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2. DIFFRACTION GEOMETRY AND ITS PRACTICAL REALIZATION

can be interpreted as a residual constant background (including
the self-term of the constant nuclear ‘form factor’), which may
be used for slightly correcting the estimated background and
consequently improving the quality of the data. For mono-
dispersed particles, a particle surface can be deduced from the
overall surface. The value of the surface area so determined
depends on the maximal Q to which the scattering curve can be
obtained with good statistics. This depends also on the magnitude
of the background. At least for weakly scattering particles in
mixtures of 'H,0 and ?H,0, and even more in pure 'H,0, the
incoherent background level often cannot be determined
precisely enough for interpreting the tail of the scattering
curve in terms of the surface area.

2.6.2.7. Single-particle scattering

Single-particle scattering in this context means scattering from
isolated structures (clusters in alloys, isolated polymer chains in
a solvent, biological macromolecules, efc.) randomly distributed
in space and sufficiently far away from each other so that
interparticle contributions to the scattering (see Subsection
2.6.2.8) can be neglected. The tendency of polymerization of
single particles, for example the monomer—dimer equilibrium of
proteins or the formation of higher aggregates, and long-range
(e.g. electrostatic) interactions between the particles disturb
single-particle scattering. In the absence of such effects, samples
with solute volume fractions below about 1% can be regarded as
free of volume-exclusion interparticle effects for most purposes.
For (monodispersed) protein samples, for example, this means
that concentrations of about 5mgml~' are often a good
compromise between sufficient scattering intensity and concen-
tration effects. In many cases, series of scattering measurements
with increasing particle concentrations have been used for
extrapolating the scattering to zero concentration. In the
following, we assume that particle interactions are absent.

2.6.2.7.1. Particle shape

All X-ray and neutron small-angle scattering curves can be
approximated by a parabolic fit in a narrow Q range near Q =0
(Porod, 1951): 1(Q) ~ 1(0) (1 —a?Q?/3 +...). In the case of
single-particle scattering, a Gaussian approximation to the
scattering curve is even more precise (Guinier & Fournet,
1955) in the zero-angle limit:

1(Q) ~ I(0) exp(—Q?/3R%), (2.6.2.10)
where R; is the radius of gyration of the particle’s excess
scattering density.

The concept of R; and the validity of the Guinier approxima-
tion is discussed in more detail in the SAXS section of this
volume (§2.6.1). It might be mentioned here that the frequently
used OR; < 1 rule for the validity of the Guinier approximation
is no more than an indication and should always be tested by
a scattering calculation with the model obtained from the
experiment: Spheres yield a deviation of 5% of the Gaussian
approximation at QR; = 1.3, rods at OR; = 0.6; ellipsoids of
revolution with an elongation factor of 2 can reach as far as
OR; =3.

More detailed shape information requires a wider Q range. As
indicated before, Fourier transforms may help to distinguish
between conflicting models. In many instances (e.g. hollow
bodies, cylinders), it is much easier to find the shape of the
scattering particle from the distance distribution function than
from the scattering curve [see §2.6.2.7.3].

2.6.2.7.2. Particle mass

With N = CN,V,/M,, where N, is Avogadro’s number, C is
the mass concentration of the solute in g1~!, and V, is the sample
volume in cm™ (we assume N identical particles randomly
distributed in dilute solution), we find that the relative molecular
mass M, of a particle can be determined from the intensity at
zero angle, 1(0) in equation (2.6.2.10), using the relation (Jacrot
& Zaccai, 1981), where the particle mass concentration C (in
mg ml~!) is omitted:

1(0)/{CI[H,0](0)}
= 4 f T,M,N,d, 107 [( X b, — p,V) /M)’ /(1 — T[H,0)).
(2.6.2.11)

d, is the sample thickness. Note that > b,/M, may depend on
solvent exchange; in a given solvent, especially 'H,0, it is rather
independent of the exact amino acid composition of proteins
(Jacrot & Zaccai, 1981).

An alternative presentation of equation (2.6.2.11) is

1(0)/{CI[H,0](0)}

= dxf T.M,d, 103 (vAp)*/N,(1 — T[H,0)), (2.62.11a)

where Ap = p,(p,) — p; is the contrast; p, is the particle
scattering-length density (depending on the scattering-length
density p, of the solvent, in general) and v is the partial specific
volume of the particle. Expression (2.6.2.11a) is of advantage
when (vAp), which is a linear function of p,, is known for a class
of particles.

A thermodynamic approach to the particle-size problem, in
view of the complementarity of different methods, has been
given Zaccai, Wachtel & Eisenberg (1986) on the basis of the
theory of Eisenberg (1981). It permits the determination of the
molecular mass, of the hydration, and of the amount of bound
salts.

