
vectors d�i , i � 1, � � � , 3� d, spanning a �3� d�D reciprocal lattice
��:

�� � H � �3�d

i�1
hid�i

�
�
�hi � �

� �

,

d�i � �a�i , 0�, i � 1, � � � , 3 and d�3�j � �a�3�j, ce�j �, j � 1, � � � , d�

The first vector component of d�i refers to the physical space, the
second to the perpendicular space spanned by the mutually
orthogonal unit vectors ej. c is an arbitrary constant which can be
set to 1 without loss of generality.

A direct lattice � with basis di, i � 1, � � � , 3� d and di � d�j � �ij,
can be constructed according to

� � r � �3�d

i�1
midi

�
�
�mi � �

� �

,

di � ai, �
�d

j�1
�ij�1�c�ej

� �

, i � 1, � � � , 3

and d3�j � 0, �1�c�e�j
� �

, j � 1, � � � , d�

Consequently, the aperiodic structure in physical space V	 is
equivalent to a 3D section of the �3� d�D hypercrystal.

4.6.3.1.1. Indexing

The 3D reciprocal space M� of a �3� d�D IMS consists of two
separable contributions,

M� � H ��3

i�1
hia�i �

�d

j�1
mjqj

	 


,

the set of main reflections �mj � 0� and the set of satellite
reflections �mj 
� 0� (Fig. 4.6.3.1). In most cases, the modulation
is only a weak perturbation of the crystal structure. The main
reflections are related to the average structure, the satellites to the
difference between average and actual structure. Consequently, the
satellite reflections are generally much weaker than the main
reflections and can be easily identified. Once the set of main
reflections has been separated, a conventional basis a�i , i � 1, � � � , 3,
for �� is chosen.

The only ambiguity is in the assignment of rationally
independent satellite vectors qi. They should be chosen inside the
reciprocal-space unit cell (Brillouin zone) of �� in such a way as to
give a minimal number d of additional dimensions. If satellite
vectors reach the Brillouin-zone boundary, centred �3� d�D
Bravais lattices are obtained. The star of satellite vectors has to
be invariant under the point-symmetry group of the diffraction
pattern. There should be no contradiction to a reasonable physical
modulation model concerning period or propagation direction of the
modulation wave. More detailed information on how to find the
optimum basis and the correct setting is given by Janssen et al.
(1999) and Janner et al. (1983a,b).

4.6.3.1.2. Diffraction symmetry

The Laue symmetry group KL � �R� of the Fourier module M�,

M� � H ��3

i�1
hia�i �

�d

j�1
mjqj �

�3�d

i�1
hia�i

	 


,�� � H ��3

i�1
hia�i

� �

,

is isomorphous to or a subgroup of one of the 11 3D crystal-
lographic Laue groups leaving �� invariant. The action of the point-
group symmetry operators R on the reciprocal basis
a�i , i � 1, � � � , 3� d, can be written as

Ra�i �
�3�d

j�1
�T

ij �R�a�j , i � 1, � � � , 3� d�

The �3� d� 
 �3� d� matrices �T�R� form a finite group of
integral matrices which are reducible, since R is already an
orthogonal transformation in 3D physical space. Consequently, R
can be expressed as pair of orthogonal transformations �R	, R�� in
3D physical and dD perpendicular space, respectively. Owing to
their mutual orthogonality, no symmetry relationship exists
between the set of main reflections and the set of satellite
reflections. �T�R� is the transpose of ��R� which acts on vector
components in direct space.

For the �3� d�D direct-space (superspace) symmetry operator
�Rs, ts� and its matrix representation ��Rs, ts� on �, the following
decomposition can be performed:

��Rs� � �	�R� 0
�M �R� ���R�

� �

and ts � �t3, td��

�	�R� is a 3
 3 matrix, ���R� is a d 
 d matrix and �M �R� is a
d 
 3 matrix. The translation operator ts consists of a 3D vector t3
and a dD vector td . According to Janner & Janssen (1979), �M �R�
can be derived from �M �R� � ��	�R� � ���R��. �M �R� has
integer elements only as it contains components of primitive-lattice
vectors of ��, whereas � in general consists of a rational and an
irrational part: � � �i � �r. Thus, only the rational part gives rise to
nonzero entries in �M �R�. With the order of the Laue group denoted
by N, one obtains �i � �1�N��R�

��R���	�R��1, where
���R��i�	�R��1 � �i, implying that �M�R� � �r�	�R� �
���R��r and 0 � �i�	�R� � ���R��i.

Example: In the case of a 3D IMS with 1D modulation �d � 1�
the 3
 d matrix

� �
�1

�2

�3




�

�

�

has the components of the wavevector q ��3
i�1�ia�i � qi � qr.

���R� � � � �1 because for d � 1, q can only be transformed into
�q. Corresponding to qi � �1�N��R�Rq, one obtains RT qi � �qi

(modulo ��). The 3
 1 row matrix �M �R� is equivalent to the
difference vector between RT q and �q (Janssen et al., 1999).

