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2.6. SMALL-ANGLE TECHNIQUES

Surface. The surface S of one particle is correlated with the
scattering intensity /(%) of this particle by

2
LWl = (49)° 1S
Determination of the absolute intensity can be avoided if we
calculate the specific surface O, (Mittelbach & Porod, 1965)

lim [1(h)A*]
0,=S)V= n’H“’T

Cross section, thickness, and correlation length. By similar
equations, we can find the area A of the cross section of a rod-
like particle

(2.6.1.24)

(2.6.1.25)

4 — 2

(2.6.1.26)
0
and the thickness T of lamellar particles by
2
T = n’% (2.6.1.27)

but the experimental accuracy of the limiting values [I(h)A],_
and [I(h)h?],_., is usually not very high.

The correlation length /. is the mean width of the correlation
function y(r) (Porod, 1982) and is given by

(o)

T
l.=— | I(Whdh.
. Q/()

0

(2.6.1.28)

The maximum dimension D of a particle would be another
important particle parameter, but it cannot be calculated directly
from the scattering function and will be discussed later.

Persistence length a,. An important model for polymers in
solution is the so-called worm-like chain (Porod, 1949; Kratky &
Porod, 1949). The degree of coiling can be characterized by the
persistence length a, (Kratky, 1982b). Under the assumption that
the persistence length is much larger than the cross section of the
polymer, it is possible to find a transition point A" in an
I(W)h? vs h plot where the function starts to be proportional to .
There is an approximation

ha,~23, (2.6.1.29)

depending on the length of the chain (Heine, Kratky & Roppert,
1962). For further details, see Kratky (1982b).

Molecular weight. Particles of arbitrary shape. The particle is
measured at high dilution in a homogeneous solution and has an
isopotential specific volume v, and z, mol. electrons per gram,
i.e. the molecule contains z,M electrons if M is the molecular
weight. The number of effective mol. electrons per gram is given
by

AZZ - (Z2 - V/2,00), (26130)
where p, is the mean electron density of the solvent. The
molecular weight can be determined from the intensity at zero
angle 71(0):
w10 @

P AZXdcIN,
_ 1(0) 21.04
P AZdc
(Kratky, Porod & Kahovec, 1951), where P is the total intensity

per unit time irradiating the sample, a [cm] is the distance
between the sample and the plane of registration, d [cm] is the

(2.6.1.31)

Copyright © 2006 International Union of Crystallography

thickness of the sample, ¢ [gcm™] is the concentration, and N,
is Loschmidt’s (Avogadro’s) number.

Rod-like particles. The mass per unit length M, = M/L, i.e.
the mass related to the cross section of a rod-like particle with
length L, is given by a similar equation (Kratky & Porod, 1953):

(WA, o a’
P wAZ2dcl,N;
[I(h)h],_, 6.68a

= . 2.6.1.32
P AZ2dc ( )

M, =

Flat particles. A similar equation holds for the mass per unit
area M, = M /A:
[L(h)h*]—0 a’
P 2n Az*dcl,N,
U(hh*),_ 3.34a*

= . 2.6.1.33
P AZ%dc ( )

M, =

Abscissa scaling. The various molecular parameters can be
evaluated from scattered intensities with different abscissa
scaling. The abscissa used in theoretical work is h =
(47/A)sin 6. The most important experimental scale is m [cm],
the distance of the detector from the centre of the primary beam
with the distance a [cm] between the sample and the detector
plane.

hlnm™'] = T, [cm™'nm ™" Jm[cm], (2.6.1.34)
with
T, = 27/ la. (2.6.1.35)
The angular scale 260 with
20 ~m/a = (A/27)h (2.6.1.36)

was used in the early years of small-angle X-ray scattering
experiments. The formulae for the various parameters for m and
the & scale can be found in Table 2.6.1.1, the formulae for the 26
scale can be found in Glatter & Kratky (1982, p. 158).

2.6.1.3.2. Shape and structure of particles

In this subsection, we have to discuss how shape, size, and
structure of the scattering particle are reflected in the scattering
function /(h) and in the PDDF p(r). In general, it is easier to
discuss features of the PDDF, but some characteristics like
symmetry give more pronounced effects in reciprocal space.

