International
Tables for
Crystallography
Volume B
Reciprocal Space
Edited by U. Shmueli

International Tables for Crystallography (2006). Vol. B. ch. 5.3, pp. 557-569   | 1 | 2 |
https://doi.org/10.1107/97809553602060000571

Chapter 5.3. Dynamical theory of neutron diffraction

M. Schlenkera* and J.-P. Guigaya,b

aLaboratoire Louis Néel du CNRS, BP 166, F-38042 Grenoble CEDEX 9, France, and  bEuropean Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France
Correspondence e-mail:  schlenk@polycnrs-gre.fr

References

First citation Albertini, G., Boeuf, A., Cesini, G., Mazkedian, S., Melone, S. & Rustichelli, F. (1976). A simple model for dynamical neutron diffraction by deformed crystals. Acta Cryst. A32, 863–868.Google Scholar
First citation Albertini, G., Boeuf, A., Klar, B., Lagomarsino, S., Mazkedian, S., Melone, S., Puliti, P. & Rustichelli, F. (1977). Dynamical neutron diffraction by curved crystals in the Laue geometry. Phys. Status Solidi A, 44, 127–136.Google Scholar
First citation Albertini, G., Boeuf, A., Lagomarsino, S., Mazkedian, S., Melone, S. & Rustichelli, F. (1976). Neutron properties of curved monochromators. Proceedings of the conference on neutron scattering, Gatlinburg, Tennessee, USERDA CONF 760601-P2, 1151–1158. Oak Ridge, Tennessee: Oak Ridge National Laboratory.Google Scholar
First citation Al Haddad, M. & Becker, P. J. (1988). On the statistical dynamical theory of diffraction: application to silicon. Acta Cryst. A44, 262–270.Google Scholar
First citation Ando, M. & Hosoya, S. (1972). Q-switch and polarization domains in antiferromagnetic chromium observed with neutron-diffraction topography. Phys. Rev. Lett. 29, 281–285.Google Scholar
First citation Ando, M. & Hosoya, S. (1978). Size and behavior of antiferromagnetic domains in Cr directly observed with X-ray and neutron topography. J. Appl. Phys. 49, 6045–6051.Google Scholar
First citation Arif, M., Kaiser, H., Clothier, R., Werner, S. A., Berliner, R., Hamilton, W. A., Cimmino, A. & Klein, A. G. (1988). Fizeau effect for neutrons passing through matter at a nuclear resonance. Physica B, 151, 63–67.Google Scholar
First citation Arthur, J. & Horne, M. A. (1985). Boundary conditions in dynamical neutron diffraction. Phys. Rev. B, 32, 5747–5752.Google Scholar
First citation Bacon, G. E. & Lowde, R. D. (1948). Secondary extinction and neutron crystallography. Acta Cryst. 1, 303–314.Google Scholar
First citation Badurek, G., Rauch, H., Wilfing, A., Bonse, U. & Graeff, W. (1979). A perfect-crystal neutron polarizer as an application of magnetic prism refraction. J. Appl. Cryst. 12, 186–191.Google Scholar
First citation Baruchel, J. (1989). The contribution of neutron and synchrotron radiation topography to the investigation of first-order magnetic phase transitions. Phase Transit. 14, 21–29.Google Scholar
First citation Baruchel, J., Guigay, J. P., Mazuré-Espejo, C., Schlenker, M. & Schweizer, J. (1982). Observation of Pendellösung effect in polarized neutron scattering from a magnetic crystal. J. Phys. 43, C7, 101–106.Google Scholar
First citation Baruchel, J., Patterson, C. & Guigay, J. P. (1986). Neutron diffraction investigation of the nuclear and magnetic extinction in MnP. Acta Cryst. A42, 47–55.Google Scholar
First citation Baruchel, J., Schlenker, M. & Palmer, S. B. (1990). Neutron diffraction topographic investigations of “exotic” magnetic domains. Nondestruct. Test. Eval. 5, 349–367.Google Scholar
First citation Baruchel, J., Schlenker, M., Zarka, A. & Pétroff, J. F. (1978). Neutron diffraction topographic investigation of growth defects in natural lead carbonate single crystals. J. Cryst. Growth, 44, 356–362.Google Scholar