For a monoclinic modulated structure with point group 2�m for
M� (unique axis a3) and satellite vector q � �1�2�a1

� � �3a3
�, with

�3 an irrational number, one obtains

qi � �1�N��
R
�Rq

� 1
4

�1 �
1 0 0

0 1 0

0 0 1




�
�

�

�
�

1�2

0

�3




�
�

�

�
�




�
�

� 1 �
�1 0 0

0 �1 0

0 0 1




�
�

�

�
�

1�2

0

�3




�
�

�

�
�� 1 �

�1 0 0

0 �1 0

0 0 �1




�
�

�

�
�

1�2

0

�3




�
�

�

�
�

�1 �
1 0 0

0 1 0

0 0 �1




�
�

�

�
�

1�2

0

�3




�
�

�

�
�

�

�
�

�
0

0

�3




�
�

�

�
��

From the relations RT qi � �qi �modulo ���, it can be shown that
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the symmetry operations 1 and 2 are associated with the
perpendicular-space transformations � � 1, and m and �1 with
� � �1. The matrix �M �R� is given by

�M �2� � �r�	�2� � ���2��r

�
1�2

0

0




�
�

�

�
�

�1 0 0

0 �1 0

0 0 1




�
�

�

�
�� ��1�

1�2

0

0




�
�

�

�
� �

�1

0

0




�
�

�

�
�

for the operation 2, for instance.
The matrix representations �T �Rs� of the symmetry operators R

in reciprocal �3� d�D superspace decompose according to

�T �Rs� � �	T�R� �MT�R�
0 ��T�R�

� �

�

Phase relationships between modulation functions of symmetry-
equivalent atoms can give rise to systematic extinctions of different
classes of satellite reflections. The extinction rules may include
indices of both main and satellite reflections. A full list of
systematic absences is given in the table of �3� 1�D superspace
groups (Janssen et al., 1999). Thus, once point symmetry and
systematic absences are found, the superspace group can be
obtained from the tables in a way analogous to that used for regular
3D crystals. A different approach for the symmetry description of
IMSs from the 3D Fourier-space perspective has been given by
Dräger & Mermin (1996).

4.6.3.1.3. Structure factor

The structure factor of a periodic structure is defined as the
Fourier transform of the density distribution ��r� of its unit cell
(UC):

F�H� � �

UC
��r� exp�2�iH � r� dr�

The same is valid in the case of the �3� d�D description of IMSs.
The parallel- and perpendicular-space components are orthogonal
to each other and can be separated. The Fourier transform of the
parallel-space component of the electron-density distribution of a
single atom gives the usual atomic scattering factors fk�H	�. For the
structure-factor calculation, one does not need to use ��r� explicitly.
The hyperatoms correspond to the convolution of the electron-
density distribution in 3D physical space with the modulation
function in dD perpendicular space. Therefore, the Fourier
transform of the �3� d�D hyperatoms is simply the product of
the Fourier transform fk�H	� of the physical-space component with
the Fourier transform of the perpendicular-space component, the
modulation function.

For a general displacive modulation one obtains for the ith
coordinate xik of the kth atom in 3D physical space

xik � �xik � uik��x4, � � � ,�x3�d�, i � 1, � � � , 3,

where �xik are the basic-structure coordinates and uik��x4, � � � ,�x3�d�
are the modulation functions with unit periods in their arguments
(Fig. 4.6.3.2). The arguments are �x3�j � �ij�x0

ik � tj, j � 1, � � � , d,
where �x0

ik are the coordinates of the kth atom referred to the origin of
its unit cell and tj are the phases of the modulation functions. The
modulation functions uik��x4, � � � ,�x3�d� themselves can be ex-
pressed in terms of a Fourier series as

uik �x4, � � � ,�x3�d� �
� ��

n1�1
� � �

��

nd�1

uCn1���nd
ik cos 2� n1�x4 � � � �� nd�x3�d� �� ��

� uSn1���nd
ik sin 2� n1�x4 � � � �� nd�x3�d� �� ��,

where nj are the orders of harmonics for the jth modulation wave of
the ith component of the kth atom and their amplitudes are uCn1���nd

ik
and uSn1���nd

ik .
Analogous expressions can be derived for a density modulation,

i.e., the modulation of the occupation probability pk �x4, � � � ,�x3�d� �:
pk �x4, � � � ,�x3�d� �
� ��

n1�1
� � �

��

nd�1

pCn1���nd
k cos 2� n1�x4 � � � �� nd�x3�d� �� ��

� pSn1���nd
k sin 2� n1�x4 � � � �� nd�x3�d� �� ��,

and for the modulation of the tensor of thermal parameters
Bijk �x4, � � � ,�x3�d� �:

Bijk �x4, � � � ,�x3�d� �
� ��

n1�1
� � �

��

nd�1

BCn1���nd
ijk cos 2� n1�x4 � � � �� nd�x3�d� �� �

�

� BSn1���nd
ijk sin 2� n1�x4 � � � �� nd�x3�d� �� �

�
�

The resulting structure-factor formula is

F�H� � �N �

k�1

�

�R	 t�

�1

0
d�x4	 k � � �

�1

0
d�x3�d	 kfk�H	�pk


 exp � �3�d

i	 j�1
hi RBijkRT
� �

hj � 2�i
�3�d

j�1
hjRxjk � hjtj

� �

for summing over the set (R, t) of superspace symmetry operations
and the set of N� atoms in the asymmetric unit of the �3� d�D unit
cell (Yamamoto, 1982). Different approaches without numerical
integration based on analytical expressions including Bessel
functions have also been developed. For more information see
Paciorek & Chapuis (1994), Petricek, Maly & Cisarova (1991), and
references therein.

For illustration, some fundamental IMSs will be discussed briefly
(see Korekawa, 1967; Böhm, 1977).

Harmonic density modulation. A harmonic density modulation
can result on average from an ordered distribution of vacancies on
atomic positions. For an IMS with N atoms per unit cell one obtains

Fig. 4.6.3.2. The relationships between the coordinates x1k , x4k ,�x1,�x4 and
the modulation function u1k in a special section of the �3� d�D space.
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