2.6.1.3.2.1. Homogeneous particles

Globular particles. Only a few scattering problems can be
solved analytically. The most trivial shape is a sphere. Here we
have analytical expressions for the scattering intensity

. 2
1(h) = (3 sin(hR) — hli COS(hR)) (2.6.1.37)

(hR)

and for the PDDF (Porod, 1948)
p(r) =122 -3x+x’) x=r/2R) <1, (2.6.1.38)

where R is the radius of the sphere. The graphical representation
of scattering functions is usually made with a semi-log plot
[log I(h) vs k] or with a log-log plot [log I(%) vs log h]; the PDDF
is shown in a linear plot. In order to compare functions from
particles of different shape, it is preferable to keep the scattering
intensity at zero angle (area under PDDF) and the radius of
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gyration R, [slope of the main maximum of I(h) or the second
moment of p(r)] constant.

The scattering function of a sphere with R = 65 is shown in
Fig. 2.6.1.2 [dashed line, log/(0) normalized to 12]. We see
distinct minima which are typical for particles of high symmetry.
We can determine the size of the sphere directly from the
position of the zeros %, and hy, (Glatter, 1972).
4493 __1.725

R~ or ~
hoy ho,

or from the position of the first side maximum (R, >~ 4.5/h,).
The minima are considerably flattened in the case of cubes (full
line in Fig. 2.6.1.2). The corresponding differences in real space
are not so clear-cut (Fig. 2.6.1.3). The p(r) function of the
sphere has a maximum near » = R = D/2 (x ~ 0.525) and drops
to zero like every PDDF at r = D, where D is the maximum
dimension of the particle — here the diameter. The p(r) for the
cube with the same R, is zero at r >~ 175. The function is very
flat in this region. This fact demonstrates the problems of

accuracy in this determination of D when we take into account

(2.6.1.39)

log I(h)

1 Jl 1 lll 1
0.05 0.1

—_—a h

Fig. 2.6.1.2. Comparison of the scattering functions of a sphere (- - - -)
and a cube ( ) with same radius of gyration.
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Fig. 2.6.1.3. Distance distribution function of a sphere (- - - -) and a

cube (
scattering intensity at zero angle.

) with the same radius of gyration and the same

experimental errors. In any case, this accuracy will be different
for different shapes.

Any deviation from spherical symmetry will shift the
maximum to smaller r values and the value for D will increase
[1(0) and R, constant!]. A comparison of PDDF’s for a sphere,
an oblate ellipsoid of revolution (axial ratio 1:1:0.2), and a
prolate ellipsoid of revolution (1:1:3) is shown in Fig. 2.6.1.4.
The more we change from the compact, spherical structure to a
two- and one-dimensionally elongated structure, the more the
maximum shifts to smaller r values and at the same time we have
an increase in D. We see that p(r) is a very informative function.
The interpretation of scattering functions in reciprocal space is
hampered by the highly abstract nature of this domain. We can
see this problem in Fig. 2.6.1.5, where the scattering functions
of the sphere and the ellipsoids in Fig. 2.6.1.4 are plotted. A
systematic discussion of the features of p(r) can be found
elsewhere (Glatter, 1979, 1982b).

Rod-like particles. The first example of a particle elongated in
one direction (prolate ellipsoid) was given in Figs. 2.6.1.4 and
2.6.1.5. An important class is particles elongated in one
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Fig. 2.6.1.4. Comparison of the p(r) function of a sphere ( ), a
prolate ellipsoid of revolution 1:1:3 (——-— ), and an oblate ellipsoid
of revolution 1:1:0.2 (- - - -) with the same radius of gyration.
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Fig. 2.6.1.5. Comparison of the I(h) functions of a sphere, a prolate,
and an oblate ellipsoid (see legend to Fig. 2.6.1.4).
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direction with a constant cross section of arbitrary shape (long
cylinders, parallelepipeds, etc.) The cross section A (with
maximum dimension d) should be small in comparison to the
length of the whole particle L:

d<L L=(D*—d>"*~D. (2.6.1.40)
The scattering curve of such a particle can be written as
I(h) = L(z/h)I.(h), (2.6.1.41)

where the function /() is related only to the cross section and
the factor 1/h is characteristic for rod-like particles (Kratky &
Porod, 1948; Porod, 1982). The cross-section function I (k) is

I(h) = (L) 'I(h)h = constant x I(h)h. (2.6.1.42)