First citation Baryshevskii, V. G. (1976). Particle spin precession in antiferromagnets. Sov. Phys. Solid State, 18, 204–208.Google Scholar
First citation Bauspiess, W., Bonse, U., Graeff, W., Schlenker, M. & Rauch, H. (1978). Result shown in Bonse (1979).Google Scholar
First citation Becker, P. & Al Haddad, M. (1990). Diffraction by a randomly distorted crystal. I. The case of short-range order. Acta Cryst. A46, 123–129.Google Scholar
First citation Becker, P. & Al Haddad, M. (1992). Diffraction by a randomly distorted crystal. II. General theory. Acta Cryst. A48, 121–134.Google Scholar
First citation Becker, P. J. & Coppens, P. (1974a). Extinction within the limit of validity of the Darwin transfer equations. I. General formalisms for primary and secondary extinction and their application to spherical crystals. Acta Cryst. A30, 129–147.Google Scholar
First citation Becker, P. J. & Coppens, P. (1974b). Extinction within the limit of validity of the Darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Cryst. A30, 148–153.Google Scholar
First citation Becker, P. J. & Coppens, P. (1975). Extinction within the limit of validity of the Darwin transfer equations. III. Non-spherical crystals and anisotropy of extinction. Acta Cryst. A31, 417–425.Google Scholar
First citation Belova, N. E., Eichhorn, F., Somenkov, V. A., Utemisov, K. & Shil'shtein, S. Sh. (1983). Analyse der Neigungsmethode zur Untersuchung von Pendellösungsinterferenzen von Neutronen und Röntgenstrahlen. Phys. Status Solidi A, 76, 257–265.Google Scholar
First citation Belyakov, V. A. & Bokun, R. Ch. (1975). Dynamical theory of neutron diffraction by perfect antiferromagnetic crystals. Sov. Phys. Solid State, 17, 1142–1145.Google Scholar
First citation Belyakov, V. A. & Bokun, R. Ch. (1976). Dynamical theory of neutron diffraction in magnetic crystals. Sov. Phys. Solid State, 18, 1399–1402.Google Scholar
First citation Boeuf, A. & Rustichelli, F. (1974). Some neutron diffraction experiments on curved silicon crystals. Acta Cryst. A30, 798–805.Google Scholar
First citation Bokun, R. Ch. (1979). Beats in the integrated intensity in neutron diffraction by perfect magnetic crystals. Sov. Phys. Tech. Phys. 24, 723–724.Google Scholar
First citation Bonnet, M., Delapalme, A., Becker, P. & Fuess, H. (1976). Polarised neutron diffraction – a tool for testing extinction models: application to yttrium iron garnet. Acta Cryst. A32, 945–953.Google Scholar
First citation Bonse, U. (1979). Principles and methods of neutron interferometry. In Neutron interferometry: proceedings of an international workshop, edited by U. Bonse & H. Rauch, pp. 3–33. Oxford: Clarendon Press.Google Scholar
First citation Bonse, U. (1988). Recent advances in X-ray and neutron interferometry. Physica B, 151, 7–21.Google Scholar
First citation Bonse, U. & Hart, M. (1965). An X-ray interferometer. Appl. Phys. Lett. 6, 155–156.Google Scholar
First citation Chakravarthy, R. & Madhav Rao, L. (1980). A simple method to correct for secondary extinction in polarised-neutron diffractometry. Acta Cryst. A36, 139–142.Google Scholar
First citation Chalupa, B., Michalec, R., Horalik, L. & Mikula, P. (1986). The study of neutron acoustic effect by neutron diffraction on InSb single crystal. Phys. Status Solidi A, 97, 403–409.Google Scholar
First citation Cimmino, A., Opat, G. I., Klein, A. G., Kaiser, H., Werner, S. A., Arif, M. & Clothier, R. (1989). Observation of the topological Aharonov–Casher phase shift by neutron interferometry. Phys. Rev. Lett. 63, 380–383.Google Scholar
