1 � 0,

with the solutions �1� 2 � 
3� 	5
1�2��2, with �1 � �2 and

�2 � 1��2 � 2� � , and the same eigenvectors w1 � 1
�

� �
, w2 �

1
�1��

� �
as for the Fibonacci sequence. Rewriting the eigenvalue

equation gives

Fig. 4.6.2.10. Reciprocal space of the embedded Fibonacci chain as a
modulated structure. Several main and satellite reflections are indexed.
The square reciprocal lattice of the quasicrystal description illustrated in
Fig. 4.6.2.9 is indicated by grey lines. The reflections located on V� can
be considered to be projected either from the 2D square lattice of the
embedding as for a QS or from the 2D oblique lattice of the embedding
as for an IMS.

Fig. 4.6.2.11. 2D direct-space embedding of the Fibonacci chain as a
modulated structure. The average period is 	3� �
S. The square lattice
in the quasicrystal description shown in Fig. 4.6.2.8 is indicated by grey
lines. The rod-like atomic surfaces are now inclined relative to V� and
arranged so as to give a saw-tooth modulation wave.
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