
i � 1, � � � , 3. In the general case, each subsystem will be modulated
with the periods of the others due to their mutual interactions. Thus,
in general, CSs consist of several intergrown incommensurately
modulated substructures. The satellite vectors qj� , j � 1, � � � , d,
referred to the �th subsystem can be obtained from M� by applying
the d � �3� d� integer matrices Vjk�: qj� �

�3�d
k�1Vjk�a�k ,

j � 1, � � � , d. The matrices consisting of the components �� of the
satellite vectors qj� with regard to the reciprocal sublattices ��� can
be calculated by �� � �V3� � Vd����Z3� � Zd����1, where the
subscript 3 refers to the 3� 3 submatrix of physical space and the
subscript d to the d � d matrix of the internal space. The
juxtaposition of the 3� �3� d� matrix Z� and the d � �3� d�
matrix V� defines the non-singular �3� d� � �3� d� matrix W� ,

W� � Z�

V�

� �

�

This matrix allows the reinterpretation of the Fourier module M� as
the Fourier module M�

� � M�W� of a d-dimensionally modulated
subsystem �. It also describes the coordinate transformation
between the superspace basis � and �� .

The superspace description is obtained analogously to that for
IMSs (see Section 4.6.3.1) by considering the 3D Fourier module
M� of rank 3� d as the projection of a �3� d�D reciprocal lattice
�� upon the physical space. Thus, one obtains for the definition of
the direct and reciprocal �3� d� lattices (Janner & Janssen, 1980b)

�� �
a�i � �a�i , 0� i � 1, � � � , 3

a�3�j � �a�3�j, e�j � j � 1, � � � , d

�

� �
ai � �ai, �

�d

j�1
�jiej� i � 1, � � � , 3

a3�j � �0, ej� j � 1, � � � , d�

�
��

��

4.6.3.2.1. Indexing

The indexing of diffraction patterns of composite structures can
be performed in the following way:

(1) find the minimum number of reciprocal lattices ��� necessary
to index the diffraction pattern;

(2) find a basis for M�, the union of sublattices ���;
(3) find the appropriate superspace embedding.
The �3� d� vectors a�i forming a basis for the 3D Fourier module

M� � ��3�d
i�1 hia�i 	 can be chosen such that a�1, a�2 and a�3 are

linearly independent. Then the remaining d vectors can be described
as a linear combination of the first three, defining the d � 3 matrix
�: a�3�j �

�3�d
i�1 �jia�i , j � 1, � � � , d. This is formally equivalent to

the reciprocal basis obtained for an IMS (see Section 4.6.3.1) and
one can proceed in an analogous way to that for IMSs.

4.6.3.2.2. Diffraction symmetry

The symmetry of CSs can be described with basically the same
formalism as used for IMSs. This is a consequence of the formally
equivalent applicability of the higher-dimensional approach, in
particular of the superspace-group theory developed for IMSs [see
Janner & Janssen (1980a,b); van Smaalen (1991, 1992); Yamamoto
(1992a)].

4.6.3.2.3. Structure factor

The structure factor F�H� of a composite structure consists of the
weighted contributions of the subsystem structure factors F��H��:

F�H� ��

�

J�
F��H��;

F��H� �
��

�R� � t��

�N �

k�1

	1

0
d�x�4� k � � �

	1

0
d�x�3�d� kf �k �H�p�

k

� exp � �3�d

i� j�1
h�i �R�B�

ijkR�T �h�j



� 2�i
�3�d

j�1
h�

j R�x�jk � h�j t�j

�

,

with coefficients similar to those for IMSs.
The weights are the Jacobians of the transformations from t� to t,

and H� are the reflection indices with respect to the subsystem
Fourier modules M�

� (van Smaalen, 1995, and references therein).

The relative values of 
J� 
, where J� � det Vd� � �� � Zd�� ��1
� 

,

are related to the volume ratios of the contributing subsystems. The
subsystem structure factors correspond to those for IMSs (see
Section 4.6.3.1). Besides this formula, based on the publications of
Yamamoto (1982) and van Smaalen (1995), different structure-
factor equations have been discussed (Kato, 1990; Petricek, Maly,
Coppens et al., 1991).

4.6.3.3. Quasiperiodic structures (QSs)

4.6.3.3.1. 3D structures with 1D quasiperiodic order

Structures with quasiperiodic order in one dimension and lattice
symmetry in the other two dimensions are the simplest representa-
tives of quasicrystals. A few phases of this structure type have been
identified experimentally (see Steurer, 1990). Since the Fibonacci
chain represents the most important model of a 1D quasiperiodic
structure, it will be used in this section to represent the
quasiperiodic direction of 3D structures with 1D quasiperiodic
order. As discussed in Section 4.6.2.4, 1D quasiperiodic structures
are on the borderline between quasiperiodic and incommensurately
modulated structures. They can be described using either of the two
approaches. In the following, the quasiperiodic description will be
preferred to take account of the scaling symmetry.

The electron-density-distribution function ��r� of a 1D quasiper-
iodically ordered 3D crystal can be represented by a Fourier series:

��r� � �1�V ��
H

F�H� exp��2�iH � r��

The Fourier coefficients (structure factors) F�H� differ from zero
only for reciprocal-space vectors H ��3

i�1hi a�i with h1
 � �,

h2
, h3

 � � or with integer indexing H ��4
i�1hia�i with hi � �.

The set of all vectors H forms a Fourier module M� � �H ��4
i�1hia�i 
hi � �	 of rank 4 which can be decomposed into two rank

2 submodules M� � M�
1 �M�

2 . M�
1 � �h1a�1 � h2a�2	 corresponds

Fig. 4.6.3.4. The relative structure-factor magnitudes of mth-order satellite
reflections for a harmonic displacive modulation are proportional to the
values of the mth-order Bessel function Jm�x�.
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to a � module of rank 2 in a 1D subspace, M�
2 � �h3a�3 � h4a�4	

corresponds to a � module of rank 2 in a 2D subspace.
Consequently, the first submodule can be considered as a projection
from a 2D reciprocal lattice, M�

1 � �����, while the second
submodule is of the form of a reciprocal lattice, M�

2 � ��.
Hence, the reciprocal-basis vectors a�i , i � 1, � � � , 4, can be

considered to be projections of reciprocal-basis vectors
d�i , i � 1, � � � , 4, spanning a 4D reciprocal lattice, onto the physical
space �� � �H ��4

i�1hid�i 
hi � �	, with

d�1 � a�1

1
��
0
0

�

�
�
�

�

�
�
�, d�2 � a�1

�
1
0
0

�

�
�
�

�

�
�
�, d�3 � a�3

0
0
1
0

�

�
�
�

�

�
�
�, d�4 � a�4

0
0
0
1

�

�
�
�

�

�
�
��

A direct lattice � with basis di, i � 1, � � � , 4 and di � d�j � 	ij, can be
constructed according to (compare Fig. 4.6.2.8) � �
�r ��4

i�1midi
mi � �	, with

d1 � 1
a�1�2� ��

1

��
0

0

�

�
�
�
�

�

�
�
�
�

, d2 � 1
a�1�2� ��

�

1

0

0

�

�
�
�
�

�

�
�
�
�

,

d�3 �
1
a�3

0

0

1

0

�

�
�
�
�

�

�
�
�
�

, d�4 �
1
a�4

0

0

0

1

�

�
�
�
�

�

�
�
�
�
�

Consequently, the structure in physical space V is equivalent to a
3D section of the 4D hypercrystal.

4.6.3.3.1.1. Indexing
The reciprocal space of the Fibonacci chain is densely filled with

Bragg reflections (Figs. 4.6.2.9 and 4.6.3.5). According to the nD
embedding method, the shorter the parallel-space distance �H �
H

2 �H
1 between two Bragg reflections, the larger the correspond-

ing perpendicular-space distance �H� � H�
2 �H�

1 becomes.
Since the structure factor F�H� decreases rapidly as a function of
H� (Fig. 4.6.3.6), ‘neighbouring’ reflections of strong Bragg peaks
are extremely weak and, consequently, the reciprocal space appears
to be filled with discrete Bragg peaks even for low-resolution
experiments.

This property allows an unambiguous identification of a correct
set of reciprocal-basis vectors. However, infinitely many sets
allowing a correct indexing of the diffraction pattern with integer
indices exist. Nevertheless, an optimum basis (low indices are
assigned to strong reflections) can be derived: the intensity
distribution, not the metrics, characterizes the best choice of
indexing. Once the minimum distance S in the structure is identified
from chemical considerations, the reciprocal basis should be chosen
as described in Section 4.6.2.4. It has to be kept in mind, however,
that the identification of the metrics is not sufficient to distinguish in
the 1D aperiodic case between an incommensurately modulated
structure, a quasiperiodic structure or special kinds of structures
with fractally shaped atomic surfaces.

A correct set of reciprocal-basis vectors can be identified in the
following way:

(1) Find pairs of strong reflections whose physical-space
diffraction vectors are related to each other by the factor � .

(2) Index these reflections by assigning an appropriate value to
a�. This value should be derived from the shortest interatomic
distance S expected in the structure.