This function was used in the previous subsection for the
determination of the cross-section parameters R,, A, and M. In
addition, we have

I(h) =27 [ p(r)Jo(hr)dr, (2.6.1.43)
0
where J,(hr) is the zero-order Bessel function and
1 (o]
p.(r) = 7 / L(h)(hr)Jy(hr)dh (2.6.1.44)

0

(Glatter, 1982a). The function p.(r) is the PDDF of the cross
section with

pc(r) = ryc(r) = (Ap(rc) * Ap(_rc))

The symbol * stands for the mathematical operation called
convolution and the symbol () means averaging over all
directions in the plane of the cross section. Rod-like particles
with a constant cross section show a linear descent of p(r) for
r> d if D > 2.5d. The slope of this linear part is proportional to
the square of the area of the cross section,

dp A Ap?

dr 2
The PDDF’s of parallelepipeds with the same cross section but
different length L are shown in Fig. 2.6.1.6. The maximum
corresponds to the cross section and the point of inflection r;
gives a rough indication for the size of the cross section. This is
shown more clearly in Fig. 2.6.1.7, where three parallelepipeds
with equal cross section area A but different cross-section

dimensions are shown. If we find from the overall PDDF that the
particle under investigation is a rod-like particle, we can use the

(2.6.1.45)

(2.6.1.46)

< 6
Q. 5
I 4 - |
3+ | (a)
2 L
1 ®
| ©
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—_—d

Fig. 2.6.1.6. Distance distributions from homogeneous parallelepipeds
with edge lengths of: (a) 50 x 50 x 500A; (b) 50 x 50 x 250A; (c)
50 x 50 x 150 A.
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PDDF of the cross section p.(r) to obtain more information on
the cross section (Glatter, 1980a).

Flat particles. Flat particles, i.e. particles elongated in two
dimensions (discs, flat parallelepipeds), with a constant thickness
T much smaller than the overall dimensions D, can be treated in a
similar way. The scattering function can be written as

2
Ithy=A4 ﬁlt(h), (2.6.1.47)

where I,(h) is the so-called thickness factor (Kratky & Porod,

1948) or
L(h) = (A2:r)"l(h)h = constant x I(h)h?, (2.6.1.48)

which can be used for the determination of R,, 7, and M,. In
addition, we have again:

L(h) = 2 [ p/(r)cos(hr) dr (2.6.1.49)
0
and
i) = 1) =+ [ 1 costtr) dn
0
= Ap,(r) * Ap,(—7). (2.6.1.50)

PDDF’s from flat particles do not show clear features and
therefore it is better to study f(r) = p(r)/r (Glatter, 1979). The
corresponding functions for lamellar particles with the same
basal plane but different thickness are shown in Fig. 2.6.1.7(b).
The marked transition points in Fig. 2.6.1.7(b) can be used to
determine the thickness. The PDDF of the thickness p,(r) can
give more information in such cases, especially for inhomoge-
neous particles (see below).

—p ()

a

I 200 300 400
—>r
(@)

n 100

200
—r
(b)

Fig. 2.6.1.7. Three parallelepipeds with constant length L (400 A)anda
constant cross section but varying length of the edges:
40 x 40 A; 80 x 20A; - - - - 160 x 10 A. (a) p(r) function.

) f(r) =p(r)/r.
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Composite structures — aggregates, subunits. The formation of
dimers can be analysed qualitatively with the p(r) function
(Glatter, 1979). For an approximate analysis, it is only necessary
to know the PDDF of the monomer. Different types of
aggregates will have distinct differences in their PDDF. Higher
aggregates generally cannot be classified unambiguously.
Additional information from other sources, such as the
occurrence of symmetry, can simplify the problem.

Particles that consist of aggregates of a relatively large
number of identical subunits show, at low resolution, the overall
structure of the whole particle. At larger angles (higher
resolution), the influence of the individual subunits can be
seen. In the special case of globular subunits, it is possible to
determine the size of the subunits from the position of the
minima of the corresponding shape factors using equation
(2.6.1.39) (Glatter, 1972; Pilz, Glatter, Kratky & Moring-
Claesson, 1972).

