International
Tables for
Crystallography
Volume C
Mathematical, physical and chemical tables
Edited by E. Prince

International Tables for Crystallography (2006). Vol. C. ch. 3.5, p. 173

Section 3.5.1.4. Final thinning by chemical etching

N. J. Tighe,a J. R. Fryerb and H. M. Flowerc

a 42 Lema Lane, Palm Coast, FL 32137-2417, USA,bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, and cDepartment of Metallurgy, Imperial College, London SW7, England

3.5.1.4. Final thinning by chemical etching

| top | pdf |

Chemical dissolution methods for preparing electron-transparent specimens were developed before ion thinning was perfected. These methods are not used extensively, but they have some advantages particularly where ion thinning may disturb the surface composition or structure of a particular material. It is advantageous to use chemical dissolution in some stages of specimen preparation, for example to relate etch pits to dislocations, to prepare a defect-free surface, and to remove the ion-damaged surface from thin disc specimens (Barber & Tighe, 1965[link]). The thinning conditions must be chosen carefully to avoid artefacts such as preferential dissolution at grain boundaries, precipitates, and dislocations, or surface precipitates produced by a supersaturated solution.

Suitable solvents and dissolution conditions must be found for each new material. Some of the chemical etchants used for thin-section preparation are listed in Table 3.5.1.1[link].

Table 3.5.1.1| top | pdf |
Chemical etchants used for preparing thin foils from single-crystal ceramic materials; symbols: I immersion method; SFJ separatory funnel jet; CJ convection jet; BJ boiling jet

MaterialEtchantReferences
Al2O385% H3PO4, 723–733 KI, BJTighe (1964[link])
BaTiO3H2SO4CJKirkpatrick & Amelinckx (1962[link])
CaCO3C6H8O7 (dilute)IBraillon et al. (1974[link])
CoO85% H3PO4CJRemaut et al. (1964[link])
LiNbO3KOH, 623–673 KIWicks & Lewis (1968[link])
MgO85% H3PO4, 373 KI, SFJWashburn et al. (1960[link])
MgAl2O485% H3PO4, 523–723 KILewis (1966[link])
MnOHCl + NO3 Barber & Evans (1970[link])
SiO2NH4F·HF, 453–473 KITighe (unpublished)
HF, 373 KI
TiO2NaOH, 823 KIBarber & Farabaugh (1965[link])
ZrSiO4NH4F·HF + KF (1:1), 693–703 KITighe (unpublished)
Y3Al5O1285% H3PO4, 573 KIKeast (1967[link])

Devices that squirt a jet of chemical solvent at the disc or slab specimen are used to obtain careful control over the final thinning to electron transparency (Kirkpatrick & Amelinckx, 1962[link]; Tighe, 1964[link]; Washburn, Groves, Kelly & Williamson, 1960[link]).

Predictable dissolution rates are obtained by varying the concentration and temperature of the etchant. Solutions can be found that will produce a smooth surface polish or an etch-pitted surface. For example, corundum is etched in boiling phosphoric acid at a temperature approximately 50 K lower than the temperature used for polishing. Surfaces with different crystallographic orientations have different dissolution rates. Useful sources of information about possible etchants are mineralogical and chemical handbooks that discuss production of etch figures and crystallographic facets (Dana & Ford, 1922[link]; Honess, 1927[link]).

References

First citation Barber, D. J. & Evans, R. G. (1970). Dislocations, ordering and antiferromagnetic domains in MnO. Proc. EMSA, pp. 522–523. Baton Rouge: Claitor.Google Scholar
First citation Barber, D. J. & Farabaugh, E. N. (1965). Dislocations and stacking faults in rutile crystals grown by flame fusion methods. J. Appl. Phys. 36, 2803–2806.Google Scholar
First citation Barber, D. J. & Tighe, N. J. (1965). Electron microscopy and diffraction of synthetic corundum crystals. I. Pure aluminum oxide grown by the Verneuil process. Philos. Mag. 11, 495–512.Google Scholar
First citation Braillon, P., Mughier, J. & Serughetti, J. (1974). Transmission electron microscope observations of dislocations in calcite single crystals. Cryst. Lattice Defects, 5, 73–78.Google Scholar
First citation Dana, E. S. & Ford, W. E. (1922). A textbook on mineralogy. New York: John Wiley.Google Scholar
First citation Honess, A. P. (1927). The nature, origin and interpretation of the etch figures on crystals. New York: John Wiley.Google Scholar
First citation Keast, D. J. (1967). A chemical thinning technique for the simultaneous preparation of foils for transmission electron microscopy. Application to yttrium aluminum garnet (YAG). J. Sci. Instrum. 44, 862–863.Google Scholar
First citation Kirkpatrick, H. B. & Amelinckx, S. (1962). Device for chemically thinning crystals for transmission electron microscopy. Rev. Sci. Instrum. 33, 488–489.Google Scholar
First citation Lewis, M. H. (1966). Defects in spinel crystals grown by the Verneuil process. Philos. Mag. 14, 1003–1008.Google Scholar
First citation Remaut, G., Lagasse, A. & Amelinckx, S. (1964). Electron microscope study of the domain structure in anti-ferromagnetic cobalteous oxide. Phys. Status Solidi, 5, 497–510. Google Scholar
First citation Tighe, N. J. (1964). Jet thinning device for preparation of Al2O3 electron microscopy specimens. Rev. Sci. Instrum. 35, 520–521.Google Scholar
First citation Washburn, J., Groves, G. W., Kelly, A. & Williamson, G. K. (1960). Electron microscope observations of deformed magnesium oxide. Philos. Mag. 5, 991–999.Google Scholar
First citation Wicks, B. J. & Lewis, M. H. (1968). Direct observations of ferroelectric domains in lithium niobate. Phys. Status Solidi, 26, 571–576.Google Scholar








































to end of page
to top of page