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4.3. Electron diffraction
By C. CoLLIEX, J. M. COWLEY, S. L. DUDAREV, M. FINK, J. GIoNNES, R. HILDERBRANDT, A. HOwig, D. F. LyNcH, L. M. PENG,
G. REN, A. W. Ross, V. H. SMiTH JR, J. C. H. SPENCE, J. W. STEEDS, J. WANG, M. J. WHELAN AND B. B. ZVYAGIN

4.3.1. Scattering factors for the diffraction of electrons by
crystalline solids (By J. M. Cowley)

4.3.1.1. Elastic scattering from a perfect crystal

The most important interaction of electrons with crystalline
matter is the interaction with the electrostatic potential field. The
scattering into sharp, Bragg reflections is considered in terms of
the interaction of an incident plane wave with a time-
independent, averaged, periodic potential field which may be
written

@(r) :é > V(h)exp{—2mih - r}, (4.3.1.1)
h

where £2 is the unit-cell volume and the Fourier coefficients,
V(h), may be referred to as the structure amplitudes correspond-
ing to the reciprocal-lattice vectors h. In conformity with the
crystallographic sign convention used thoughout this volume [see
also Volume B (IT B, 1992)], we choose a free-electron
approximation for the incident electron beam of the form
exp(—ik - r) and the interaction is represented by inserting the
potential (4.3.1.1) in the Schrodinger wave equation

V2Y(r) + 2ko{E + @(r)}¥(r) = 0, (4.3.1.2)

where eE is the kinetic energy of the incident beam, k (= 27/4)
is the magnitude of the wavevector for the incident electrons, and
o is an ‘interaction constant’ defined by

o = 2mmel./h?, (4.3.1.3)

where A is Planck’s constant. Relativistic values of m and 1 are
assumed (see Subsection 4.3.1.4).

The solution of equation (4.3.1.2), subject to the boundary
conditions imposed by the need to fit the waves in the crystal
with the incoming and outgoing waves in vacuum at the crystal
surfaces, then allows the directions and amplitudes of the
diffracted beams to be obtained in terms of the crystal
periodicities and the Fourier coefficients, V(h), of ¢(r) by the
eigenvalue or Bloch-wave method (Bethe, 1928).

Alternatively, the scattered amplitudes may be obtained from
the integral form of (4.3.1.2),

(e) = expl—iky 1
i [SPUEE ey dr,.

43.14
T (4.3.1.4)

where exp{—ik, - r} represents the incident beam, K = o/4, and
the integral is taken over the space of the variable, r'. An
iterative solution of (4.3.1.4) leads to the Born series,

WZ‘//0+¢1+W2+--~»
where
Yo = exp(—ik, - 1}

and

no =k [FPEE ey, @ dr. @31

r
for n>1. Terms of the series for n=1,2,... may be
considered to represent the contributions from single, double
and multiple scattering of the incident electron beam. This

method has been applied to the diffraction from crystals by
Fujiwara (1959).

A further formulation of the scattering problem in integral
form is that due to Cowley & Moodie (1957) who considered the
progressive modification of an incident plane wave as it passed
through successive thin slices of a crystal. The effect of the nth
slice on the incident electron wave is that of a phase-grating so
that the wavefunction is modified by multiplication by a
transmission function,

4,(xy) = exp{—iop,(xy)}, (4.3.1.6)

where ¢,(xy) is the projection of the potential distribution within
the slice in the direction of the incident beam, taken to be the z
axis;

Z,+Az

e, y)= [ oxy z)dz.

Zn

(4.3.1.7)

Propagation of the wave between the centres of slices is
represented by convolution with a propagation function, p(xy),
so that the wave entering the (n + 1)th slice may be written

V1 () = [V, (x) - g,(x)] * p,,(xy). (4.3.1.8)

In the small-angle approximation, the function p,(xy) is given by
the usual Fresnel diffraction theory as

p(xy) = (i/2Az) exp{—ik(x* + y*)/2Az}. (4.3.1.9)

In the limit that the slice thickness, Az, tends to zero, the
iteration of (4.3.1.8) gives an exact account of the diffraction by
the crystal.

