International Tables for Crystallography (2006). Vol. C. ch. 4.3, pp. 259-429
https://doi.org/10.1107/97809553602060000593

Chapter 4.3. Electron diffraction

Contents

  • 4.3. Electron diffraction  (pp. 259-429) | html | pdf | chapter contents |
    • 4.3.1. Scattering factors for the diffraction of electrons by crystalline solids  (pp. 259-262) | html | pdf |
      • 4.3.1.1. Elastic scattering from a perfect crystal  (p. 259) | html | pdf |
      • 4.3.1.2. Atomic scattering factors  (pp. 259-260) | html | pdf |
      • 4.3.1.3. Approximations of restricted validity  (p. 260) | html | pdf |
      • 4.3.1.4. Relativistic effects  (pp. 260-261) | html | pdf |
      • 4.3.1.5. Absorption effects  (p. 261) | html | pdf |
      • 4.3.1.6. Tables of atomic scattering amplitudes for electrons  (p. 261) | html | pdf |
      • 4.3.1.7. Use of Tables 4.3.1.1 and 4.3.1.2  (pp. 261-262) | html | pdf |
    • 4.3.2. Parameterizations of electron atomic scattering factors  (p. 262) | html | pdf |
    • 4.3.3. Complex scattering factors for the diffraction of electrons by gases  (pp. 262-391) | html | pdf |
      • 4.3.3.1. Introduction  (p. 262) | html | pdf |
      • 4.3.3.2. Complex atomic scattering factors for electrons  (pp. 262-390) | html | pdf |
        • 4.3.3.2.1. Elastic scattering factors for atoms  (pp. 262-389) | html | pdf |
        • 4.3.3.2.2. Total inelastic scattering factors  (pp. 389-390) | html | pdf |
        • 4.3.3.2.3. Corrections for defects in the theory of atomic scattering  (p. 390) | html | pdf |
      • 4.3.3.3. Molecular scattering factors for electrons  (pp. 390-391) | html | pdf |
    • 4.3.4. Electron energy-loss spectroscopy on solids  (pp. 391-412) | html | pdf |
      • 4.3.4.1. Definitions  (pp. 391-394) | html | pdf |
        • 4.3.4.1.1. Use of electron beams  (pp. 391-392) | html | pdf |
        • 4.3.4.1.2. Parameters involved in the description of a single inelastic scattering event  (p. 392) | html | pdf |
        • 4.3.4.1.3. Problems associated with multiple scattering  (pp. 392-393) | html | pdf |
        • 4.3.4.1.4. Classification of the different types of excitations contained in an electron energy-loss spectrum  (pp. 393-394) | html | pdf |
      • 4.3.4.2. Instrumentation  (pp. 394-397) | html | pdf |
        • 4.3.4.2.1. General instrumental considerations  (pp. 394-395) | html | pdf |
        • 4.3.4.2.2. Spectrometers  (pp. 395-397) | html | pdf |
        • 4.3.4.2.3. Detection systems  (p. 397) | html | pdf |
      • 4.3.4.3. Excitation spectrum of valence electrons  (pp. 397-404) | html | pdf |
        • 4.3.4.3.1. Volume plasmons  (pp. 397-399) | html | pdf |
        • 4.3.4.3.2. Dielectric description  (pp. 399-401) | html | pdf |
        • 4.3.4.3.3. Real solids  (pp. 401-403) | html | pdf |
        • 4.3.4.3.4. Surface plasmons  (pp. 403-404) | html | pdf |
      • 4.3.4.4. Excitation spectrum of core electrons  (pp. 404-411) | html | pdf |
        • 4.3.4.4.1. Definition and classification of core edges  (pp. 404-406) | html | pdf |
        • 4.3.4.4.2. Bethe theory for inelastic scattering by an isolated atom (Bethe, 1930; Inokuti, 1971; Inokuti, Itikawa & Turner, 1978, 1979)  (pp. 406-408) | html | pdf |
        • 4.3.4.4.3. Solid-state effects  (pp. 408-410) | html | pdf |
        • 4.3.4.4.4. Applications for core-loss spectroscopy  (pp. 410-411) | html | pdf |
      • 4.3.4.5. Conclusions  (pp. 411-412) | html | pdf |
    • 4.3.5. Oriented texture patterns  (pp. 412-414) | html | pdf |