First citation Colella, R., Overhauser, A. W. & Werner, S. A. (1975). Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474.Google Scholar
First citation Davidson, J. B. & Case, A. L. (1976). Applications of the fly's eye neutron camera: diffraction tomography and phase transition studies. Proceedings of the conference on neutron scattering, Gatlinburg, Tennessee, USERDA CONF 760601-P2, 1124–1135. Oak Ridge, Tennessee: Oat Ridge National Laboratory.Google Scholar
First citation Davidson, J. B., Werner, S. A. & Arrott, A. S. (1974). Neutron microscopy of spin density wave domains in chromium. Proceedings of the 19th annual conference on magnetism and magnetic materials, edited by C. D. Graham and J. J. Rhyne. AIP Conf. Proc. 18, 396–400.Google Scholar
First citation Doi, K., Minakawa, N., Motohashi, H. & Masaki, N. (1971). A trial of neutron diffraction topography. J. Appl. Cryst. 4, 528–530.Google Scholar
First citation Eichhorn, F. (1988). Perfect crystal neutron optics. Physica B, 151, 140–146.Google Scholar
First citation Eichhorn, F., Sippel, D. & Kleinstück, K. (1967). Influence of oxygen segregations in silicon single crystals on the halfwidth of the double-crystal rocking curve of thermal neutrons. Phys. Status Solidi, 23, 237–240.Google Scholar
First citation Guigay, J. P. (1989). On integrated intensities in Kato's statistical diffraction theory. Acta Cryst. A45, 241–244.Google Scholar
First citation Guigay, J. P. & Chukhovskii, F. N. (1992). Reformulation of the dynamical theory of coherent wave propagation by randomly distorted crystals. Acta Cryst. A48, 819–826.Google Scholar
First citation Guigay, J. P. & Chukhovskii, F. N. (1995). Reformulation of the statistical theory of dynamical diffraction in the case E = 0. Acta Cryst. A51, 288–294.Google Scholar
First citation Guigay, J. P. & Schlenker, M. (1979a). Integrated intensities and flipping ratios in neutron diffraction by perfect magnetic crystals. In Neutron interferometry, edited by U. Bonse & H. Rauch, pp. 135–148. Oxford: Clarendon Press.Google Scholar
First citation Guigay, J. P. & Schlenker, M. (1979b). Spin rotation of the forward diffracted beam in neutron diffraction by perfect magnetic crystals. J. Magn. Magn. Mater. 14, 340–343.Google Scholar
First citation Hart, M. & Rodrigues, A. R. D. (1978). Harmonic-free single-crystal monochromators for neutrons and X-rays. J. Appl. Cryst. 11, 248–253.Google Scholar
First citation Hastings, J. B., Siddons, D. P. & Lehmann, M. (1990). Diffraction broadening and suppression of the inelastic channel in resonant neutron scattering. Phys. Rev. Lett. 64, 2030–2033.Google Scholar
First citation Horne, M. A., Finkelstein, K. D., Shull, C. G., Zeilinger, A. & Bernstein, H. J. (1988). Neutron spin – Pendellösung resonance. Physica B, 151, 189–192.Google Scholar
First citation Indenbom, V. L. (1979). Diffraction focusing of neutrons. JETP Lett. 29, 5–8.Google Scholar
First citation International Tables for Crystallography (2004). Vol. C. Mathematical, physical and chemical tables, edited by E. Prince. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citation Iolin, E. M. & Entin, I. R. (1983). Dynamic diffraction of neutrons by high-frequency acoustic waves in perfect crystals. Sov. Phys. JETP, 58, 985–989.Google Scholar
First citation Iolin, E. M., Zolotoyabko, E. V., Raïtman, E. A., Kuvdaldin, B. V. & Gavrilov, V. N. (1986). Interference effects in dynamic neutron diffraction under conditions of ultrasonic excitation. Sov. Phys. JETP, 64, 1267–1271.Google Scholar