(3) The reciprocal basis is correct if all observable Bragg
reflections can be indexed with integer numbers.

4.6.3.3.1.2. Diffraction symmetry
The possible Laue symmetry group K3D of the Fourier module

M� � �H ��4
i�1hia�i 
hi � �	 is any one of the direct product

K3D � K2D � K1D � �1. K2D corresponds to one of the ten crystal-
lographic 2D point groups, K1D � �1	 in the general case of a
quasiperiodic stacking of periodic layers. Consequently, the nine
Laue groups �1, 2�m, mmm, 4/m, 4/mmm, �3, �3m, 6�m and 6�mmm are
possible. These are all 3D crystallographic Laue groups except for
the two cubic ones.

The (unweighted) Fourier module shows only 2D lattice
symmetry. In the third dimension, the submodule M�

1 remains
invariant under the scaling symmetry operation SnM�

1 � �nM�
1 with

n � �. The scaling symmetry operators Sn form an infinite group
s � �� � � , S�1, S0, S1, � � �	 of reciprocal-basis transformations Sn in
superspace,

Sn �

0 1 0 0

1 1 0 0

0 0 1 0

0 0 0 1

�

�
�
�
�

�

�
�
�
�

n

D

, S�1 �

�1 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

�

�
�
�
�

�

�
�
�
�

D

,

S0 �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�

�
�
�
�

�

�
�
�
�

D

,

and act on the reciprocal basis d�i in superspace.

Fig. 4.6.3.5. The structure factors F�H� (below) and their magnitudes

F�H�
 (above) of a Fibonacci chain decorated with equal point atoms
are shown as a function of the parallel-space component 
H
 of the
diffraction vector. The short distance in the Fibonacci chain is
S � 2�5 A

�
, all structure factors within 0 � 
H
 � 2�5 A

� �1
have been

calculated and normalized to F�00� � 1.
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4.6.3.3.1.3. Structure factor
The structure factor of a periodic structure is defined as the

Fourier transform of the density distribution ��r� of its unit cell
(UC):

F�H� � 	

UC
��r� exp�2�iH � r� dr�

The same is valid in the case of the nD description of a
quasiperiodic structure. The parallel- and perpendicular-space
components are orthogonal to each other and can be separated. In
the case of the 1D Fibonacci sequence, the Fourier transform of the
parallel-space component of the electron-density distribution of a
single atom gives the usual atomic scattering factor f �H�. Parallel
to x�, ��r� adopts values �� 0 only within the interval ��1� ���
�2a��2� ��� � x� � �1� ����2a��2� ��� and one obtains

F�H� � f �H��a��2� �����1� ��

� 	��1�����2a��2����

��1�����2a��2����
exp�2�iH� � x�� dx��

The factor �a��2� �����1� �� results from the normalization of the
structure factors to F�0� � f �0�. With

H � h1d�1 � h2d�2 � h3d�3 � h4d�4

� h1a�1

1

��
0

0

�

�
�
�
�

�

�
�
�
�
� h2a�1

�

1

0

0

�

�
�
�
�

�

�
�
�
�
� h3a�3

0

0

1

0

�

�
�
�
�

�

�
�
�
�
� h4a�4

0

0

0

1

�

�
�
�
�

�

�
�
�
�

and H� � a�1���h1 � h2� the integrand can be rewritten as

F�H� � f �H��a��2� �����1� ��

� 	��1�����2a��2����

��1�����2a��2����
exp�2�i���h1 � h2�x�� dx�,

yielding

F�H� � f �H��2� ����2�i���h1 � h2��1� ���
� exp�2�i���h1 � h2�x��

�
���1�����2a��2����
��1�����2a��2�����

Using sin x � �eix � e�ix��2i gives

F�H� � f �H��2� ��������h1 � h2��1� ���
� sin���1� �����h1 � h2����2� ���

Thus, the structure factor has the form of the function sin�x��x with
x a perpendicular reciprocal-space coordinate. The upper and lower
limiting curves of this function are given by the hyperbolae �1�x
(Fig. 4.6.3.6). The continuous shape of F�H� as a function of H�
allows the estimation of an overall temperature factor and atomic
scattering factor for reflection-data normalization (compare Figs.
4.6.3.6 and 4.6.3.7).

In the case of a 3D crystal structure which is quasiperiodic in one
direction, the structure factor can be written in the form

F�H� � �n

k�1
Tk�H�fk�H�gk�H�� exp�2�iH � rk�
� 

�
Fig. 4.6.3.6. The structure factors F�H� (below) and their magnitudes

F�H�
 (above) of a Fibonacci chain decorated with equal point atoms
are shown as a function of the perpendicular-space component 
H�
 of
the diffraction vector. The short distance in the Fibonacci chain is
S � 2�5 A

�
, all structure factors within 0 � 
H
 � 2�5 A

� �1
have been

calculated and normalized to F�00� � 1.

Fig. 4.6.3.7. The structure factors F�H� of the Fibonacci chain decorated
with aluminium atoms �Uoverall � 0�005 A

� 2� as a function of the parallel
(above) and the perpendicular (below) component of the diffraction
vector. The short distance is S � 2�5 A

�
, all structure factors within 0 �


H
 � 2�5 A
� �1

have been calculated and normalized to F�00� � 1.
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The sum runs over all n averaged hyperatoms in the 4D unit cell of
the structure. The geometric form factor gk�H�� corresponds to the
Fourier transform of the kth atomic surface,

gk�H�� � �1�A�UC�
	

Ak

exp�2�iH� � r�� dr�,

normalized to A�UC, the area of the 2D unit cell projected upon V�,
and Ak , the area of the kth atomic surface.

The atomic temperature factor Tk�H� can also have perpendi-
cular-space components. Assuming only harmonic (static or
dynamic) displacements in parallel and perpendicular space one
obtains, in analogy to the usual expression (Willis & Pryor, 1975),

Tk�H� � Tk�H, H��
� exp��2�2HT�ui uT

j �H� exp��2�2H�T�u�i u�T
j �H��,

with

�ui uT
j � �

�u2
1 � �u1 � uT

2 � �u1 � uT
3 �

�u2 � uT
1 � �u2

2 � �u2 � uT
3 �

�u3 � uT
1 � �u3 � uT

2 � �u2
3 �

�

�
�
�

�

�
�
�

and �u�i u�T
j � � �u�4 ��

The elements of the type �ui � uT
j � represent the average values of

the atomic displacements along the ith axis times the displacement
along the jth axis on the V basis.

4.6.3.3.1.4. Intensity statistics
In the following, only the properties of the quasiperiodic

component of the 3D structure, namely the Fourier module M�
1 ,

are discussed. The intensities I�H� of the Fibonacci chain decorated
with point atoms are only a function of the perpendicular-space
component of the diffraction vector. 
F�H�
 and F�H� are illustrated
in Figs. 4.6.3.5 and 4.6.3.6 as a function of H and of H�. The
distribution of 
F�H�
 as a function of their frequencies clearly
resembles a centric distribution, as can be expected from the
centrosymmetric 2D sub-unit cell. The shape of the distribution
function depends on the radius Hmax of the limiting sphere in
reciprocal space. The number of weak reflections increases with the
square of Hmax, that of strong reflections only linearly (strong
reflections always have small H� components).

The weighted reciprocal space of the Fibonacci sequence
contains an infinite number of Bragg reflections within a limited
region of the physical space. Contrary to the diffraction pattern of a
periodic structure consisting of point atoms on the lattice nodes, the
Bragg reflections show intensities depending on the perpendicular-
space components of their diffraction vectors.

The reciprocal space of a sequence generated from hyperatoms
with fractally shaped atomic surfaces (squared Fibonacci sequence)
is very similar to that of the Fibonacci sequence (Figs. 4.6.3.8 and
4.6.3.9). However, there are significantly more weak reflections in
the diffraction pattern of the ‘fractal’ sequence, caused by the
geometric form factor.

4.6.3.3.1.5. Relationships between structure factors at
symmetry-related points of the Fourier image

The two possible point-symmetry groups in the 1D quasiperiodic
case, K1D � 1 and K1D � �1, relate the structure factors to

1 � F�H� � �F��H�,
�1 � F�H� � F��H��

A 3D structure with 1D quasiperiodicity results from the stacking of
atomic layers with distances following a quasiperiodic sequence.

The point groups K3D describing the symmetry of such structures
result from the direct product K3D � K2D � K1D� K2D corresponds
to one of the ten crystallographic 2D point groups, K1D can be �1	
or �1, m	. Consequently, 18 3D point groups are possible.

Since 1D quasiperiodic sequences can be described generically
as incommensurately modulated structures, their possible point and
space groups are equivalent to a subset of the �3� 1�D superspace
groups for IMSs with satellite vectors of the type �00
�, i.e.
q � 
c�, for the quasiperiodic direction [001] (Janssen et al., 1999).

From the scaling properties of the Fibonacci sequence, some
relationships between structure factors can be derived. Scaling the
physical-space structure by a factor �n, n � �, corresponds to a
scaling of the perpendicular space by the inverse factor �����n. For
the scaling of the corresponding reciprocal subspaces, the inverse
factors compared to the direct spaces have to be applied.