      • 4.3.5.1. Texture patterns  (p. 412) | html | pdf |
      • 4.3.5.2. Lattice plane oriented perpendicular to a direction (lamellar texture)  (pp. 412-413) | html | pdf |
      • 4.3.5.3. Lattice direction oriented parallel to a direction (fibre texture)  (pp. 413-414) | html | pdf |
      • 4.3.5.4. Applications to metals and organic materials  (p. 414) | html | pdf |
    • 4.3.6. Computation of dynamical wave amplitudes  (pp. 414-416) | html | pdf |
    • 4.3.7. Measurement of structure factors and determination of crystal thickness by electron diffraction  (pp. 416-419) | html | pdf |
    • 4.3.8. Crystal structure determination by high-resolution electron microscopy  (pp. 419-429) | html | pdf |
      • 4.3.8.1. Introduction  (pp. 419-421) | html | pdf |
      • 4.3.8.2. Lattice-fringe images  (pp. 421-422) | html | pdf |
      • 4.3.8.3. Crystal structure images  (pp. 422-424) | html | pdf |
      • 4.3.8.4. Parameters affecting HREM images  (pp. 424-425) | html | pdf |
      • 4.3.8.5. Computing methods  (pp. 425-427) | html | pdf |
      • 4.3.8.6. Resolution and hyper-resolution  (p. 427) | html | pdf |
      • 4.3.8.7. Alternative methods  (pp. 427-428) | html | pdf |
      • 4.3.8.8. Combined use of HREM and electron diffraction  (pp. 428-429) | html | pdf |
    • References | html | pdf |
    • Figures
      • Fig. 4.3.4.1. Definition of the regions in (E, q) space that can be investigated with the different primary sources of particles available at present  (p. 392) | html | pdf |
      • Fig. 4.3.4.2. A primary electron of energy E0 and wavevector k is inelastically scattered into a state of energy E0ΔE and wavevector k′  (p. 392) | html | pdf |
      • Fig. 4.3.4.3. Excitation spectrum of aluminium from 1 to 250 eV, investigated by EELS on 300 keV primary electrons  (p. 393) | html | pdf |
      • Fig. 4.3.4.4. Complete electron energy-loss spectrum of a thin rhodizite crystal (thickness ~60 nm)  (p. 393) | html | pdf |
      • Fig. 4.3.4.5. Schematic energy-level representation of the origin of a core-loss excitation (from a core level C at energy Ec to an unoccupied state U above the Fermi level Ef) and its general shape in EELS, as superimposed on a continuously decreasing background  (p. 393) | html | pdf |
      • Fig. 4.3.4.6. Energy-loss spectrum, in the meV region, of an evaporated germanium film (thickness [\simeq] 25 nm)  (p. 394) | html | pdf |
      • Fig. 4.3.4.7. Schematic drawing of a uniform magnetic sector spectrometer with induction B normal to the plane of the figure  (p. 395) | html | pdf |
      • Fig. 4.3.4.8. Different factors contributing to the energy resolution in the dispersion plane  (p. 395) | html | pdf |
      • Fig. 4.3.4.9. Optical coupling of a magnetic sector spectrometer on a STEM column  (p. 396) | html | pdf |
      • Fig. 4.3.4.10. Principle of the Wien filter used as an EELS spectrometer: the trajectories are shown in the two principal (dispersive and focusing) sections  (p. 396) | html | pdf |
      • Fig. 4.3.4.11. Principle of the Castaing & Henry filter made from a magnetic prism and an electrostatic mirror  (p. 396) | html | pdf |
      • Fig. 4.3.4.12. A commercial EELS spectrometer designed for parallel detection on a photodiode array  (p. 397) | html | pdf |
      • Fig. 4.3.4.13. The dispersion curve for the excitation of a plasmon (curve 1) merges into the continuum of individual electron–hole excitations (between curves 2 and 4) for a critical wavevector qc  (p. 398) | html | pdf |