2.6.1.3.2.2. Hollow and inhomogeneous particles

We have learned to classify homogeneous particles in the
previous part of this section. It is possible to see from scattering
data [I(h) or p(r)] whether a particle is globular or elongated, flat
or rod-like, efc., but it is impossible to determine uniquely a
complicated shape with many parameters. If we allow internal
inhomogeneities, we make things more complicated and it is
clear that it is impossible to obtain a unique reconstruction of an
inhomogeneous three-dimensional structure from its scattering
function without additional a priori information. We restrict our
considerations to special cases that are important in practical
applications and that allow at least a solution in terms of a first-
order approximation. In addition, we have to remember that the
p(r) function is weighted by the number of excess electrons that
can be negative. Therefore, a minimum in the PDDF can be
caused by a small number of distances, or by the addition of
positive and negative contributions.

Spherically symmetric particles. In this case, it is possible to
describe the particle by a one-dimensional radial excess density
function Ap(r). For convenience, we omit the A sign for excess
in the following. As we do not have any angle-dependent terms,
we have no loss of information from the averaging over angle.
The scattering amplitude is simply the Fourier transform of the
radial distribution:

oo

A(h) = 47 / rp(r)Sin}(lhr) dr (2.6.1.51)
0
[I(h) — A(h)*] and
o(r) =§ / RA(h) Sinih’) dh (2.6.1.52)
0

(Glatter, 1977a). These equations would allow direct analysis if
A(h) could be measured, but we can measure only I(k). p(r) can
be calculated from /() using equation (2.6.1.10) remembering
that this function is the convolution square of p(r) [equations
(2.6.1.5) and (2.6.1.8)]. Using a convolution square-root
technique, we can calculate p(r) from I(h) via the PDDF
without having a ‘phase problem’ like that in crystallography;
i.e. it is not necessary to calculate scattering amplitudes and
phases (Glatter, 1981; Glatter & Hainisch, 1984; Glatter, 1988).
This can be done because p(r) differs from zero only in the
limited range 0 < r < D (Hosemann & Bagchi, 1952, 1962). In
mathematical terms, it is again the difference between a Fourier
series and a Fourier integral.

Details of the technique cannot be discussed here, but it is a
fact that we can calculate the radial distribution p(r) from the
scattering data assuming that the spherical scatterer is only of
finite size. The hollow sphere can be treated either as a
homogeneous particle with a special shape or as an inhomoge-
neous particle with spherical symmetry with a step function as
radial distribution. The scattering function and the PDDF of a
hollow sphere can be calculated analytically. The p(r) of a
hollow sphere has a triangular shape and the function
f(r) =p(r)/r shows a horizontal plateau (Glatter, 1982b).

Rod-like particles. Radial inhomogeneity. If we assume radial
inhomogeneity of a circular cylinder, i.e. p is a function of the
radius r but not of the angle ¢ or of the value of z in cylindrical
coordinates, we can determine some structural details. We define
p. as the average excess electron density in the cross section.
Then we obtain a PDDF with a linear part for r > d and we have
to replace Ap in equation (2.6.1.46) by p. with the maximum
dimension of the cross section d. The p(r) function differs from
that of a homogeneous cylinder with the same p. only in the
range 0 < r <d. A typical example is shown in Fig. 2.6.1.8.
The functions for a homogeneous, a hollow, and an inhomoge-
neous cylinder with varying density p_(r) are shown.

Rod-like particles. Axial inhomogeneity. This is another
special case for rod-like particles, i.e. the density is a function
of the z coordinate. In Fig. 2.6.1.9, we compare two cylinders
with the same size and diameter. One is a homogeneous cylinder
with density p, diameter d = 48 and length L = 480, and the
other is an inhomogeneous cylinder of the same size and mean
density p, but this cylinder is made from slices with a thickness
of 20 and alternating densities of 1.5p and 0.5p, respectively.
The PDDF of the inhomogeneous cylinder has ripples with the
periodicity of 40 in the whole linear range. This periodicity leads
to reflections in reciprocal space (first and third order in the 4
range of the figure).