The set of vectors r, defining the vertices of a Fibonacci sequence
s�r�, multiplied by a factor � coincides with a subset of the vectors
defining the vertices of the original sequence (Fig. 4.6.3.10). The
residual vertices correspond to a particular decoration of the scaled
sequence, i.e. the sequence �2s�r�. The Fourier transform of the
sequence s�r� then can be written as the sum of the Fourier
transforms of the sequences �s�r� and �2s�r�;
�

k
exp�2�iH � rk� �

�

k
exp�2�iH�rk� �

�

k
exp�2�iH��2rk � ����

In terms of structure factors, this can be reformulated as

F�H� � F��H� � exp�2�i�H�F��2H��
Hence, phases of structure factors that are related by scaling

symmetry can be determined from each other.

Fig. 4.6.3.8. The structure factors F�H� (below) and their magnitudes

F�H�
 (above) of the squared Fibonacci chain decorated with equal
point atoms are shown as a function of the parallel-space component

H
 of the diffraction vector. The short distance is S � 2�5 A

�
, all

structure factors within 0 � 
H
 � 2�5 A
� �1

have been calculated and
normalized to F�00� � 1.
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Further scaling relationships in reciprocal space exist: scaling a

diffraction vector H � h1d�1 � h2d�2 � h1a� 1
��

� �

V

� h2a� �
1

� �

V
with the matrix S � 0 1

1 1

� �

D

,

0 1

1 1

� �

D

h1

h2

� �

D

� Fn Fn�1

Fn�1 Fn�2

� �

D

h1

h2

� �

D

� Fnh1 � Fn�1h2

Fn�1h1 � Fn�2h2

� �

D

,

increases the magnitudes of structure factors assigned to this
particular diffraction vector H,

�
�F�SnH��� � �

�F�Sn�1H��� � � � � �
�
�F�SH��� � �

�F�H����
This is due to the shrinking of the perpendicular-space

component of the diffraction vector by powers of �����n while
expanding the parallel-space component by �n according to the
eigenvalues � and ���1 of S acting in the two eigenspaces V and
V�:

��SH� � h2 � � h1 � h2� �� �a� � �h1 � h2 � � 1� �� �a�

� � h1 � �h2� �a�,
���SH� � ��h2 � h1 � h2� �a� � h1 � h2 � � 1� �� �a�

� ��1��� ��h1 � h2� �a�,
�
�F��nH��� � �

�F��n�1H��� � � � � �
�
�F��H��� � �

�F�H����

Thus, for scaling n times we obtain

���SnH� � �� Fnh1 � Fn�1h2� � � Fn�1h1 � Fn�2h2� �� �a�
� h1 ��Fn � Fn�1� � � h2 ��Fn�1 � Fn�2� �� �a�

with

lim
n�� ��Fn � Fn�1� � � 0 and lim

n�� ��Fn�1 � Fn�2� � � 0,

yielding eventually

lim
n�� ���SnH�� � � 0 and lim

n�� F�SnH�� � � F�0��

The scaling of the diffraction vectors H by Sn corresponds to a
hyperbolic rotation (Janner, 1992) with angle n�, where sinh� �
1�2 (Fig. 4.6.3.11):

0 1

1 1

� �2n

� cosh 2n� sinh 2n�

sinh 2n� cosh 2n�

� �

,

0 1

1 1

� �2n�1

� sinh 2n� 1� ��� � cosh 2n� 1� ��� �
cosh 2n� 1� ��� � sinh 2n� 1� ��� �

� �

�

Fig. 4.6.3.9. The structure factors F�H� (below) and their magnitudes

F�H�
 (above) of the squared Fibonacci chain decorated with equal
point atoms are shown as a function of the perpendicular-space
component 
H�
 of the diffraction vector. The short distance is
S � 2�5 A

�
, all structure factors within 0 � 
H
 � 2�5 A

� �1
have been

calculated and normalized to F�00� � 1.

Fig. 4.6.3.10. Part . . . LSLLSLSL . . . of a Fibonacci sequence s�r� before
and after scaling by the factor � . L is mapped onto �L, S onto �S � L.
The vertices of the new sequence are a subset of those of the original
sequence (the correspondence is indicated by dashed lines). The residual
vertices �2s�r�, which give when decorating �s�r� the Fibonacci
sequence s�r�, form a Fibonacci sequence scaled by a factor �2.

Fig. 4.6.3.11. Scaling operations of the Fibonacci sequence. The scaling
operation S acts six times on the diffraction vector H � �4�2� yielding
the sequence �4�2� � ��22� � �20� � �02� � �22� � �24� � �46�.
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4.6.3.3.2. Decagonal phases

A structure quasiperiodic in two dimensions, periodic in the third
dimension and with decagonal diffraction symmetry is called a
decagonal phase. Its holohedral Laue symmetry group is
K � 10�mmm. All reciprocal-space vectors H � M� can be
represented on a basis (V basis) a�i � a�i �cos 2�i�5, sin 2�i�5, 0�,
i � 1, � � � , 4 and a�5 � a�5�0, 0, 1� (Fig. 4.6.3.12) as H ��5

i�1hia�i .
The vector components refer to a Cartesian coordinate system in
physical (parallel) space. Thus, from the number of independent
reciprocal-basis vectors necessary to index the Bragg reflections
with integer numbers, the dimension of the embedding space has to
be at least five. This can also be shown in a different way (Hermann,
1949).

The set M� of all vectors H remains invariant under the action of
the symmetry operators of the point group 10�mmm. The
symmetry-adapted matrix representations for the point-group
generators, the tenfold rotation  � 10, the reflection plane � �
m2 (normal of the reflection plane along the vectors a�i a�i�3 with
i � 1, � � � , 4 modulo 5) and the inversion operation ��
� � �1 may
be written in the form

��� �
0 1 �1 0 0
0 1 0 �1 0
0 1 0 0 0
�1 1 0 0 0
0 0 0 0 1

�

�
�
�
�

�

�
�
�
�

D

���� �

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

�

�
�
�
�

�

�
�
�
�

D

��
� �

�1 0 0 0 0
0 �1 0 0 0
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 �1

�

�
�
�
�

�

�
�
�
�

D

�

By block-diagonalization, these reducible symmetry matrices
can be decomposed into non-equivalent irreducible representations.
These can be assigned to the two orthogonal subspaces forming the
5D embedding space V � V � V�, the 3D parallel (physical)
subspace V and the perpendicular 2D subspace V�. Thus, using
W�W�1 � �V � �


V � ��V , we obtain

�V �� �

cos���5� � sin���5� 0 0 0

sin���5� cos���5� 0 0 0

0 0 1 0 0

0 0 0 cos�3��5� � sin�3��5�
0 0 0 sin�3��5� cos�3��5�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

V

�
��� 0

0 ����


 �

V

,

�V ��� �

1 0 0 0 0
0 �1 0 0 0
0 0 1 0 0
0 0 0 �1 0
0 0 0 0 1

�

�
�
�
�
�

�

�
�
�
�
�

V

, �V �
�

�1 0 0 0 0
0 �1 0 0 0
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 �1

�

�
�
�
�
�

�

�
�
�
�
�

V

,

where

W �

a�1 cos�2��5� a�2 cos�4��5� a�3 cos�6��5� a�4 cos�8��5� 0
a�1 sin�2��5� a�2 sin�4��5� a�3 sin�6��5� a�4 sin�8��5� 0

0 0 0 0 a�5
a�1 cos�6��5� a�2 cos�2��5� a�3 cos�8��5� a�4 cos�4��5� 0
a�1 sin�6��5� a�2 sin�2��5� a�3 sin�8��5� a�4 sin�4��5� 0

�

�
�
�
�
�

�

�
�
�
�
�
�

The column vectors of the matrix W give the parallel- (above the
partition line) and perpendicular-space components (below the
partition line) of a reciprocal basis in V space. Thus, W can be
rewritten using the physical-space reciprocal basis defined above as

W � d�1, d�2, d�3, d�4, d�5� �,
yielding the reciprocal basis d�i , i � 1, � � � , 5, in the 5D embedding
space (D space):

d�i � a�i

cos�2�i�5�
sin�2�i�5�

0
cos�6�i�5�
sin�6�i�5�

�

�
�
�
�
�

�

�
�
�
�
�

V

, i � 1, � � � , 4 and d�5 � a�5

0
0
1
0
0

�

�
�
�
�
�

�

�
�
�
�
�

V

�

The 5� 5 symmetry matrices can each be decomposed into a 3� 3
matrix and a 2� 2 matrix. The first one, �, acts on the parallel-
space component, the second one, ��, on the perpendicular-space
component. In the case of ���, the coupling factor between a
rotation in parallel and perpendicular space is 3. Thus, a ��5
rotation in physical space is related to a 3��5 rotation in
perpendicular space (Fig. 4.6.3.12).