2.6.2.7.3. Real-space considerations

The scattering from a large number of randomly oriented
particles at infinite dilution, and as a first approximation that of
particles at sufficiently high dilution (see above), is completely
determined by a function p(r) in real space, the distance-
distribution function. It describes the probability p of finding a
given distance r between any two volume elements within the
particle, weighted with the product of the scattering-length
densities of the two volume elements.

Theoretically, p(r) can be obtained by an infinite sine Fourier
transform of the isolated-particle scattering curve

oo

1(Q) = [[p(r)/Qr]sin(Qr)dr.

0

(2.6.2.12)

In practice, the scattering curve can be measured neither to
Q0 =0 (but an extrapolation is possible to this limit), nor to
Q — oo. In fact, neutrons allow us to measure more easily the
sample scattering in the range near Q = 0; X-rays are superior
for large Q values. Indirect iterative methods have been
developed that fit the finite Fourier transform

Drnax

1Q) = [ [p(r)/Qr]sin(Qr)dr

0

(2.6.2.12a)

of a p(r) function described by a limited number of parameters
between r =0 and a maximal chord length D,_,, within the
particle to the experimental scattering curve. It differs from the
p(r) of Section 2.6.1 by a factor of 47.
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This procedure was termed the ‘indirect Fourier transforma-
tion (IFT)’ method by Glatter (1979), who uses equidistant B
splines in real space that are correlated by a Lagrange parameter,
thus reducing the number of independent parameters to be fitted.
Errors in determining a residual flat background only affect the
innermost spline at r = O; the intensity at Q = 0 and the radius of
gyration are not influenced by a (small) flat background.

Another IFT method was introduced by Moore (1980), who
uses an orthogonal set of sine functions in real space. This
procedure is more sensitive to the correct choice of D, and to a
residual background that might be present in the data.

A major advantage of IFT is the ease with which the
deconvolution of the scattering intensities with respect to the
wavelength distribution and to geometrical smearing due to the
primary beam and sample sizes is calculated by smearing the
theoretical scattering curve obtained from the real-space model.
In fact, it is possible to convolute the scattering curves obtained
from the single splines that are calculated only once at the
beginning of the fit procedure. The convoluted constituent
curves are then iteratively fitted to the experimental scattering
curves.

With the exception of particle symmetry, which is better seen
in the scattering curve, structural features are more easily
recognized in the p(r) function (Glatter, 1982a).

Once the p(r) function is determined, the zero-angle intensity
and the radius of gyration can be calculated from its integral and
from its second moment, respectively.

2.6.2.7.4. Particle-size distribution

Indirect Fourier transformation also facilitates the evaluation
of particle-size distributions on the assumption that all particles
have the same shape and that the size distribution depends on
only one parameter (Glatter, 1980).

2.6.2.7.5. Model fitting

As in small-angle X-ray scattering, the scattering curves can
be compared with those of simple or more elaborate models.
This is rather straightforward in the case of highly symmetric
particles like icosahedral viruses that can be regarded as
spherical at low resolution. The scattering curves of such viruses
are easily adapted by spherical-shell models assigning different
scattering-length densities to the different shells (e.g. Cusack,
1984). Neutron constrast variation helps decisively to distinguish
between the shells.

Fitting complicated models to the scattering curves is more
critical because of the averaging effect of small-angle scattering.
While it is correct and easy to show that the scattering curve
produced by a model body coincides with the measured curve, in
general a unique model cannot be deduced from the scattering
curve alone. Stuhrmann (1970) has presented a procedure using
Lagrange polynomials to calculate low-resolution real-space
models directly from the scattering information. It has been
applied successfully to the scattering curves from ribosomes
(Stuhrmann et al., 1976).

2.6.2.7.6. Label triangulation

Triangulation is one of the techniques that make full use of the
advantages of neutron scattering. It consists in specifically
labelling single components of a multicomponent complex,
measuring the scattering curves from (a) particles with two
labelled components, (b) and (c) particles with either of the two
components labelled, and (d) a (reference) particle that is not
labelled at all. The comparison of the scattering from (b) + (¢)

with that from (@) + (d) yields information on the scattering
originating exclusively from vectors combining volume elements
in one component with volume elements in the other component.

From this scattering difference curve, the distances between
the centres of mass of the components are obtained. A table of
such distances yields the spatial arrangement of the components.
If there are n components in the complex, at least 4n — 10 for
n > 3 distance values are needed to build this model: Three
distances define a basic triangle, three more yield a basic
tetrahedron, the handedness of which is arbitrary and has to be
determined by independent means. At least four more distances
are required to fix a further component in space. More than four
distances are needed if the resulting tetrahedron is too flat.