On the basis of the above-mentioned and other related
formulations of the diffraction problem, several computing
methods have been devised for calculation of the amplitudes and
intensities of the many diffracted beams of appreciable intensity
that may emerge simultaneously from a crystal (see Section
4.3.6). In this way, a degree of accuracy may be achieved in the
calculation of the intensities of spots in diffraction patterns or of
the contrast in electron-microscope images of crystals (Section
4.3.8).

4.3.1.2. Atomic scattering factors

All such calculations require a knowledge of the potential
distribution, ¢(r), or its Fourier coefficients, V(h). It is usually
convenient to express the potential distribution in terms of the
sum of contributions of individual atoms centred at the positions
r =r;. Thus:

o(r) = Z @, (r—r,) (4.3.1.10)

or, in terms of the Fourier transforms, V;, of the ¢,(r)
V(h) = > Vi(h)exp{+2nih-r;}. (4.3.1.11)

As a first approximation, the functions ¢,;(r) may be identified
with the potential distributions for individual, isolated atoms or
ions, with the usual spreading due to thermal motion. The
interatomic binding and the interactions of ions that are thereby
neglected may have important effects on diffraction intensities in
some cases.

In this approximation, the Fourier transforms for individual
atoms may be written
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Vi(s) = f2(s)/K, (4.3.1.12)

where s=47)""'sind = |k —Kk,| and the f2 are the Born
electron scattering amplitudes, as conventionally defined, in
units of A. Here 6 is half the scattering angle and, again,
K = o//. Some values of f3(s) listed in the accompanying Tables
4.3.1.1 and 4.3.1.2 are obtained from the atomic potentials ¢,(r)
for isolated, spherically symmetrical atoms or ions by the
relation

sinsr .
sr

() = 4K / Po(r) (43.1.13)
0

By the use of Poisson’s equation relating the potential and
charge-density distributions, it is possible to derive the Mott-
Bethe formula for £3(s) in terms of the atomic scattering factors
for X-rays, f.(s):

me?
fBs) = 2;1E (Z —f(s)}/5, (4.3.1.14)
0
where ¢, is the permittivity of vacuum, or
fE(s) = 0.023934 /*{Z — £.(s)}/ sin> 6 (4.3.1.15)

[for Ain A, fE(s) in A, and f.(s) in electron units]. This was used
for the other listed f2(s) values.

4.3.1.3. Approximations of restricted validity

(a) Kinematical approximation. In the limiting case of a
vanishingly weak interaction of the incident electrons with the
scattering potential of the crystal, the Born series (4.3.1.5) may
be terminated at the term ,, corresponding to single scattering.
Then the diffracted wave is given for a potential ¢(r) as
¥(s)(exp —ikR)/R, with

¥(s) = K [ o(r) exp{ilr - s]} d,.,

where R is the distance to the point of observation. For a periodic
potential, ¢(r), the scattering amplitude for the h beam is

¥(h) = NK [ ¢(r)exp{27ih - r}dz,, (4.3.1.17)

where the integral is taken over one unit cell and N is the number
of unit cells. From (4.3.1.16), it then follows that the scattering
amplitude v(h) is proportional to the structure amplitude, V(h);

w(h) = NKV(h) (4.3.1.18)
=NK Y f(h)exp{2mih - 1,}. (4.3.1.19)

(4.3.1.16)

The intensity of the h diffracted beam is then proportional to
Y(h)y*(h), and so to |V(h)|>.