First citation Kagan, Yu. & Afanas'ev, A. M. (1966). Suppression of inelastic channels in resonance scattering of neutrons in regular crystals. Sov. Phys. JETP, 22, 1032–1040.Google Scholar
First citation Kato, N. (1980a). Statistical dynamical theory of crystal diffraction. I. General formulation. Acta Cryst. A36, 763–769.Google Scholar
First citation Kato, N. (1980b). Statistical dynamical theory of crystal diffraction. II. Intensity distribution and integrated intensity in the Laue cases. Acta Cryst. A36, 770–778.Google Scholar
First citation Kikuta, S., Ishikawa, I., Kohra, K. & Hoshino, S. (1975). Studies on dynamical diffraction phenomena of neutrons using properties of wave fan. J. Phys. Soc. Jpn, 39, 471–478.Google Scholar
First citation Kikuta, S., Kohra, K., Minakawa, N. & Doi, K. (1971). An observation of neutron Pendellösung fringes in a wedge-shaped silicon single crystal. J. Phys. Soc. Jpn, 31, 954–955.Google Scholar
First citation Klar, B. & Rustichelli, F. (1973). Dynamical neutron diffraction by ideally curved crystals. Nuovo Cimento B, 13, 249–271.Google Scholar
First citation Klein, A. G. (1988). Schrödinger inviolate: neutron optical searches for violations of quantum mechanics. Physica B, 151, 44–49.Google Scholar
First citation Klein, A. G. & Werner, S. A. (1983). Neutron optics. Rep. Prog. Phys. 46, 259–335.Google Scholar
First citation Knowles, J. W. (1956). Anomalous absorption of slow neutrons and X-rays in nearly perfect single crystals. Acta Cryst. 9, 61–69.Google Scholar
First citation Korpiun, P. (1966). Untersuchung ferromagnetischer Strukturen mit einem Zweistrahl-Neutroneninterferometer. Z. Phys. 195, 146–170.Google Scholar
First citation Kulda, J. (1988a). The RED extinction model. I. An upgraded formalism. Acta Cryst. A44, 283–285.Google Scholar
First citation Kulda, J. (1988b). The RED extinction model. II. Refinement of extinction and thermal vibration parameters for SrF2 crystals. Acta Cryst. A44, 286–290.Google Scholar
First citation Kulda, J. (1991). The RED extinction model. III. The case of pure primary extinction. Acta Cryst. A47, 775–779.Google Scholar
First citation Kulda, J., Baruchel, J., Guigay, J.-P. & Schlenker, M. (1991). Extinction effects in polarized neutron diffraction from magnetic crystals. I. Highly perfect MnP and YIG samples. Acta Cryst. A47, 770–775.Google Scholar
First citation Kulda, J., Vrána, M. & Mikula, P. (1988). Neutron diffraction by vibrating crystals. Physica B, 151, 122–129.Google Scholar
First citation Kvardakov, V. V., Podurets, K. M., Baruchel, J. & Sandonis, J. (1995). Precision determination of the structure factors of magnetic neutron scattering from the Pendellösung data. Crystallogr. Rep. 40, 330–331.Google Scholar
First citation Kvardakov, V. V., Podurets, K. M., Chistyakov, R. R., Shil'shtein, S. Sh., Elyutin, N. O., Kulidzhanov, F. G., Bradler, J. & Kadečková, S. (1987). Modification of the domain structure of a silicon–iron single crystal as a result of uniaxial stretching. Sov. Phys. Solid State, 29, 228–232.Google Scholar
First citation Kvardakov, V. V. & Somenkov, V. A. (1990). Observation of dynamic oscillations of intensity of magnetic scattering of neutrons with variation of the orientation of magnetic moments of the sublattices. Sov. Phys. Crystallogr. 35, 619–622.Google Scholar
First citation Kvardakov, V. V. & Somenkov, V. A. (1991). Neutron diffraction study of nonlinear magnetoacoustic effects in perfect crystals of FeBO3 and α-Fe2O3. J. Moscow Phys. Soc. 1, 33–57.Google Scholar