With the condition di � d�j � 	ij, a basis in direct 5D space is
obtained:

di � 2
5a�i

cos�2�i�5� � 1
sin�2�i�5�

0
cos�6�i�5� � 1

sin�6�i�5�

�

�
�
�
�
�

�

�
�
�
�
�

, i � 1, � � � , 4, and d5 � 1
a�5

0
0
1
0
0

�

�
�
�
�
�

�

�
�
�
�
�
�

The metric tensors G, G� are of the type

A C C C 0
C A C C 0
C C A C 0
C C C A 0
0 0 0 0 B

�

�
�
�
�
�

�

�
�
�
�
�

with A � 2a�2
1 , B � a�2

5 , C � ��1�2�a�2
1 for the reciprocal space

and A � 4�5a�2
1 , B � 1�a�2

5 , C � 2�5a�2
1 for the direct space. Thus,

for the lattice parameters in reciprocal space we obtain

Fig. 4.6.3.12. Reciprocal basis of the decagonal phase in the 5D description
projected upon V (above left) and V� (above right). Below, a
perspective physical-space view is shown.
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d�i � a�i �2�1�2, i � 1, � � � , 4; d�5 � a�5; �ij � 104�5�, i, j � 1, � � � , 4;
�i5 � 90�, i � 1, � � � , 4, and for those in direct space
di � 2��a�i �5�1�2�, i � 1, � � � , 4; d5 � 1�a�5; ij � 60�, i, j �
1, � � � , 4; i5 � 90�, i � 1, � � � , 4. The volume of the 5D unit cell
can be calculated from the metric tensor G:

V � �det �G��1�2 � 4

5�5�1�2�a�1�4a�5
� �5�1�2

4
�d1�4d5�

Since decagonal phases are only quasiperiodic in two dimen-
sions, it is sufficient to demonstrate their characteristics on a 2D
example, the canonical Penrose tiling (Penrose, 1974). It can be
constructed from two unit tiles: a skinny (acute angle s � ��5) and
a fat (acute angle f � 2��5) rhomb with equal edge lengths ar and
areas AS � a2

r sin���5�, AF � a2
r sin�2��5� (Fig. 4.6.3.13). The

areas and frequencies of these two unit tiles in the Penrose tiling are
both in a ratio 1 to � . By replacing each skinny and fat rhomb
according to the inflation rule, a �-inflated tiling is obtained.
Inflation (deflation) means that the number of tiles is inflated
(deflated), their edge lengths are decreased (increased) by a factor � .
By infinite repetition of this inflation operation, an infinite Penrose

tiling is generated. Consequently, this substitution operation leaves
the tiling invariant.

From Fig. 4.6.3.13 it can be seen that the sets of vertices of the
deflated tilings are subsets of the set of vertices of the original tiling.
The �-deflated tiling is dual to the original tiling; a further deflation
by a factor � gives the original tiling again. However, the edge
lengths of the tiles are increased by a factor �2, and the tiling is
rotated around 36�. Only the fourth deflation of the original tiling
yields the original tiling in its original orientation but with all
lengths multiplied by a factor �4.

Contrary to the reciprocal-space scaling behaviour of
M� � �H ��4

i�1hia�i 
hi � �	, the set of vertices M � �r ��4
i�1niai
ni � �	 of the Penrose tiling is not invariant by scaling

the length scale simply by a factor � using the scaling matrix S:

S �
0 1 0 �1
0 1 1 �1
�1 1 1 0
�1 0 1 0

�

�
�
�

�

�
�
�

D

acting on vectors r �
n1

n2

n3

n4

�

�
�
�

�

�
�
�

D

�

The square of S, however, maps all vertices of the Penrose tiling
upon other ones:

S2 �
1 1 0 �1
0 2 1 �1
�1 1 2 0
�1 0 1 1

�

�
�
�

�

�
�
�

D

, ���S2 �
1 1 �1 �1
1 2 0 �2
0 2 1 �1
�1 1 1 0

�

�
�
�

�

�
�
�

D

�

S2 corresponds to a hyperbolic rotation with � � cosh�1�3�2� in
superspace (Janner, 1992). However, only operations of the type
S4n, n � 0, 1, 2 � � �, scale the Penrose tiling in a way which is
equivalent to the (4nth) substitutional operations discussed above.
The rotoscaling operation ���S2, also a symmetry operation of the
Penrose tiling, leaves a pentagram invariant as demonstrated in Fig.
4.6.3.14 (Janner, 1992). Block-diagonalization of the scaling matrix
S decomposes it into two non-equivalent irreducible representations
which give the scaling properties in the two orthogonal subspaces of
the 4D embedding space, V � V � V�, the 2D parallel (physical)
subspace V and the perpendicular 2D subspace V�. Thus, using
WSW�1 � SV � SV � S�V , we obtain

Fig. 4.6.3.13. A section of a Penrose tiling (thin lines) superposed by its �-
deflated tiling (above, thick lines) and by its �2-deflated tiling (below,
thick lines). In the middle, the inflation rule of the Penrose tiling is
illustrated.

Fig. 4.6.3.14. Scaling symmetry of a pentagram superposed on the Penrose
tiling. A vector pointing to a corner of a pentagon (star) is mapped by the
rotoscaling operation (rotation around ��5 and dilatation by a factor �2)
onto the next largest pentagon (star).
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SV �
� 0 0 0
0 � 0 0
0 0 �1�� 0
0 0 0 �1��

�

�
�
�
�

�

�
�
�
�

V

� SV 0

0 S�V


 �

V

,

where

W �
a�1 cos�2��5� a�2 cos�4��5� a�3 cos�6��5� a�4 cos�8��5�
a�1 sin�2��5� a�2 sin�4��5� a�3 sin�6��5� a�4 sin�8��5�
a�1 cos�4��5� a�2 cos�8��5� a�3 cos�2��5� a�4 cos�6��5�
a�1 sin�4��5� a�2 sin�8��5� a�3 sin�2��5� a�4 sin�6��5�

�

�
�
�

�

�
�
��

The 2D Penrose tiling can also be embedded canonically in the
5D space. Canonically means that the 5D lattice is hypercubic and
that the projection of one unit cell upon the 3D perpendicular space
V�, giving a rhomb-icosahedron, defines the atomic surface.
However, the parallel-space image a�i , i � 1, � � � , 4, with
a�0 � ��a�1 � a�2 � a�3 � a�4�, of the 5D basis d�i , i � 1, � � � , 4 is not
linearly independent. Consequently, the atomic surface consists of
only a subset of the points contained in the rhomb-icosahedron: five
equidistant pentagons (one with diameter zero) resulting as sections
of the rhomb-icosahedron with five equidistant parallel planes (Fig.
4.6.3.15). The linear dependence of the 5D basis allows the
embedding in the 4D space. The resulting hyper-rhombohedral
hyperlattice is spanned by the basis di, i � 1, � � � , 4, discussed
above. The atomic surfaces occupy the positions p�5�1111�,
p � 1, � � � , 4, on the body diagonal of the 4D unit cell.
Neighbouring pentagons are in an anti position to each other (Fig.
4.6.3.16). Thus the 4D unit cell is decorated centrosymmetrically.
The edge length ar of a Penrose rhomb is related to the length of
physical-space basis vectors a�i by ar � �S, with the smallest
distance S � �2��5a�i �, i � 1, � � � , 4. The point density (number of
vertices per unit area) of a Penrose tiling with Penrose rhombs of
edge length ar can be calculated from the ratio of the relative
number of unit tiles in the tiling to their area:

� � 1� �

a2
r �sin���5� � � sin�2��5�� � �5�2�a�2

i �2� ��2 tan�2��5��

This is equivalent to the calculation from the 4D description,

� �
�4

i�1�
i
AS

�UC
�
�4

i�1�5�2��2 sin�2��5�
4��5�5�1�2
a�i 
4�

� �5�2�a�2
i �2� ��2 tan�2��5�,

where �AS and �UC are the area of the atomic surface and the
volume of the 4D unit cell, respectively. The pentagon radii are
�1� 4 � 2�2� ���5a� and �2� 3 � 2�� � 1��5a� for the atomic
surfaces in �p�5��1111� with p � 1, 4 and p � 2, 3. A detailed
discussion of the properties of Penrose tiling is given in the papers
of Penrose (1974, 1979), Jaric (1986) and Pavlovitch & Kleman
(1987).

4.6.3.3.2.1. Indexing
The indexing of the submodule M�

1 of the diffraction pattern of a
decagonal phase is not unique. Since M�

1 corresponds to a � module
of rank 4 with decagonal point symmetry, it is invariant under
scaling by �n, n � �: SnM� � �nM�. Nevertheless, an optimum
basis (low indices are assigned to strong reflections) can be derived:
not the metrics, as for regular periodic crystals, but the intensity
distribution characterizes the best choice of indexing.

A correct set of reciprocal-basis vectors can be identified
experimentally in the following way:

(1) Find directions of systematic absences or pseudo-absences
determining the possible orientations of the reciprocal-basis vectors
(see Rabson et al., 1991).

(2) Find pairs of strong reflections whose physical-space
diffraction vectors are related to each other by the factor � .

(3) Index these reflections by assigning an appropriate value to
a�. This value should be derived from the shortest interatomic
distance S and the edge length of the unit tiles expected in the
structure.

(4) The reciprocal basis is correct if all observable Bragg
reflections can be indexed with integer numbers.