Similarly, we may write the differential scattering cross
section for the scattering from a single isolated atom as

PO = K V(o). (4.3.1.20)

(b) Two-beam approximation. For some specific orientations
of a crystal of relatively simple structure, the incident beam may
be close to the Bragg angle for a strong, inner reflection but not
for any other reflection. Then the approximation may be made
that only those beams with indices 0 and h have appreciable
intensity. The intensities of these beams for a parallel-sided,
plate-shaped, centrosymmetric crystal are given in MacGillary’s
(1940) development of the theory of Bethe (1928) as

L sin’{mH(@ + &)%)
(G + &7°)

1(h) = I,{oV(h)} (4.3.1.21)

and 1(0) = I, — I(h), where [, is the incident-beam intensity, # is
the crystal thickness, &, is the extinction distance given by
&, = /o V(h), and ¢, is the excitation error which measures the
distance of the reciprocal-lattice point h from the Ewald sphere.

A formula due to Blackman (1939), obtained by integrating
(4.3.1.21) over &,, provides a useful first approximation for the
intensities of ring or arc patterns given by polycrystalline
material (see Section 2.5.2).

(c¢) Phase-grating approximations. For extremely thin
crystals, the scattering can be approximated by that of a two-
dimensional potential distribution given by projection of the
three-dimensional distribution in the beam direction. Then, by
analogy with (4.3.1.6), the emerging wave is

Y(xy) = exp{—iop(xy)} (4.3.1.22)
when
H
p(xy) = L([ p(xyz) dz (4.3.1.23)

and the diffraction amplitudes are given by the Fourier transform
of this expression.

For thicker crystals, this approximation applies in the limit of
very high electron-accelerating voltage, with the value of o
appropriate for the Compton wavelength, 4 = 0.024262 A, viz
o = 0.0005068.

It may be noted that for the special case of a single layer of
atoms the solution of the wave equations (4.3.1.2) or (4.3.1.4),
with the real potential (4.3.1.1) inserted, leads to a form
equivalent to the Moliere high-energy approximation for the
scattering by single atoms, namely

KV(s) = —% / {exp[—iog(p)] — 1} exp{ip - s} d*p, (4.3.1.24)

where p is a two-dimensional vector with components x, y, and

()= | ¢p.2)dz (4.3.1.25)
and this, in the low-angle approximation, is the same as
(4.3.1.23). Then the scattered amplitude can be considered as
made up from contributions from individual atoms that are equal
(apart from bonding effects) to the complex atomic scattering
amplitudes tabulated in connection with the diffraction of
electrons by gases.

4.3.1.4. Relativistic effects

It has been shown by Fujiwara (1961) that, at least for electron
energies up to 1 MeV or so, the relativistic effects on diffraction
amplitudes and geometry are adequately described by the use of
relativisitically corrected values for the mass and wavelength of
the electrons;

m=my(1 — p>)"/? (4.3.1.26)
eE 1/2 (1 _ ’32)1/2
= 12.2639/(E + 0.97845 x 10~° E?)'/?, (4.3.1.27)

where m, is the rest mass, 4. is the Compton wavelength
B=v/c, and 4 is given in A if E is in volts. Consequently, o
varies with the incident electron energy as [1 + h2/m3c?i)]'",
or

o =2m/(AE[1+ (1 - )]}
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Values of A, 2", m/my, B=v/c, and o are listed for various
values of the accelerating voltage, E, in Table 4.3.2.1 with 4 in
A and E in volts.

4.3.1.5. Absorption effects

Any scattering process, whether elastic or inelastic, which
removes energy from the set of diffracted beams being
considered, may be said to constitute an absorption process.
For example, for a measurement of the intensities of the
elastically scattered, sharp Bragg reflections from a crystal, any
process which gives diffuse background scattering or results in a
detectable loss of energy gives rise to absorption.

The diffracted amplitudes in such cases may be calculated, at
least as a first approximation, in terms of a complex potential,
¢.(r), containing an imaginary part ¢,(r) due to an ‘absorption
function’ and a small added real part Ag(r). Then under the
crystallographic sign convention, ¢ .(r) = @(r) — ig;(r) + Ap(r).
Correspondingly, for a centrosymmetric crystal, the structure
amplitude becomes complex and may be written

V(h) = V,(h) — iV'(h) + V'(h). (4.3.1.28)

Under the appropriate conditions of observation, important
contributions to the imaginary and real additions to the structure
amplitudes may be given by the excitation of phonons, plasmons,
or electron transitions, or by diffuse scattering due to crystal
defects or disorder.