      • Fig. 4.3.4.14. Measured angular dependence of the differential cross section dσ/dΩ for the 15 eV plasmon loss in Al (dots) compared with a calculated curve by Ferrell (solid curve) and with a sharp cut-off approximation at θc (dashed curved)  (p. 399) | html | pdf |
      • Fig. 4.3.4.15. Variation of plasmon excitation mean free path Λp as a function of accelerating voltage V in the case of carbon and aluminium  (p. 399) | html | pdf |
      • Fig. 4.3.4.16. Dielectric and optical functions calculated in the Drude model of a free-electron gas with ħωp = 16 eV and τ = 1.64 × 10−16 s  (p. 400) | html | pdf |
      • Fig. 4.3.4.17. Same as previous figure, but for a Lorentz model with an oscillator of eigenfrequency ħω0 = 10 eV and relaxation time τ0 = 6.6 × 10−16 s superposed on the free-electron term  (p. 401) | html | pdf |
      • Fig. 4.3.4.18. Dielectric coefficients [\varepsilon_1], [\varepsilon_2] and [{\rm Im}(-1/\varepsilon)] from a collection of typical real solids  (p. 402) | html | pdf |
      • Fig. 4.3.4.19. Dielectric functions in graphite derived from energy losses for Ec (i.e. the electric field vector being in the layer plane) and for E||c  (p. 403) | html | pdf |
      • Fig. 4.3.4.20. Geometric conditions for investigating the anisotropic energy-loss function  (p. 404) | html | pdf |
      • Fig. 4.3.4.21. Definition of electron shells and transitions involved in core-loss spectroscopy  (p. 404) | html | pdf |
      • Fig. 4.3.4.22. Chart of edges encountered in the 50 eV up to 3 keV energy-loss range with symbols identifying the types of shapes  (p. 405) | html | pdf |
      • Fig. 4.3.4.23. A selection of typical profiles (K, L2,3, M4,5, and N2,3) illustrating the most important behaviours encountered on major edges through the Periodic Table  (p. 406) | html | pdf |
      • Fig. 4.3.4.24. Bethe surface for K-shell ionization, calculated using a hydrogenic model  (p. 407) | html | pdf |
      • Fig. 4.3.4.25. A novel technique for simulating an energy-loss spectrum with two distinct edges as a superposition of theoretical contributions (hydrogenic saw-tooth for O K, Lorentzian white lines and delayed continuum for Fe L2,3 calculated with the Hartree–Slater description)  (p. 407) | html | pdf |
      • Fig. 4.3.4.26. Definition of the different fine structures visible on a core-loss edge  (p. 408) | html | pdf |
      • Fig. 4.3.4.27. High-energy resolution spectra on the L2,3 titanium edge from two phases (rutile and anatase) of TiO2  (p. 408) | html | pdf |
      • Fig. 4.3.4.28. The dramatic change in near-edge fine structures on the L3 and L2 lines of Cu, from Cu metal to CuO  (p. 409) | html | pdf |
      • Fig. 4.3.4.29. Illustration of the single and multiple scattering effects used to describe the final wavefunction on the excited site  (p. 409) | html | pdf |
      • Fig. 4.3.4.30. Comparison of the experimental O K edge (solid line) with calculated profiles in the multiple scattering approach  (p. 409) | html | pdf |
      • Fig. 4.3.4.31. The conventional method of background subtraction for the evaluation of the characteristic signals SO K and SFe L2,3 used for quantitative elemental analysis  (p. 410) | html | pdf |
      • Fig. 4.3.4.32. Values of neff for metallic aluminium based on composite optical data  (p. 411) | html | pdf |