4.6.3.3.2.2. Diffraction symmetry
The diffraction symmetry of decagonal phases can be described

by the Laue groups 10�mmm or 10�m. The set of all vectors H
forms a Fourier module M� � �H ��5

i�1hia�i 
hi � �	 of rank 5
in physical space which can be decomposed into two submodules

Fig. 4.6.3.15. Atomic surface of the Penrose tiling in the 5D hypercubic
description. The projection of the 5D hypercubic unit cell upon V�
gives a rhomb-icosahedron (above). The Penrose tiling is generated by
four equidistant pentagons (shaded) inscribed in the rhomb-icosahe-
dron. Below is a perpendicular-space projection of the same pentagons,
which are located on the �1111�D diagonal of the 4D hyper-
rhombohedral unit cell in the 4D description.

Fig. 4.6.3.16. Projection of the 4D hyper-rhombohedral unit cell of the
Penrose tiling in the 4D description upon the perpendicular space. In the
upper drawing all edges between the 16 corners are shown. In the lower
drawing the corners are indexed and the four pentagonal atomic surfaces
of the Penrose tiling are shaded.
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M� � M�
1 �M�

2 . M�
1 � �h1a�1 � h2a�2 � h3a�3 � h4a�4	 corresponds

to a � module of rank 4 in a 2D subspace, M�
2 � �h5a�5	

corresponds to a � module of rank 1 in a 1D subspace.
Consequently, the first submodule can be considered as a projection
from a 4D reciprocal lattice, M�

1 � �����, while the second
submodule is of the form of a regular 1D reciprocal lattice,
M�

2 � ��. The diffraction pattern of the Penrose tiling decorated
with equal point scatterers on its vertices is shown in Fig. 4.6.3.17.
All Bragg reflections within 10�2
F�0�
2 � 
F�H�
2 � 
F�0�
2 are
depicted. Without intensity-truncation limit, the diffraction pattern
would be densely filled with discrete Bragg reflections. To illustrate
their spatial and intensity distribution, an enlarged section of Fig.
4.6.3.17 is shown in Fig. 4.6.3.18. This picture shows all Bragg
reflections within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2. The projected
4D reciprocal-lattice unit cell is drawn and several reflections are
indexed. All reflections are arranged along lines in five symmetry-
equivalent orientations. The perpendicular-space diffraction pat-
terns (Figs. 4.6.3.19 and 4.6.3.20) show a characteristic star-like

distribution of the Bragg reflections. This is a consequence of the
pentagonal shape of the atomic surfaces: the Fourier transform of a
pentagon has a star-like distribution of strong Fourier coefficients.

The 5D decagonal space groups that may be of relevance for the
description of decagonal phases are listed in Table 4.6.3.1. These
space groups are a subset of all 5D decagonal space groups fulfilling
the condition that the 5D point groups they are associated with are
isomorphous to the 3D point groups describing the diffraction
symmetry. Their structures are comparable to 3D hexagonal groups.
Hence, only primitive lattices exist. The orientation of the
symmetry elements in the 5D space is defined by the isomorphism
of the 3D and 5D point groups. However, the action of the tenfold
rotation is different in the subspaces V and V�: a rotation of ��5 in
V is correlated with a rotation of 3��5 in V�. The reflection and
inversion operations are equivalent in both subspaces.

4.6.3.3.2.3. Structure factor
The structure factor for the decagonal phase corresponds to the

Fourier transform of the 5D unit cell,

Fig. 4.6.3.17. Schematic diffraction pattern of the Penrose tiling (edge
length of the Penrose unit rhombs ar � 4�04 A

�
). All reflections are

shown within 10�2
F�0�
2 � 
F�H�
2 � 
F�0�
2 and 0 � 
H
 �
2�5 A

� �1
.

Fig. 4.6.3.18. Enlarged section of Fig. 4.6.3.17. All reflections shown are
selected within the given limits from a data set within 10�4
F�0�
2 �

F�H�
2 � 
F�0�
2 and 0 � 
H
 � 2�5 A

� �1
. The projected 4D reci-

procal-lattice unit cell is drawn and several reflections are indexed.

Fig. 4.6.3.19. The perpendicular-space diffraction pattern of the Penrose
tiling (edge length of the Penrose unit rhombs ar � 4�04 A

�
). All

reflections are shown within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2 and
0 � 
H
 � 2�5 A

� �1
.

Fig. 4.6.3.20. Enlarged section of Fig. 4.6.3.19 showing the projected 4D
reciprocal-lattice unit cell.
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F�H� � �N

k�1
fk�H�Tk�H, H��gk�H�� exp�2�iH � rk�,

with 5D diffraction vectors H ��5
i�1hid�i , N hyperatoms, parallel-

space atomic scattering factor fk�H�, temperature factor
Tk�H, H�� and perpendicular-space geometric form factor
gk�H��. Tk�H, 0� is equivalent to the conventional Debye–Waller
factor and Tk�0, H�� describes random fluctuations along the
perpendicular-space coordinate. These fluctuations cause character-
istic jumps of vertices in physical space (phason flips). Even
random phason flips map the vertices onto positions which can still
be described by physical-space vectors of the type r ��5

i�1niai.
Consequently, the set M � �r ��5

i�1niai
ni � �	 of all possible
vectors forms a � module. The shape of the atomic surfaces
corresponds to a selection rule for the positions actually occupied.
The geometric form factor gk�H�� is equivalent to the Fourier
transform of the atomic surface, i.e. the 2D perpendicular-space
component of the 5D hyperatoms.

For example, the canonical Penrose tiling gk�H�� corresponds to
the Fourier transform of pentagonal atomic surfaces:

gk�H�� � �1�A�UC�
	

Ak

exp�2�iH� � r� dr,

where A�UC is the area of the 5D unit cell projected upon V� and Ak
is the area of the kth atomic surface. The area A�UC can be calculated
using the formula

A�UC � �4�25a�2
i ���7� �� sin�2��5� � �2� �� sin�4��5���

Evaluating the integral by decomposing the pentagons into
triangles, one obtains

gk�H�� � 1
A�UC

sin
2�
5

� �

�
�4

j�0

Aj�exp�iAj�1�k� � 1� � Aj�1�exp�iAj�k� � 1�
AjAj�1�Aj � Aj�1�

with j � 0, � � � , 4 running over the five triangles, where the radii of
the pentagons are �j, Aj � 2�H�ej,

H� � ���H� ��4

j�0
hja

�
j

0
0
0

cos�6�j�5�
sin�6�j�5�

�

�
�
�
�
�

�

�
�
�
�
�

and the vectors

ej � 1
a�j

0
0
0

cos�2�j�5�
sin�2�j�5�

�

�
�
�
�
�

�

�
�
�
�
�

with j � 0, � � � , 4�

As shown by Ishihara & Yamamoto (1988), the Penrose tiling
can be considered to be a superstructure of a pentagonal tiling with
only one type of pentagonal atomic surface in the nD unit cell. Thus,
for the Penrose tiling, three special reflection classes can be
distinguished: for 
�4

i�1hi
 � m mod 5 and m � 0 the class of
strong main reflections is obtained, and for m � �1, � 2 the classes
of weaker first- and second-order satellite reflections are obtained
(see Fig. 4.6.3.18).

4.6.3.3.2.4. Intensity statistics
This section deals with the reciprocal-space characteristics of the

2D quasiperiodic component of the 3D structure, namely the
Fourier module M�

1 . The radial structure-factor distributions of the
Penrose tiling decorated with point scatterers are plotted in Figs.
4.6.3.21 and 4.6.3.22 as a function of parallel and perpendicular
space. The distribution of 
F�H�
 as a function of their frequencies
clearly resembles a centric distribution, as can be expected from the
centrosymmetric 4D subunit cell. The shape of the distribution
function depends on the radius of the limiting sphere in reciprocal
space. The number of weak reflections increases to the power of
four, that of strong reflections only quadratically (strong reflections
always have small H� components). The radial distribution of the
structure-factor amplitudes as a function of perpendicular space
clearly shows three branches, corresponding to the reflection classes�4

i�1hi � m mod 5 with 
m
 � 0, 
m
 � 1 and 
m
 � 2 (Fig.
4.6.3.23).

The weighted reciprocal space of the Penrose tiling contains an
infinite number of Bragg reflections within a limited region of the
physical space. Contrary to the diffraction pattern of a periodic
structure consisting of point atoms on the lattice nodes, the Bragg
reflections show intensities depending on the perpendicular-space
components of their diffraction vectors (Figs. 4.6.3.19, 4.6.3.20 and
4.6.3.22).