The additional terms iV’(h) and V”(h), however, are not
invariant properties of the crystal structure but depend on the
conditions of the diffraction experiment, such as the accelerating
voltage and orientation of the incident beam, the aperture or
resolution of the recording system, and the use of energy
filtering or discrimination. In spite of this, it may often be
convenient to treat them as being produced by phenomenological
complex potentials, defined for a limited range of experimental
conditions.

4.3.1.6. Tables of atomic scattering amplitudes for electrons

Tables 4.3.1.1 and 4.3.1.2 list values of f2(s) in A for all
neutral atoms and most chemically significant ions, respectively.
The values have been given by Doyle & Turner (1968) for
several cases, denoted by RHF using the relativistic Hartree—
Fock atomic potentials of Coulthard (1967). For all other atoms
and ions, f2(s) has been found using the Mott-Bethe formula
[equation (4.3.1.15)] for s # 0, and the X-ray scattering factors
of Table 2.2A of IT IV (1974). Thus all other neutral atoms
except hydrogen are based on the relativistic Hartree-Fock
wavefunctions of Mann (1968). These are designated by *RHF.
For H and for ions below Rb, denoted by HF, f2(s) is ultimately
based on the nonrelativistic Hartree-Fock wavefunctions of
Mann (1968). For ions above Rb, denoted by *DS, modified
relativistic Dirac-Slater wavefunctions calculated by Cromer &
Waber (1974) are used.

For low values of s, the Mott formula becomes less accurate,
since [Z — f.(s)] tends to zero with s for neutral atoms. Except for
the RHF atoms, f2(s) for s from 0.01 to 0.03 are omitted in
Table 4.3.1.1 and for s from 0.04 to 0.11, only two decimal
places are given. f5(s) is then accurate to the figure quoted. For
these atoms, f2(0) was found using the formula given by Ibers
(1958):

4rme?
352

) is the mean-square atomic radius.

ROES Z(), (4.3.1.29)

where (r?

For ionized atoms, f;(0) = 00. The values listed at s = 0 in
Table 4.3.1.2 for RHF atoms were calculated by Doyle &
Turner (1968) with ¢(r) in equation (4.3.1.13) replaced by ¢/(r),
where

¢'(r) = @(r) —eAZ/r. (4.3.1.30)

Here, AZ is the ionic charge. This approach omits the Coulomb
field due to the excess or deficiency of charge on the nucleus.
With the use of these values, the structure factor for forward
scattering by a neutral unit cell containing ions may be found in
the conventional way. Similar values are not available for other
ions because the atomic potential data are lacking.

For computer applications, numerical approximations to the
f(s) of these tables have been given by Doyle & Turner (1968) as
sums of Gaussians for the range s = 0 to 2 A~'. An alternative is
to make Gaussian fits to X-ray scattering factors, then use the
Mott formula to derive electron scattering factors. As discussed
by Peng & Cowley (1988), this practice may lead to problems for
small values of s. An additional problem occurs in high-
resolution electron—microscopy (HREM) image-simulation pro-
grams, where it is usually necessary to have electron scattering
factors for the range 0 to 6A~". Fox, O’Keefe & Tabbernor
(1989) point out that extrapolatlon of the Gaussian fits of Doyle
& Turner (1968) to values past 2A7" can be highly inaccurate.
For the range of s from 2 to 6 A~", Fox et al. have used sums of
polynomials to make accurate fits t0 the X-ray scattering factors
of Doyle & Turner (1968) for many elements (Section 6.1.1),
and electron scattering factors can be generated from these data
by use of the Mott formula.