      • Fig. 4.3.5.1. The relative orientations of the direct and the reciprocal axes and their projections on the plane ab, with indication of the distances Bhk and Dhkl that define the positions of reflections in lamellar texture patterns  (p. 412) | html | pdf |
      • Fig. 4.3.5.2. (a) Part of the OTED pattern of the clay mineral kaolinite and (b) the intensity profile of a characteristic quadruplet of reflections recorded with the electron diffractometry system  (p. 413) | html | pdf |
      • Fig. 4.3.5.3. The projections of the reciprocal axes on the plane ab of the direct lattice, with indications of the distances B and D of the hk rows from the fibre-texture axes a or [hk]  (p. 413) | html | pdf |
      • Fig. 4.3.7.1. (a) Dispersion-surface section for the symmetric four-beam case (0, g, g + h, m), γk is a function of kx, referred to (b), where kx = ky = 0 corresponds to the exact Bragg condition for all three reflections  (p. 418) | html | pdf |
      • Fig. 4.3.8.1. Atomic resolution image of a tantalum-doped tungsten trioxide crystal (pseudo-cubic structure) showing extended crystallographic shear-plane defects (C), pentagonal-column hexagonal-tunnel (PCHT) defects (T), and metallization of the surface due to oxygen desorption (JEOL 4000EX, crystal thickness less than 200 Å, 400 kV, Cs = 1 mm)  (p. 419) | html | pdf |
      • Fig. 4.3.8.2. Imaging conditions for few-beam lattice images  (p. 420) | html | pdf |
      • Fig. 4.3.8.3. A summary of three- (or five-) beam axial imaging conditions  (p. 422) | html | pdf |
      • Fig. 4.3.8.4. The contrast of few-beam lattice images as a function of focus in the neighbourhood of the stationary-phase focus  (p. 422) | html | pdf |
      • Fig. 4.3.8.5. (a) The transfer function for a 400 kV electron microscope with a point resolution of 1.7 Å at the Scherzer focus; the curve is based on equation (4.3.8.17)  (p. 424) | html | pdf |
      • Fig. 4.3.8.6. Structure image of a thin lamella of the 6H polytype of SiC projected along [110] and recorded at 1.2 MeV  (p. 426) | html | pdf |
    • Tables
      • Table 4.3.1.1. Atomic scattering amplitudes (Å) for electrons for neutral atoms  (pp. 263-271) | html | pdf |
      • Table 4.3.1.2. Atomic scattering amplitudes (Å) for electrons for ionized atoms  (pp. 272-281) | html | pdf |
      • Table 4.3.2.1. Parameters useful in electron diffraction as a function of accelerating voltage  (p. 281) | html | pdf |
      • Table 4.3.2.2. Elastic atomic scattering factors of electrons for neutral atoms and s up to 2.0 Å−1  (pp. 282-283) | html | pdf |
      • Table 4.3.2.3. Elastic atomic scattering factors of electrons for neutral atoms and s up to 6.0 Å−1  (pp. 284-285) | html | pdf |
      • Table 4.3.3.1. Partial wave elastic scattering factors for neutral atomsinteractive version  (pp. 286-377) | html | pdf |
      • Table 4.3.3.2. Inelastic scattering factors  (pp. 378-388) | html | pdf |
      • Table 4.3.4.1. Different possibilities for using EELS information as a function of the different accessible parameters (r, [\boldtheta], ΔE)  (p. 394) | html | pdf |
      • Table 4.3.4.2. Plasmon energies measured (and calculated) for a few simple metals  (p. 397) | html | pdf |
      • Table 4.3.4.3. Experimental and theoretical values for the coefficient α in the plasmon dispersion curve together with estimates of the cut-off wavevector  (p. 398) | html | pdf |
      • Table 4.3.4.4. Comparison of measured and calculated values for the halfwidth ΔE1/2(0) of the plasmon line  (p. 398) | html | pdf |