First citation Kvardakov, V. V. & Somenkov, V. A. (1992). Magnetic Pendellösung effects in neutron scattering by perfect magnetic crystals. Acta Cryst. A48, 423–430.Google Scholar
First citation Kvardakov, V. V., Somenkov, V. A. & Shil'shtein, S. Sh. (1990a). Observation of dynamic oscillations in the temperature dependence of the intensity of the magnetic scattering of neutrons. Sov. Phys. Solid State, 32, 1097–1098.Google Scholar
First citation Kvardakov, V. V., Somenkov, V. A. & Shil'shtein, S. Sh. (1990b). Influence of an orientational magnetic transition in α-Fe2O3 on the Pendellösung fringe effect in neutron scattering. Sov. Phys. Solid State, 32, 1250–1251.Google Scholar
First citation Kvardakov, V. V., Somenkov, V. A. & Shil'shtein, S. Sh. (1992). Study of defects in cuprate single crystals by the neutron topography and selective etching methods. Superconductivity, 5, 623–629.Google Scholar
First citation Lambert, D. & Malgrange, C. (1982). X-ray and neutron integrated intensity diffracted by perfect crystals in transmission. Z. Naturforsch. Teil A, 37, 474–484.Google Scholar
First citation Malgrange, C., Pétroff, J. F., Sauvage, M., Zarka, A. & Englander, M. (1976). Individual dislocation images and Pendellösung fringes in neutron topographs. Philos. Mag. 33, 743–751.Google Scholar
First citation Mendiratta, S. K. & Blume, M. (1976). Dynamical theory of thermal neutron scattering. I. Diffraction from magnetic crystals. Phys. Rev. 14, 144–154.Google Scholar
First citation Michalec, R., Mikula, P., Sedláková, L., Chalupa, B., Zelenka, J., Petržílka, V. & Hrdlička, Z. (1975). Effects of thickness-shear vibrations on neutron diffraction by quartz single crystals. J. Appl. Cryst. 8, 345–351.Google Scholar
First citation Michalec, R., Mikula, P., Vrána, M., Kulda, J., Chalupa, B. & Sedláková, L. (1988). Neutron diffraction by perfect crystals excited into mechanical resonance vibrations. Physica B, 151, 113–121.Google Scholar
First citation Podurets, K. M., Sokol'skii, D. V., Chistyakov, R. R. & Shil'shtein, S. Sh. (1991). Reconstruction of the bulk domain structure of silicon iron single crystals from neutron refraction images of internal domain walls. Sov. Phys. Solid State, 33, 1668–1672.Google Scholar
First citation Podurets, K. M., Somenkov, V. A., Chistyakov, R. R. & Shil'shtein, S. Sh. (1989). Visualization of internal domain structure of silicon iron crystals by using neutron radiography with refraction contrast. Physica B, 156–157, 694–697.Google Scholar
First citation Podurets, K. M., Somenkov, V. A. & Shil'shtein, S. Sh. (1989). Neutron radiography with refraction contrast. Physica B, 156–157, 691–693.Google Scholar
First citation Rauch, H. (1995). Towards interferometric Fourier spectroscopy. Physica B, 213–214, 830–832.Google Scholar
First citation Rauch, H. & Petrascheck, D. (1978). Dynamical neutron diffraction and its application. In Neutron diffraction, edited by H. Dachs, Topics in current physics, Vol. 6 pp. 305–351. Berlin: Springer.Google Scholar
First citation Rauch, H. & Seidl, E. (1987). Neutron interferometry as a new tool in condensed matter research. Nucl. Instrum. Methods A, 255, 32–37.Google Scholar
First citation Raum, K., Koellner, M., Zeilinger, A., Arif, M. & Gähler, R. (1995). Effective-mass enhanced deflection of neutrons in noninertial frames. Phys. Rev. Lett. 74, 2859–2862.Google Scholar
First citation Scherm, R. & Fåk, B. (1993). Neutrons. In Neutron and synchrotron radiation for condensed matter studies (HERCULES course), Vol. 1, edited by J. Baruchel, J. L. Hodeau, M. S. Lehmann, J. R. Regnard & C. Schlenker, pp. 113–143. Les Ulis: Les Editions de Physique and Heidelberg: Springer-Verlag.Google Scholar
