International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 2.4, p. 80

Section 2.4.1.2. Diffraction patterns in electron microscopes

J. M. Cowleya

2.4.1.2. Diffraction patterns in electron microscopes

| top | pdf |

The specimens used in electron microscopes may be self-supporting thin films or fine powders supported on thin films, usually made of amorphous carbon. Specimen thicknesses must be less than about 103 Å in order to avoid perturbations of the diffraction patterns by strong multiple-scattering effects. The selected-area electron-diffraction (SAED) technique [see Section 2.5.2[link] in IT B (2001[link])] allows sharply focused diffraction patterns to be obtained from regions 103 to 105 Å in diameter. For the smaller ranges of selected-area regions, specimens may give single-crystal patterns or very spotty ring patterns, rather than continuous ring patterns, because the number of crystals present in the field of view is small unless the crystallite size is of the order of 100 Å or less. By use of the convergent-beam electron-diffraction (CBED) technique, diffraction patterns can be obtained from regions of diameter 100 Å [see Section 2.5.3[link] in IT B (2001[link])] or, in the case of some specialized instruments, regions less than 10 Å in diameter. For these reasons, the methods for phase identification from electron diffraction patterns and the corresponding databases (see Subsection 2.4.1.6[link]) are increasingly concerned with single-crystal spot patterns in addition to powder patterns.

Instrument manufacturers usually provide values of camera lengths, L, or camera constants, Lλ, for a wide range of designated lens-current settings. It is advisable to check these calibrations with samples of known structure and to determine calibrations for non-standard lens settings.

The effective camera length, L, is dependent on the specimen height within the objective-lens pole-piece. If a specimen-height adjustment (a z-lift) is provided, it should be adjusted to give a predetermined lens current, and hence focal length, of the objective lens.

In some microscopes, at particular lens settings the projector lenses may introduce a radial distortion of the diffraction pattern. This may be measured with a suitable standard specimen.

References

First citation International Tables for Crystallography (2001). Vol. B, Reciprocal space, edited by U. Shmueli. Dordrecht: Kluwer Academic Publishers.Google Scholar








































to end of page
to top of page