Table 4.6.3.1. 3D point groups of order k describing the
diffraction symmetry and corresponding 5D decagonal space

groups with reflection conditions (see Rabson et al., 1991)

3D point group k 5D space group Reflection condition

10
m

2
m

2
m

40 P
10
m

2
m

2
m

No condition

P
10
m

2
c

2
c

h1h2h2h1h5 � h5 � 2n

h1h2h2h1h5 � h5 � 2n

P
105

m
2
m

2
c

h1h2h2h1h5 � h5 � 2n

P
105

m
2
c

2
m

h1h2h2h1h5 � h5 � 2n

10
m

20
P

10
m

No condition

P
105

m
0000h5 � h5 � 2n

1022 20 P1022 No condition

P10j22 0000h5 � jh5 � 10n

10mm 20 P10mm No condition

P10cc h1h2h2h1h5 � h5 � 2n

h1h2h2h1h5 � h5 � 2n

P105mc h1h2h2h1h5 � h5 � 2n

P105cm h1h2h2h1h5 � h5 � 2n

10m2 20 P10m2 No condition

P10c2 h1h2h2h1h5 � h5 � 2n

P102m No condition

P102c h1h2h2h1h5 � h5 � 2n

10 10 P10 No condition

P10j 0000h5 � jh5 � 10n
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4.6.3.3.2.5. Relationships between structure factors at
symmetry-related points of the Fourier image

Scaling the Penrose tiling by a factor ��n by employing the
matrix S�n scales at the same time its reciprocal space by a factor
�n:

SH �

0 1 0 �1 0

0 1 1 �1 0
�1 1 1 0 0
�1 0 1 0 0

0 0 0 0 1

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

D

h1

h2

h3

h4

h5

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�

h2 � h4

h2 � h3 � h4

�h1 � h2 � h3

�h1 � h3

h5

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�

Since this operation increases the lengths of the diffraction vectors
by the factor � in parallel space and decreases them by the factor
1�� in perpendicular space, the following distribution of structure-

factor magnitudes (for point atoms at rest) is obtained:

F�SnH�
 
 � F�Sn�1H��
�

�
� � � � � � F�S1H��

�
�
� � F�H�
 
,

F��nH��
�

�
� � F��n�1H��

�
�
� � � � � � F��H��

�
�
� � F�H�
 
�

The scaling operations Sn, n � �, the rotoscaling operations
����S2�n (Fig. 4.6.3.14) and the tenfold rotation �����n, where

Fig. 4.6.3.22. Radial distribution function of the structure factors F�H� of
the Penrose tiling (edge length of the Penrose unit rhombs ar � 4�04 A

�
)

decorated with point atoms as a function of H�. All structure factors
within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2 and 0 � 
H
 � 2�5 A

� �1

have been used and normalized to F�0000� � 1.

Fig. 4.6.3.23. Radial distribution function of the structure-factor
magnitudes 
F�H�
 of the Penrose tiling (edge length of the Penrose
unit rhombs ar � 4�04 A

�
) decorated with point atoms as a function of

H�. All structure factors within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2
and 0 � 
H
 � 2�5 A

� �1
have been used and normalized to

F�0000� � 1. The branches with (a)
�4

i�1hi

�
�
�

�
�
� � 0 mod 5, (b)

�4
i�1hi

�
�
�

�
�
� � 1 mod 5 and (c)

�4
i�1hi

�
�
�

�
�
� � 2 mod 5 are shown.

Fig. 4.6.3.21. Radial distribution function of the structure factors F�H� of
the Penrose tiling (edge length of the Penrose unit rhombs ar � 4�04 A

�
)

decorated with point atoms as a function of H. All structure factors
within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2 and 0 � 
H
 � 2�5 A

� �1

have been used and normalized to F�0000� � 1.
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����S2�n �

1 1 �1 �1 0
1 2 0 �2 0
0 2 1 �1 0
�1 1 1 0 0
0 0 0 0 1

�

�
�
�
�
�

�

�
�
�
�
�

n

D

,

connect all structure factors with diffraction vectors pointing to the
nodes of an infinite series of pentagrams. The structure factors with
positive signs are predominantly on the vertices of the pentagram
while the ones with negative signs are arranged on circles around
the vertices (Figs. 4.6.3.24 to 4.6.3.27).

4.6.3.3.3. Icosahedral phases

A structure that is quasiperiodic in three dimensions and exhibits
icosahedral diffraction symmetry is called an icosahedral phase. Its
holohedral Laue symmetry group is K � m�3�5. All reciprocal-space
vectors H ��6

i�1 hia�i � M� can be represented on a basis a�1 � a��0, 0, 1�, a�i � a��sin � cos�2�i�5�, sin � sin�2�i�5�, cos ��,
i � 2, � � � , 6 where sin � � 2��5�1�2, cos � � 1��5�1�2 and
� � 63�44�, the angle between two neighbouring fivefold axes
(Fig. 4.6.3.28). This can be rewritten as

a�1
a�2
a�3
a�4
a�5
a�6

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

� a�

0 0 1
sin � cos�4��5� sin � sin�4��5� cos �
sin � cos�6��5� sin � sin�6��5� cos �
sin � cos�8��5� sin � sin�8��5� cos �

sin � 0 cos �
sin � cos�2��5� sin � sin�2��5� cos �

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

eV
1

eV
2

eV
3

�

�
�

�

�
�,

where eV
i are Cartesian basis vectors. Thus, from the number of

independent reciprocal-basis vectors needed to index the Bragg
reflections with integer numbers, the dimension of the embedding
space has to be six. The vector components refer to a Cartesian
coordinate system (V basis) in the physical (parallel) space.

The set M� � �H ��6
i�1hia�i 
hi � �	 of all diffraction vectors

remains invariant under the action of the symmetry operators of the
icosahedral point group K � m�3�5. The symmetry-adapted matrix
representations for the point-group generators, one fivefold rotation
, a threefold rotation � and the inversion operation 
, can be
written in the form

Fig. 4.6.3.24. Pentagrammal relationships between scaling symmetry-
related positive structure factors F�H� of the Penrose tiling (edge length
ar � 4�04 A

�
) in parallel space. The magnitudes of the structure factors

are indicated by the diameters of the filled circles.

Fig. 4.6.3.25. Pentagrammal relationships between scaling symmetry-
related negative structure factors F�H� of the Penrose tiling (edge
length ar � 4�04 A

�
) in parallel space. The magnitudes of the structure

factors are indicated by the diameters of the filled circles.

Fig. 4.6.3.26. Pentagrammal relationships between scaling symmetry-
related structure factors F�H� of the Penrose tiling (edge length
ar � 4�04 A

�
) in parallel space. Enlarged sections of Figs. 4.6.3.24

(above) and 4.6.3.25 (below) are shown.
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0 0 0 0 0 1
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,���� �
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0 0 0 �1 0 0
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,

��
� �

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 �1 0 0 0

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

D

�

Block-diagonalization of these reducible symmetry matrices
decomposes them into non-equivalent irreducible representations.
These can be assigned to the two orthogonal subspaces forming the
6D embedding space V � V � V�, the 3D parallel (physical)
subspace V and the perpendicular 3D subspace V�. Thus, using
W�W�1 � �red � � � ��, we obtain

��� �

cos�2��5� � sin�2��5� 0 0 0 0

sin�2��5� cos�2��5� 0 0 0 0
0 0 1 0 0 0

0 0 0 cos�4��5� � sin�4��5� 0

0 0 0 sin�4��5� cos�4��5� 0

0 0 0 0 0 1

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

V

� � 0
0 ��


 �

V

,

where

W � a�

0 sc4 sc6 sc8 s sc2
0 ss4 ss6 ss8 0 ss2
1 c c c c c
0 �sc8 �sc2 �sc6 �s �sc4
0 �ss8 �ss2 �ss6 0 �ss4
1 �c �c �c �c �c

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

V

,

c � cos �, s � sin �, scn � sin � cos�n��5�, ssn � sin � sin�n��5�.
The column vectors of the matrix W give the parallel- (above the
partition line) and perpendicular-space components (below the
partition line) of a reciprocal basis in V. Thus, W can be rewritten
using the physical-space reciprocal basis defined above and an
arbitrary constant c,

W � a�1 a�2 a�3 a�4 a�5 a�6
ca�1 �ca�4 �ca�6 �ca�3 �ca�5 �ca�2

� �

� d�1 d�2 d�3 d�4 d�5 d�6� �,
yielding the reciprocal basis d�i , i � 1, � � � , 6, in the 6D embedding
space (D space)

d�1 � a�

0
0
1
0
0
c

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

and d�i � a�

sin � cos�2�i�5�
sin � sin�2�i�5�

cos �
�c sin � cos�4�i�5�
�c sin � sin�4�i�5�

�c cos �

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

, i � 2, � � � , 6�

The 6� 6 symmetry matrices can each be decomposed into two
3� 3 matrices. The first one, �, acts on the parallel-space
component, the second one, ��, on the perpendicular-space
component. In the case of ���, the coupling factor between a
rotation in parallel and perpendicular space is 2. Thus a 2��5

Fig. 4.6.3.27. Pentagrammal relationships between scaling symmetry-
related structure factors F�H� of the Penrose tiling (edge length
ar � 4�04 A

�
) in perpendicular space. Enlarged sections of positive

(above) and negative structure factors (below) are shown.

Fig. 4.6.3.28. Perspective (a) parallel- and (b) perpendicular-space views
of the reciprocal basis of the 3D Penrose tiling. The six rationally
independent vectors a�i point to the edges of an icosahedron.
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rotation in physical space is related to a 4��5 rotation in
perpendicular space (Figs. 4.6.3.28 and 4.6.3.29).