First citation Schlenker, M. & Baruchel, J. (1978). Neutron techniques for the observation of ferro- and antiferromagnetic domains. J. Appl. Phys. 49, 1996–2001.Google Scholar
First citation Schlenker, M., Baruchel, J., Perrier de la Bathie, R. & Wilson, S. A. (1975). Neutron-diffraction section topography: observing crystal slices before cutting them. J. Appl. Phys. 46, 2845–2848.Google Scholar
First citation Schlenker, M., Baruchel, J., Pétroff, J. F. & Yelon, W. B. (1974). Observation of subgrain boundaries and dislocations by neutron diffraction topography. Appl. Phys. Lett. 25, 382–384.Google Scholar
First citation Schlenker, M., Bauspiess, W., Graeff, W., Bonse, U. & Rauch, H. (1980). Imaging of ferromagnetic domains by neutron interferometry. J. Magn. Magn. Mater. 15–18, 1507–1509.Google Scholar
First citation Schlenker, M., Linares-Galvez, J. & Baruchel, J. (1978). A spin-related contrast effect: visibility of 180° ferromagnetic domain walls in unpolarized neutron diffraction topography. Philos. Mag. B, 37, 1–11.Google Scholar
First citation Schlenker, M. & Shull, C. G. (1973). Polarized neutron techniques for the observation of ferromagnetic domains. J. Appl. Phys. 44, 4181–4184.Google Scholar
First citation Schmidt, H. H. (1983). Theoretical investigations of the dynamical neutron diffraction by magnetic single crystals. Acta Cryst. A39, 679–682.Google Scholar
First citation Schmidt, H. H., Deimel, P. & Daniel, H. (1975). Dynamical diffraction of thermal neutrons by absorbing magnetic crystals. J. Appl. Cryst. 8, 128–131.Google Scholar
First citation Sears, V. F. (1978). Dynamical theory of neutron diffraction. Can. J. Phys. 56, 1261–1288.Google Scholar
First citation Shil'shtein, S. Sh., Somenkov, V. A. & Dokashenko, V. P. (1971). Suppression of (n, γ) reaction in resonant scattering of neutrons by a perfect CdS crystal. JETP Lett. 13, 214–217.Google Scholar
First citation Shull, C. G. (1968). Observation of Pendellösung fringe structure in neutron diffraction. Phys. Rev. Lett. 21, 1585–1589.Google Scholar
First citation Shull, C. G. (1986). Neutron interferometer systems – types and features. Physica B, 136, 126–130.Google Scholar
First citation Shull, C. G. & Oberteuffer, J. A. (1972). Spherical wave neutron propagation and Pendellösung fringe structure in silicon. Phys. Rev. Lett. 29, 871–874.Google Scholar
First citation Shull, C. G., Zeilinger, A., Squires, G. L., Horne, M. A., Atwood, D. K. & Arthur, J. (1980). Anomalous flight time of neutrons through diffracting crystals. Phys. Rev. Lett. 44, 1715–1718.Google Scholar
First citation Sippel, D. & Eichhorn, F. (1968). Anomale inkohärente Streuung thermicher Neutronen bei Bildung stehender Neutronenwellen in nahezu idealen Kristallen von Kaliumdihydrogenphosphat (KDP). Acta Cryst. A24, 237–239.Google Scholar
First citation Sippel, D., Kleinstück, K. & Schulze, G. E. R. (1962). Nachweis der anomalen Absorption thermischer Neutronen bei Interferenz am Idealkristall. Phys. Status Solidi, 2, K104–K105.Google Scholar
First citation Sippel, D., Kleinstück, K. & Schulze, G. E. R. (1964). Neutron diffraction of ideal crystals using a double crystal spectrometer. Phys. Lett. 8, 241–242.Google Scholar
First citation Sippel, D., Kleinstück, K. & Schulze, G. E. R. (1965). Pendellösungs-Interferenzen mit thermischen Neutronen an Si-Einkristallen. Phys. Lett. 14, 174–175.Google Scholar
First citation Sivardière, J. (1975). Théorie dynamique de la diffraction magnétique des neutrons. Acta Cryst. A31, 340–344.Google Scholar