Recently, Rez, Rez & Grant (1994) have published new tables
of X-ray scattering factors obtained using a multiconfiguration
Dirac-Fock code and two parameterizations in terms of four
Gaussians, one of higher accuracy over the range of about 2 A~
and the other of lower accuracy over the extended range of about
6A~!. These authors suggest that electron scattering factors may
best be obtained from these X-ray scattering factors by using the
Mott formula. They provide a table of values for the electron
scattering factor values for zero scattering angle, f,,(0), for many
elements and ions, which may be of value for the calculation of
mean inner potentials.

4.3.1.7. Use of Tables 4.3.1.1 and 4.3.1.2

In order to calculate the Fourier coefficients V(h) of the
potential distribution ¢(r), for insertion in the formulae used to
calculate intensities [such as (4.3.1.6), (4.3.1.20), (4.3.1.21)],
or in the numerical methods for dynamical diffraction calcula-
tions, use

V(h)(in volts) = 47.87801&(h)/ 2, (4.3.1.31)

where

@(h) = Efl exp{2mi h-r;}. (4.3.1.32)
The f; values are obtained from Tables 4.3.1.1 and 4.3.1.2, and
£2 is the unit-cell volume inA3. The V(h) and the f; tabulated are
properties of the crystal structure and the isolated atoms,
respectively, and are independent of the particular scattering
theory assumed.

Expressions for the calculation of intensities in the kinematical
approximation are given for powder patterns and oblique texture
patterns in Section 2.5.3, and for thin crystal plates in Section
2.5.1 of Volume B (IT B, 1992). Since the formulas for
kinematical scattering, such as (4.3.1.19) and (4.3.1.20), include
the parameter K = o/4, which varies with the energy of the
electron beam through relativistic effects, it may be considered
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that the electron scattering factors for kinematical calculations
should be multiplied by relativistic factors.

For high-energy electrons, the relativistic variations of the
electron mass, the electron wavelength and the interaction
constant, o, become significant. The relations are

m = mo(l - ﬂ2)71/27
eE -1z
=h {2em0E (1 + —2m062)}
1— 2\1/2
= }tc%, (4.3.1.33)

where m, is the rest mass, 4, is the Compton wavelength, 4/mjc,
and 8 = v/c. Consequently, o varies with the incident electron
energy as

o =2m/(AE[1+ (1 - p)"]}

= 2me/hcp. (4.3.1.34)

For the calculation of intensities in the kinematical approx-
imation, the values of f3(s) listed in Tables 4.3.1.1 and 4.3.1.2,
which were calculated using m,, must be multiplied by
m/my = (1 — p*~ 2 for electrons of VGIOCIty v. Values of 4,
1/A, m/my, B=v/c, and o are listed for various values of the
accelerating voltage, E, in Table 4.3.2.1.

4.3.2. Parameterizations of electron atomic scattering
factors (By J. M. Cowley, L. M. Peng, G. Ren, S. L.
Dudarev, and M. J. Whelan)

For computer applications, numerical approximations to the f(s)
of Tables 4.3.1.1 or 4.3.1.2 are usually preferred and various
approximations as sums of Gaussians have been proposed. The
initial Gaussian fits were given by Doyle & Turner (1968) for the
range s = 0 to 2A~!'. However, for some purposes, as in the
image-simulation programs for high-resolution electron micros-
copy, atomic scattering factors are needed for higher s values, up
to 6A~", and, as pointed out by Fox, O’Keefe & Tabbernor
(1989), extrapolatlon of the Gaussian fits of Doyle & Turner to
values above 2A~! can be highly inaccurate.

