International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 1.4, p. 15

Section 1.4.1.1. Arithmetic crystal classes in three dimensions

A. J. C. Wilsona

a St John's College, Cambridge CB2 1TP, England

1.4.1.1. Arithmetic crystal classes in three dimensions

| top | pdf |

The 32 geometric crystal classes and the 14 Bravais lattices are familiar in three-dimensional crystallography. The three-dimensional arithmetic crystal classes are easily derived in an elementary fashion by enumerating the compatible combinations of geometric crystal class and Bravais lattice; the symbol adopted by the International Union of Crystallography for an arithmetic crystal class is simply the juxtaposition of the symbol for the geometric crystal class and the symbol for the Bravais lattice (de Wolff et al., 1985[link]). For example, in the monoclinic system the geometric crystal classes are 2, m, and 2/m, and the Bravais lattices are monoclinic P and monoclinic C. The six arithmetic crystal classes in the monoclinic system are thus 2P, 2C, mP, mC, 2/mP, and 2/mC. In certain cases (loosely, when the geometric crystal class and the Bravais lattice have unique directions that are not necessarily parallel), the crystal class and the lattice can be combined in two different orientations. The simplest example is the combination of the orthorhombic crystal class1 mm with the end-centred lattice C. The intersection of the mirror planes of the crystal class defines one unique direction, the C centring of the lattice another. If these directions are placed parallel to one another, the arithmetic class mm2C is obtained; if they are placed perpendicular to one another, a different arithmetic class2 2mmC is obtained. The other combinations exhibiting this phenomenon are lattice P with geometric classes 32, 3m, [\bar {3}m], [\bar {4}m], and [\bar {6}m]. By consideration of all possible combinations of geometric class and lattice, one obtains the 73 arithmetic classes listed in Table 1.4.2.1[link].

References

First citation Wolff, P. M. de, Belov, N. V., Bertaut, E. F., Buerger, M. J., Donnay, J. D. H., Fischer, W., Hahn, Th., Koptsik, V. A., Mackay, A. L., Wondratschek, H., Wilson, A. J. C. & Abrahams, S. C. (1985). Nomenclature for crystal families, Bravais-lattice types and arithmetic classes. Acta Cryst. A41, 278–280.Google Scholar








































to end of page
to top of page