First citation Somenkov, V. A., Shil'shtein, S. Sh., Belova, N. E. & Utemisov, K. (1978). Observation of dynamical oscillations for neutron scattering by Ge crystals using the inclination method. Solid State Commun. 25, 593–595.Google Scholar
First citation Squires, G. L. (1978). Introduction to the theory of thermal neutron scattering. Cambridge University Press.Google Scholar
First citation Stassis, C. & Oberteuffer, J. A. (1974). Neutron diffraction by perfect crystals. Phys. Rev. B, 10, 5192–5202.Google Scholar
First citation Takagi, S. (1962). Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Cryst. 15, 1311–1312.Google Scholar
First citation Takahashi, T., Tomimitsu, H., Ushigami, Y., Kikuta, S. & Doi, K. (1981). The very-small angle neutron scattering from neutron-irradiated amorphous silica. Jpn. J. Appl. Phys. 20, L837–L839.Google Scholar
First citation Takahashi, T., Tomimitsu, H., Ushigami, Y., Kikuta, S., Doi, K. & Hoshino, S. (1983). The very-small angle neutron scattering from SiO2–PbO glasses. Physica B, 120, 362–366.Google Scholar
First citation Tasset, F. (1989). Zero field neutron polarimetry. Physica B, 156–157, 627–630.Google Scholar
First citation Taupin, D. (1964). Théorie dynamique de la diffraction des rayons X par les cristaux déformés. Bull. Soc. Fr. Minéral. Cristallogr. 87, 469–511.Google Scholar
First citation Tomimitsu, H. & Doi, K. (1974). A neutron diffraction topographic observation of strain field in a hot-pressed germanium crystal. J. Appl. Cryst. 7, 59–64.Google Scholar
First citation Tomimitsu, H., Doi, K. & Kamada, K. (1983). Neutron diffraction topographic observation of substructures in Cu-based alloys. Physica B, 120, 96–102.Google Scholar
First citation Tomimitsu, H., Takahashi, T., Kikuta, S. & Doi, K. (1986). Very small angle neutron scattering from amorphous Fe78B12Si10. J. Non-Cryst. Solids, 88, 388–394.Google Scholar
First citation Tomimitsu, H. & Zeyen, C. (1978). Neutron diffraction topographic observation of twinned silicon crystal. Jpn. J. Appl. Phys. 3, 591–592.Google Scholar
First citation Werner, S. A. (1980). Gravitational and magnetic field effects on the dynamical diffraction of neutrons. Phys. Rev. B, 21, 1774–1789.Google Scholar
First citation Werner, S. A. (1995). Neutron interferometry tests of quantum theory. Ann. NY Acad. Sci. 755, 241–262.Google Scholar
First citation Werner, S. A., Staudenmann, J. L. & Colella, R. (1979). The effect of the Earth's rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103–1106.Google Scholar
First citation Zachariasen, W. H. (1967). A general theory of X-ray diffraction in crystals. Acta Cryst. 23, 558–564.Google Scholar
First citation Zeilinger, A. (1995). Private communication.Google Scholar
First citation Zeilinger, A. & Shull, C. G. (1979). Magnetic field effects on dynamical diffraction of neutrons by perfect crystals. Phys. Rev. B, 19, 3957–3962.Google Scholar
First citation Zeilinger, A., Shull, C. G., Horne, M. A. & Finkelstein, K. D. (1986). Effective mass of neutrons diffracting in crystals. Phys. Rev. Lett. 57, 3089–3092.Google Scholar
First citation Zelepukhin, M. V., Kvardakov, V. V., Somenkov, V. A. & Shil'shtein, S. Sh. (1989). Observation of the Pendellösung fringe effect in magnetic scattering of neutrons. Sov. Phys. JETP, 68, 883–886.Google Scholar
First citation Zolotoyabko, E. & Sander, B. (1995). X-ray diffraction profiles in strained crystals undergoing ultrasonic excitation. The Laue case. Acta Cryst. A51, 163–171.Google Scholar