An alternative approach to obtaining numerical values for the
electron scattering factors is to make use of the polynomial fits to
X-ray scattering factors of Fox et al. or the more recent tables of
X-ray scattering factors produced by Rez, Rez & Grant (1994),
who used a multiconfiguration Dirac-Fock code and two
parameterizations in terms of four Gauss1ans one of higher
accuracy over the range of about 2A-" and the other of lower
accuracy over the extended range of about 6 A~". The electron
scattering factors may then be derived from the X-ray scattering
factors by use of the Mott formula (4.3.1.14). For small angles
of scattering, the determination of electron scattering factors in
this way may give problems, since the X-ray scattering factor
tends to the atomic number, and both the numerator and
denominator of (4.3.1.14) tend to zero. However, the electron
scattering factor may be determined for zero scattering angle
using equation (4.3.1.29) and Rez, Rez & Grant (1994) listed
values of f,(0) for many elements and ions.

Recently, Peng, Ren, Dudarev & Whelan (1996) have
developed a new algorithm, based on a combined modified
simulated-annealing and least-squares method, to parameterize
both the elastic and absorptive scattering factors as sums of five
Gaussians of the form

fals) = (4.3.2.1)

Xn: a;exp(—b;s?),
i=i

where a; and b; are fitting parameters. The values of their fitting
parameters for the range of s values from O to 2.0 for elastic
electron scattering factors for all neutral atoms with atomic
numbers up to 98 are given in Table 4.3.2.2 and the values
obtalned separately for these atoms for the range of s from O to
6.0A " are given in Table 4.3.2.3. For Table 4.3.2.2, the fitting
was made to the values of f given in Table 4.3.1.1. For Table
4.3.2.3, the f values in the range of s from 2.0 to 6.0 A~! were
those obtained by using the Mott formula to convert the X-ray
scattering factors derived from the Dirac-Fock calculations of
Rez, Rez & Grant (1994). Similar tables for atomic scattering
factors of ions can be found in Peng (1998).

As an indication of the accuracy with which the parameterized
f values of (4.3.2.1) reproduce the numerical values of the
reference f values, Peng er al. (1996) computed values of
& = 100 o/f(0), where o is the square root of the mean square
deviation, o2, between the numerical and fitted scattering
factors. The values of ¢ are typically in the range 0.02 to
0.05, and are consistently smaller (with a few exceptions) than
the corresponding values given for the parameterizations of
previous workers (Weickenmeier & Kohl, 1991; Bird & King,
1990; Doyle & Turner, 1968).

For the absorptive scattering factors, corresponding to the
imaginary parts added to the real elastic scattering factors as a
consequence of inelastic scattering processes, Peng et al. (1996)
have tabulated values for particular elemental crystals and a
selection of crystals of compounds having the zinc-blend
structure. The main contribution to the absorptive scattering
factors arises from the thermal vibrations of the atoms in the
crystals so that the numerical values are not characteristic of the
individual atom types but depend on the type of bonding of the
atoms in the crystal, as indicated by the Debye-Waller factor,
and must be calculated separately for each temperature. The
authors offer copies of their computer programs, freely available
via electronic mail, from which the parameterization of the
absorptive scattering factors can be derived for other materials
and temperatures, given the values of the atomic numbers of the
elements, the Debye-Waller factor and the electron accelerating
voltage.

4.3.3. Complex scattering factors for the diffraction of
electrons by gases (By A. W. Ross, M. Fink,
R. Hilderbrandt, J. Wang, and V. H. Smith Jr)

4.3.3.1. Introduction

This section includes tables of scattering factors of interest for
gas-phase electron diffraction from atoms and molecules in the
keV energy region. In addition to the tables and a description of
their uses, a discussion of the theoretical uncertainties related to
the material in the tables is also provided. The tables give
scattering factors for elastic and inelastic scattering from free
atoms. The theory of molecular scattering based on these atomic
quantities is also discussed.

4.3.3.2. Complex atomic scattering factors for electrons
4.3.3.2.1. Elastic scattering factors for atoms

It has long been known that the first Born approximation
provides an inadequate description at the 4% accuracy level for
elastic and total differential cross sections in the 40keV energy
range for atoms heavier than Ne (Schomaker & Glauber, 1952;
Glauber & Schomaker, 1953). Results of early experimental
work have been confirmed for both atomic and molecular

(continued on page 388)
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