With the condition di � d�j � 	ij, the basis in direct 6D space is
obtained:

d1 � 1
2a�

0

0

1

0

0

1�c

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

and di � 1
2a�

sin � cos�2�i�5�
sin � sin�2�i�5�

cos �

��1�c� sin � cos�4�i�5�
��1�c� sin � sin�4�i�5�

��1�c� cos �

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

,

i � 2, � � � , 6�

The metric tensors G, G� are of the type

A B B B B B
B A B �B �B B
B B A B �B �B
B �B B A B �B
B �B �B B A B
B B �B �B B A

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

,

with A � �1� c2�a�2, B � ��5�1�2�5��1� c2�a�2 for the reciprocal
space and A � �1� c2���4�ca��2� B � ��5�1�2�c2 � 1����20�ca��2�
for the direct space. For c � 1 we obtain hypercubic direct and
reciprocal 6D lattices.

The lattice parameters in reciprocal and direct space are d�i �
a��2�1�2 and di � 1���2�1�2a�� with i � 1, � � � , 6, respectively. The
volume of the 6D unit cell can be calculated from the metric tensor
G. For c � 1 it is simply V � �det �G��1�2 � �1���2�1�2a��	6�

The best known example of a 3D quasiperiodic structure is the
canonical 3D Penrose tiling (see Janssen, 1986). It can be
constructed from two unit tiles: a prolate and an oblate
rhombohedron with equal edge lengths ar (Fig. 4.6.3.30). Each
face of the rhombohedra is a rhomb with acute angles
r � arc cos�1��5�1�2� � 63�44�. Their volumes are Vp �
�4�5�a3

r sin�2��5�, Vo � �4�5�a3
r sin���5� � Vp�� , and their fre-

quencies �p:�o � � :1. The resulting point density (number of
vertices per unit volume) is �p � �� � 1����Vp � Vo� �
���a3

r � sin�2��5�. Ten prolate and ten oblate rhombohedra can be
packed to form a rhombic triacontahedron. The icosahedral
symmetry of this zonohedron is broken by the many possible
decompositions into the rhombohedra. Removing one zone of the

triacontahedron gives a rhomb-icosahedron consisting of five
prolate and five oblate rhombohedra. Again, the singular fivefold
axis of the rhomb-icosahedron is broken by the decomposition into
rhombohedra. Removing one zone again gives a rhombic
dodecahedron consisting of two prolate and two oblate rhombo-
hedra. Removing the last remaining zone leads finally to a single
prolate rhombohedron. Using these zonohedra as elementary
clusters, a matching rule can be derived for the 3D construction
of the 3D Penrose tiling (Levine & Steinhardt, 1986; Socolar &
Steinhardt, 1986).

The 3D Penrose tiling can be embedded in the 6D space as shown
above. The 6D hypercubic lattice is decorated on the lattice nodes
with 3D triacontahedra obtained from the projection of a 6D unit
cell upon the perpendicular space V� (Fig. 4.6.3.31). Thus the edge
length of the rhombs covering the triacontahedron is equivalent to
the length ���di� � 1�2a� of the perpendicular-space component
of the vectors spanning the 6D hypercubic lattice
� � �r ��6

i�1nidi
ni � �	.

4.6.3.3.3.1. Indexing
There are several indexing schemes in use. The generic one uses

a set of six rationally independent reciprocal-basis vectors pointing
to the corners of an icosahedron, a�1 � a��0, 0, 1�,
a�i � a��sin � cos�2�i�5�, sin � sin�2�i�5�, cos ��, i � 2, � � � , 6,
sin � � 2��5�1�2, cos � � 1��5�1�2, with � � 63�44�, the angle
between two neighbouring fivefold axes (setting 1) (Fig.
4.6.3.28). In this case, the physical-space basis corresponds to a
simple projection of the 6D reciprocal basis d�i , i � 1, � � � , 6.
Sometimes, the same set of six reciprocal-basis vectors is referred
to a differently oriented Cartesian reference system (C basis, with

Fig. 4.6.3.29. Schematic representation of a rotation in 6D space. The point
P is rotated to P�. The component rotations in parallel and perpendicular
space are illustrated.

Fig. 4.6.3.30. The two unit tiles of the 3D Penrose tiling: a prolate �p �
arc cos�5�1�2� � 63�44�� and an oblate �o � 180� � p� rhombohe-
dron with equal edge lengths ar.

Fig. 4.6.3.31. Atomic surface of the 3D Penrose tiling in the 6D hypercubic
description. The projection of the 6D hypercubic unit cell upon V�
gives a rhombic triacontahedron.
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basis vectors ei along the twofold axes) (Bancel et al., 1985). The
reciprocal basis is

a�1
a�2
a�3
a�4
a�5
a�6
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�
�
�
�
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�
�

�

�
�
�
�
�
�
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� a�

�1� �2�1�2

0 1 �
�1 � 0
�� 0 1
0 �1 �
� 0 1
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�
�
�
�
�
�

�

�
�
�
�
�
�
�

C

eC
1

eC
2

eC
3

�

�

�

��

An alternate way of indexing is based on a 3D set of cubic
reciprocal-basis vectors b�i , i � 1, � � � , 3 (setting 2) (Fig. 4.6.3.32):

b�1
b�2
b�3
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�
�

�

�
� � 1

2

0 �1 0 0 0 1

1 0 0 �1 0 0

0 0 1 0 1 0
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�
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eC
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�

�
�

�

�
��

The Cartesian C basis is related to the V basis by a ��2 rotation
around �100�C , yielding �001�V , followed by a ��10 rotation around
�001�C:

eC
1

eC
2

eC
3

�

�
�

�

�
� �

cos���10� sin���10� 0

� cos���2� sin���10� cos���2� cos���10� sin���2�
sin���2� sin���10� � sin���2� cos���10� cos���2�

�

�
�

�

�
�

V

eV
1

eV
2

eV
3

�

�
�

�

�
��

Thus, indexing the diffraction pattern of an icosahedral phase with
integer indices, one obtains for setting 1 H ��6

i�1hia�i , hi � �.
These indices �h1 h2 h3 h4 h5 h6� transform into the second setting
to �h�h� k�k� l�l�� with the fractional cubic indices
hc

1 � h� h�� , hc
2 � k � k�� , hc

3 � l � l�� . The transformation matrix
is

h
h�

k
k�

l
l�

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

C

�

0 �1 0 0 0 1
0 0 �1 0 1 0
1 0 0 �1 0 0
0 1 0 0 0 1
0 0 1 0 1 0
1 0 0 1 0 0
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�
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4.6.3.3.3.2. Diffraction symmetry
The diffraction symmetry of icosahedral phases can be described

by the Laue group K � m�3�5. The set of all vectors H forms a
Fourier module M� � �H ��6

i�1hia�i 
hi � �	 of rank 6 in
physical space. Consequently, it can be considered as a projection
from a 6D reciprocal lattice, M� � �����. The parallel and
perpendicular reciprocal-space sections of the 3D Penrose tiling
decorated with equal point scatterers on its vertices are shown in
Figs. 4.6.3.33 and 4.6.3.34. The diffraction pattern in perpendicular
space is the Fourier transform of the triacontahedron. All Bragg
reflections within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2 are depicted.
Without intensity-truncation limit, the diffraction pattern would be
densely filled with discrete Bragg reflections.

The 6D icosahedral space groups that are relevant to the
description of icosahedral phases (six symmorphous and five non-
symmorphous groups) are listed in Table 4.6.3.2. These space
groups are a subset of all 6D icosahedral space groups fulfilling the
condition that the 6D point groups they are associated with are
isomorphous to the 3D point groups 2

m
�3�5 and 235 describing the

diffraction symmetry. From 826 6D (analogues to) Bravais groups
(Levitov & Rhyner, 1988), only three fulfil the condition that the
projection of the 6D hypercubic lattice upon the 3D physical space
is compatible with the icosahedral point groups 2

m
�3�5, 235: the

primitive hypercubic Bravais lattice P, the body-centred Bravais
lattice I with translation 1/2(111111), and the face-centred Bravais
lattice F with translations 1�2�110000� � 14 further cyclic
permutations. Hence, the I lattice is twofold primitive (i.e. it
contains two vertices per unit cell) and the F lattice is 16-fold
primitive. The orientation of the symmetry elements in the 6D space
is defined by the isomorphism of the 3D and 6D point groups. The
action of the fivefold rotation, however, is different in the subspaces
V and V�: a rotation of 2��5 in V is correlated with a rotation of
4��5 in V�. The reflection and inversion operations are equivalent
in both subspaces.