Label triangulation is based on a technique developed by
Kratky & Worthmann (1947) for determining heavy-metal
distances in organometallic compounds by X-ray scattering,
and was proposed originally by Hoppe (1972); Engelman &
Moore (1972) first saw the advantage of neutrons. The need to
mix preparations (a) plus (d) and (b) plus (c¢) for obtaining the
desired scattering difference curve in the case of high
concentrations and/or inhomogeneous complexes (consisting of
different classes of matter) has been shown by Hoppe (1973).
The complete map of all protein positions within the small
subunit from E. coli ribosomes has been obtained with this
method (Capel et al., 1987). An alternative approach for
obtaining the distance information contained in the scattering
curves from pairs of proteins by fitting the Fourier transform of
‘moving splines’ to the scattering curves has been presented by
May & Nowotny (1989) for data on the large ribosomal subunit.

The scattering curves should be measured at the scattering-
length-density matching point of the reference particle for
reducing undesired contributions. Naturally inhomogeneous
particles can be rendered homogeneous by specific partial
deuteration. This technique has been successfully applied for
ribosomes (Nierhaus et al., 1983).

2.6.2.7.7. Triple isotropic replacement

An elegant way of determining the structure of a component
inside a molecular complex has been proposed by Pavlov &
Serdyuk (1987). It is based on measuring the scattering curves
from three preparations. Two contain the complex to be studied
at two different levels of labelling, p, and p,, and are mixed
together to yield sample 1, the third contains the complex at an
intermediate level of labelling, p; (sample 2). If the condition

p3(r) = (1 = 8)p,(r) + 8py(r) (2.6.2.13)

is satisfied by §, the relative concentration of particle 2 in sample
1, then the difference between the scattering from the two
samples only contains contributions from the single component.
Additionally, the contributions from contamination, aggregation,
and interparticle effects are suppressed provided that they are
the same in the three samples, i.e. independent of the partial-
deuteration states.

In the case of small complexes, § can be obtained by
measuring the scattering curves 1,(Q), L,(Q), and I;(Q) of the
three particles as a function of contrast and by plotting the
differences of the zero-angle scattering [,(0) —;(0) and
L,(0) — I;(0) versus 5. The two curves intercept at the correct
ratio §,.

The method, which can be considered as a special case of a
systematic inverse contrast variation of a selected component,
holds if the concentrations, the complex occupations, and the
aggregation behaviour of the three particles are identical.
Mathematically, the difference curve is independent of the
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contrast of the rest of the complex with respect to the solvent. In
practice, it would be wise to follow the same considerations as
with triangulation.

2.6.2.8. Dense systems

Especially in the case of polymers, but also in alloys, the
scattering from the sample can often no longer be described, as
in the previous section, as originating from a sum of isolated
particles in different orientations. There may be two reasons for
this: either the number concentration ¢ of one of the components
is higher than about 0.01, leading to excluded-volume effects,
and/or there is an electrostatic interaction between components
(for example, in solutions of polyelectrolytes, latex, or
micelles). In these cases, it is usually the information about the
structure of the sample caused by the interactions that is to be
obtained rather than the shape of the inhomogeneities or particles
in the sample, unless the interactions can be regarded as a weak
disturbance.

An excellent introduction to the treatment of dense systems is
found in the article of Hayter (1985). A detailed description of
the theoretical interpretation of correlations in charged macro-
molecular and supramolecular solutions has been published by
Chen, Sheu, Kalus & Hoffmann (1988).

The scattering from densely packed particles can be written as
the product of the structure factor or structure function S(Q),
describing the arrangement of the inhomogeneities with respect
to each other, in mathematical terms the interference effects of
correlations between particle positions, in the sample,

S(Q) = (3= X expliQ(r; — r)]) /N,
and of the form factor P(Q) of the inhomogeneities (as before):
1(Q) = P(Q)S(Q).

Hayter & Penfold (1981) were the first to describe an analytic
structure factor for macro-ion solutions.

If P(Q) can be obtained from a measurement of a dilute
solution of the particles under study, then the pure structure
factor can be calculated by dividing the high-concentration
intensity curve by the low-concentration curve. This procedure
requires the form factor not to change with concentration, which
is not necessarily the case for loosely arranged particles such as
polymers. A technique that avoids this problem is contrast
variation (see Subsection 2.6.2.2): introducing a fraction of a
deuterated molecule into a bulk of identical protonated molecules
(or vice versa, with the advantage of reduced incoherent
background) yields the scattering of the ‘isolated’ labelled
particle at high-concentration conditions.

Partial structure factors can be obtained from a contrast-
variation series of a given system at different volume fractions of
the particles. Similarly to equation (2.6.2.4), the structure factor
can be decomposed into a quadratic function. In the ternary alloy
Al-Ag-Zn, for example, the scattering has been decomposed
into the contributions from the two minor species Ag and Zn, and
their interference, i.e. the partial structure functions for Zn-Zn,
Zn-Ag, and Ag-Ag, by using the scattering from three samples
with different silver isotopes, and identical sample treatment
(Salva-Ghilarducci, Simon, Guyot & Ansara, 1983).

(2.6.2.14)

(2.6.2.15)
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