Flat particles. Cross-sectional inhomogeneity. Lamellar par-
ticles with varying electron density perpendicular to the basal
plane, where p is a function of the distance x from the central
plane, show differences from a homogeneous lamella of the same
size in the PDDF in the range 0 <r < T, where T is the

1 (@)
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Fig. 2.6.1.8. Circular cylinder with a constant length of 480 A and an
outer diameter of 48 A. (@) Homogeneous cylinder, (b) hollow
cylinder, (¢) inhomogeneous cylinder. The p(r) functions are shown
on the left, the corresponding electron-density distributions p(r) on
the right.
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thickness of the lamella. An example is given in Fig. 2.6.1.10
where we compare a homogeneous lamellar particle (with
p = +1) with an inhomogeneous one, p,(x) being a three-step
function alternating between the values +1, —1, +1.

Flat particles. In-plane inhomogeneity. Lamellae with a
homogeneous cross section but inhomogeneities along the basal
plane have a PDDF that deviates from that of a homogeneous
lamella in the whole range O < r < D. These deviations are a
measure of the in-plane inhomogeneites; a general evaluation
method does not exist. Even more complicated is the situation
that occurs in membranes: these have a pronounced cross-
sectional structure with additional in-plane inhomogeneities
caused by the membrane proteins (Laggner, 1982; Sadler &
Worcester, 1982).

Contrast variation and labelling. An important method for
studying inhomogeneous particles is the method of contrast
variation (Stuhrmann, 1982). By changing the contrast of the
solvent, we can obtain additional information about the
inhomogeneities in the particles. This variation of the contrast
is much easier for neutron scattering than for X-ray scattering
because hydrogen and deuterium have significantly different
scattering cross sections. This technique will therefore be
discussed in the section on neutron small-angle scattering.
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log I(h)
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Fig. 2.6.1.9. Inhomogeneous circular cylinder with periodical changes
of the electron density along the cylinder axis compared with a

homogeneous cylinder with the same mean electron density. (a) p(r)
function; (b) scattering intensity; inhomogeneous cylinder;
-- - - homogeneous cylinder.

A method for distance determination with X-rays by heavy-
atom labelling was developed by Kratky & Worthman (1947).
These ideas are now used for the determination of distances
between deuterated subunits of complex macromolecular struc-
tures with neutron scattering.

High-resolution experiments. A special type of study is the
comparison of the structures of the same molecule in the crystal
and in solution. This is done to investigate the influence of the
crystal field on the polymer structure (Krigbaum & Kiigler,
1970; Damaschun, Damaschun, Miiller, Ruckpaul & Zinke,
1974; Heidorn & Trewhella, 1988) or to investigate structural
changes (Ruckpaul, Damaschun, Damaschun, Dimitrov, Janig,
Miiller, Piirschel & Behlke, 1973; Hubbard, Hodgson &
Doniach, 1988). Sometimes such investigations are used to
verify biopolymer structures predicted by methods of theoretical
physics (Miiller, Damaschun, Damaschun, Misselwitz, Zirwer
& Nothnagel, 1984). In all cases, it is necessary to measure the
small-angle scattering curves up to relatively high scattering
angles (h ~30nm~!, and more). Techniques for such experi-
ments have been developed during recent years (Damaschun,
Gernat, Damaschun, Bychkova & Ptitsyn, 1986; Gernat,
Damaschun, Krober, Bychkova & Ptitsyn, 1986; I’anson,
Bacon, Lambert, Miles, Morris, Wright & Nave, 1987) and
need special evaluation methods (Miiller, Damaschun &
Schrauber, 1990).

2.6.1.3.3. Interparticle interference, concentration effects

So far, only the scattering of single particles has been treated,
though, of course, a great number of these are always present. It
has been assumed that the intensities simply add to give the total
diffraction pattern. This is true for a very dilute solution, but
with increasing concentration interference effects will contri-
bute. Biological samples often require higher concentrations for
a sufficient signal strength. We can treat this problem in two
different ways:

-We accept the interference terms as additional information
about our system under investigation, thus observing the spatial
arrangement of the particles.

-We treat the interference effect as a perturbation of our
single-particle concept and discuss how to remove it.

The first point of view is the more general, but there are many
open questions left. For many practical applications, the second
point of view is important.

The radial distribution function. In order to find a general
description, we have to restrict ourselves to an isotropic
assembly of monodisperse spheres. This makes it possible to

100

200

[ ———

300

Fig. 2.6.1.10. p(r) function of a lamellar particle. The full line
corresponds to an inhomogeneous particle, p,(x) is a three-step
function with the values +1, —1, +1. The broken line represents the
homogeneous lamella with p = +1.
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