4.6.3.3.3.3. Structure factor
The structure factor of the icosahedral phase corresponds to the

Fourier transform of the 6D unit cell,

F�H� � �N

k�1
fk�H�Tk�H, H��gk�H�� exp�2�iH � rk�,

with 6D diffraction vectors H ��6
i�1hid�i , parallel-space atomic

scattering factor fk�H�, temperature factor Tk�H, H��, and
perpendicular-space geometric form factor gk�H��. Tk�H, 0� is
equivalent to the conventional Debye–Waller factor and Tk�0, H��
describes random fluctuations in perpendicular space. These
fluctuations cause characteristic jumps of vertices (phason flips)
in the physical space. Even random phason flips map the vertices
onto positions that can still be described by physical-space vectors
of the type r ��6

i�1niai. Consequently, the set M � �r ��6
i�1niai

�
�ni � �	 of all possible vectors forms a � module. The

shape of the atomic surfaces corresponds to a selection rule for the
positions actually occupied. The geometric form factor gk�H�� is
equivalent to the Fourier transform of the atomic surface, i.e. the 3D
perpendicular-space component of the 6D hyperatoms.

For the example of the canonical 3D Penrose tiling, gk�H��
corresponds to the Fourier transform of a triacontahedron:

Fig. 4.6.3.32. Perspective parallel-space view of the two alternative
reciprocal bases of the 3D Penrose tiling: the cubic and the icosahedral
setting, represented by the bases b�i , i � 1, � � � , 3, and a�i , i � 1, � � � , 6,
respectively.
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gk�H�� � �1�A�UC�
	

Ak

exp�2�iH� � r� dr,

where A�UC is the volume of the 6D unit cell projected upon V� and
Ak is the volume of the triacontahedron. A�UC and Ak are equal in the
present case and amount to the volumes of ten prolate and ten oblate
rhombohedra: A�UC � 8a3

r sin�2��5� � sin���5�� �. Evaluating the
integral by decomposing the triacontahedron into trigonal pyramids,
each one directed from the centre of the triacontahedron to three of
its corners given by the vectors ei, i � 1, � � � , 3, one obtains

g�H�� � �1�A�UC�
�

R
gk�RT H��,

with k � 1, � � � , 60 running over all site-symmetry operations R of
the icosahedral group,

gk�H�� � �iVr�A2A3A4 exp�iA1� � A1A3A5 exp�iA2�
� A1A2A6 exp�iA3� � A4A5A6�
� �A1A2A3A4A5A6��1,

Aj � 2�H� � ej, j � 1, � � � , 3, A4 � A2 � A3, A5 � A3 � A1, A6 �
A1 � A2 and Vr � e1 � �e2 � e3� the volume of the parallelepiped
defined by the vectors ei, i � 1, � � � , 3 (Yamamoto, 1992b).

4.6.3.3.3.4. Intensity statistics
The radial structure-factor distributions of the 3D Penrose tiling

decorated with point scatterers are plotted in Fig. 4.6.3.35 as a
function of parallel and perpendicular space. The distribution of

F�H�
 as a function of their frequencies clearly resembles a centric

Fig. 4.6.3.33. Physical-space diffraction patterns of the 3D Penrose tiling decorated with point atoms (edge lengths of the Penrose unit rhombohedra
ar � 5�0 A

�
). Sections with five-, three- and twofold symmetry are shown for the primitive 6D analogue of Bravais type P in (a, b, c), the body-centred

6D analogue to Bravais type I in (d, e, f ) and the face-centred 6D analogue to Bravais type F in (g, h, i). All reflections are shown within
10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2 and �6 � hi � 6, i � 1, � � � , 6.
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distribution, as can be expected from the centrosymmetric unit cell.
The shape of the distribution function depends on the radius of the
limiting sphere in reciprocal space. The number of weak reflections

increases as the power 6, that of strong reflections only as the power
3 (strong reflections always have small H� components).

The weighted reciprocal space of the 3D Penrose tiling contains
an infinite number of Bragg reflections within a limited region of the
physical space. Contrary to the diffraction pattern of a periodic
structure consisting of point atoms on the lattice nodes, the Bragg
reflections show intensities depending on the perpendicular-space
components of their diffraction vectors.

4.6.3.3.3.5. Relationships between structure factors at
symmetry-related points of the Fourier image

The weighted 3D reciprocal space M� � �H ��6
i�1hia�i 
hi �

�	 exhibits the icosahedral point symmetry K � m�3�5. It is invariant
under the action of the scaling matrix S3:

S � 1
2

1 1 1 1 1 1

1 1 1 �1 �1 1

1 1 1 1 �1 �1

1 �1 1 1 1 �1

1 �1 �1 1 1 1

1 1 �1 �1 1 1

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

D

, S3 �

2 1 1 1 1 1

1 2 1 �1 �1 1

1 1 2 1 �1 �1

1 �1 1 2 1 �1

1 �1 �1 1 2 1

1 1 �1 �1 1 2

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

D

,

2 1 1 1 1 1

1 2 1 �1 �1 1

1 1 2 1 �1 �1

1 �1 1 2 1 �1

1 �1 �1 1 2 1

1 1 �1 �1 1 2

�
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�
�
�
�
�
�
�

�

The scaling transformation �S�3�T leaves a primitive 6D reciprocal
lattice invariant as can easily be seen from its application on the
indices:

Fig. 4.6.3.34. Perpendicular-space diffraction patterns of the 3D Penrose
tiling decorated with point atoms (edge lengths of the Penrose unit
rhombohedra ar � 5�0 A

�
). Sections with (a) five-, (b) three- and (c)

twofold symmetry are shown for the primitive 6D analogue of Bravais
type P. All reflections are shown within 10�4
F�0�
2 � 
F�H�
2 �

F�0�
2 and �6 � hi � 6, i � 1, � � � , 6.

Table 4.6.3.2. 3D point groups of order k describing the
diffraction symmetry and corresponding 6D decagonal space
groups with reflection conditions (see Levitov & Rhyner, 1988;

Rokhsar et al., 1988)

3D point
group k

5D space
group Reflection condition

2
m
�3�5 120 P

2
m
�3�5 No condition

P
2
n
�3�5

h1h2h1h2h5h6 � h5 � h6 � 2n

I
2
m
�3�5

h1h2h3h4h5h6 �
�6

i�1hi � 2n

F
2
m
�3�5

h1h2h3h4h5h6 �
�6

i ��j�1hi � hj � 2n

F
2
n
�3�5

h1h2h3h4h5h6 �
�6

i ��j�1hi � hj � 2n

h1h2h1h2h5h6 � h5 � h6 � 4n

235 60 P235 No condition

P2351 h1h2h2h2h2h2 � h1 � 5n

I235 h1h2h3h4h5h6 �
�6

i�1hi � 2n

I2351 h1h2h3h4h5h6 �
�6

i�1hi � 2n

h1h2h2h2h2h2 � h1 � 5h2 � 10n

F235 h1h2h3h4h5h6 �
�6

i ��j�1hi � hj � 2n

F2351 h1h2h3h4h5h6 �
�6

i ��j�1hi � hj � 2n

h1h2h2h2h2h2 � h1 � 5h2 � 10n

514

4. DIFFUSE SCATTERING AND RELATED TOPICS



h
�
1

h
�
2

h
�
3

h
�
4

h
�
5

h
�
6

�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�

�

�2 1 1 1 1 1

1 �2 1 �1 �1 1

1 1 �2 1 �1 �1

1 �1 1 �2 1 �1

1 �1 �1 1 �2 1

1 1 �1 �1 1 �2

�

�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

D

h1

h2

h3

h4

h5

h6

�

�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�

The matrix �S�1�T leaves M� � �H ��6
i�1hia�i 
hi � �	 invar-

iant,
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,

for any H ��6
i�1hid�i with hi all even or all odd, corresponding to a

6D face-centred hypercubic lattice. In a second case the sum
�6

i�1hi
is even, corresponding to a 6D body-centred hypercubic lattice.
Block-diagonalization of the matrix S decomposes it into two
irreducible representations. With WSW�1 � SV � SV � S�V we
obtain

SV �

� 0 0 0 0 0
0 � 0 0 0 0
0 0 � 0 0 0

0 0 0 �1�� 0 0
0 0 0 0 �1�� 0
0 0 0 0 0 �1��

�

�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

V

� S 0

0 S�


 �

V

,

the scaling properties in the two 3D subspaces: scaling by a factor �
in parallel space corresponds to a scaling by a factor �����1 in
perpendicular space. For the intensities of the scaled reflections
analogous relationships are valid, as discussed for decagonal phases
(Figs. 4.6.3.36 and 4.6.3.37, Section 4.6.3.3.2.5).

Fig. 4.6.3.36. Parallel-space distribution of (a) positive and (b) negative structure factors of the 3D Penrose tiling of the 6D P lattice type decorated with
point atoms (edge lengths of the Penrose unit rhombohedra ar � 5�0 A

�
). The magnitudes of the structure factors are indicated by the diameters of the

filled circles. All reflections are shown within 10�4
F�0�
2 � 
F�H�
2 � 
F�0�
2 and �6 � hi � 6, i � 1, � � � , 6.

Fig. 4.6.3.35. Radial distribution function of the structure factors F�H� of
the 3D Penrose tiling (edge lengths of the Penrose unit rhombohedra
ar � 5�0 A

�
) decorated with point atoms as a function of 
H
 (above)

and 
H�
 (below). All reflections are shown within 10�6
F�0�
2 �

F�H�
2 � 
F�0�
2 and �6 � hi � 6, i � 1, � � � , 6.
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