International Tables for Crystallography (2010). Vol. B, ch. 1.1, pp. 2-9   | 1 | 2 |
doi: 10.1107/97809553602060000758

Chapter 1.1. Reciprocal space in crystallography

Contents

  • 1.1. Reciprocal space in crystallography  (pp. 2-9) | html | pdf | chapter contents |
    • 1.1.1. Introduction  (p. 2) | html | pdf |
    • 1.1.2. Reciprocal lattice in crystallography  (pp. 2-3) | html | pdf |
    • 1.1.3. Fundamental relationships  (pp. 3-5) | html | pdf |
      • 1.1.3.1. Basis vectors  (p. 3) | html | pdf |
      • 1.1.3.2. Volumes  (p. 4) | html | pdf |
      • 1.1.3.3. Angular relationships  (p. 4) | html | pdf |
      • 1.1.3.4. Matrices of metric tensors  (pp. 4-5) | html | pdf |
    • 1.1.4. Tensor-algebraic formulation  (pp. 5-7) | html | pdf |
      • 1.1.4.1. Conventions  (p. 5) | html | pdf |
      • 1.1.4.2. Transformations  (p. 5) | html | pdf |
      • 1.1.4.3. Scalar products  (pp. 5-6) | html | pdf |
      • 1.1.4.4. Examples  (pp. 6-7) | html | pdf |
    • 1.1.5. Transformations  (pp. 7-8) | html | pdf |
      • 1.1.5.1. Transformations of coordinates  (pp. 7-8) | html | pdf |
      • 1.1.5.2. Example  (p. 8) | html | pdf |
    • 1.1.6. Some analytical aspects of the reciprocal space  (pp. 8-9) | html | pdf |
      • 1.1.6.1. Continuous Fourier transform  (p. 8) | html | pdf |
      • 1.1.6.2. Discrete Fourier transform  (pp. 8-9) | html | pdf |
      • 1.1.6.3. Bloch's theorem  (p. 9) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 1.1.4.1. Derivation of the general expression for the rotation operator  (p. 7) | html | pdf |